
Masking Large Keys in Hardware: A Masked
Implementation of McEliece

Cong Chen1(B), Thomas Eisenbarth1, Ingo von Maurich2,
and Rainer Steinwandt3

1 Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,teisenbarth}@wpi.edu

2 Ruhr-Universität Bochum, Bochum, Germany
ingo.vonmaurich@rub.de

3 Florida Atlantic University, Boca Raton, USA
rsteinwa@fau.edu

Abstract. Instantiations of the McEliece cryptosystem which are
considered computationally secure even in a post-quantum era still
require hardening against side channel attacks for practical applications.
Recently, the first differential power analysis attack on a McEliece cryp-
tosystem successfully recovered the full secret key of a state-of-the-art
FPGA implementation of QC-MDPC McEliece. In this work we show
how to apply masking countermeasures to the scheme and present the
first masked FPGA implementation that includes these countermeasures.
We validate the side channel resistance of our design by practical DPA
attacks and statistical tests for leakage detection.

Keywords: Threshold implementation · McEliece cryptosystem ·
QC-MDPC codes · FPGA

1 Motivation

Prominent services provided by public-key cryptography include signatures and
key encapsulation, and their security is vital for various applications. In addition
to classical cryptanalysis, quantum computers pose a potential threat to cur-
rently deployed asymmetric solutions, as most of these have to assume the hard-
ness of computational problems which are known to be feasible with large-scale
quantum computers [18]. Given these threats, it is worthwhile to explore alter-
native public-key encryption schemes that rely on problems which are believed
to be hard even for quantum computers, which might become reality sooner
than the sensitivity of currently encrypted data expires [5]. The McEliece cryp-
tosystem [12] is among the promising candidates, as it has withstood more than
35 years of cryptanalysis. To that end, efficient and secure implementations of
McEliece should be available even nowadays. The QC-MDPC variant of the
McEliece scheme proposed in [13] is a promising efficient alternative to prevail-
ing schemes, while maintaining reasonable key sizes. The first implementations
c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 293–309, 2016.
DOI: 10.1007/978-3-319-31301-6 18

294 C. Chen et al.

of QC-MDPC McEliece were presented in [10], and an efficient and small hard-
ware engine of the scheme was presented in [19]. However, embedded crypto
cores usually require protection against the threat of physical attacks when used
in practice. Otherwise, side channel attacks can recover the secret key quite
efficiently, as shown in [6].
Our Contribution. In this work we present a masked hardware implemen-
tation of QC-MDPC McEliece. Our masked design builds on the lightweight
design presented in [19]. We present several novel approaches of dealing with
side channel leakage. First, our design implements a hybrid masking approach,
to mask the key and critical states, such as the syndrome and other intermediate
states. The masking consists of Threshold Implementation (TI) based Boolean
masking for bit operations and arithmetic masking for needed counters. Next, we
present a solution for efficiently masking long bit vectors, as needed to protect
the McEliece keys. This optimization is achieved by generating a mask on-the-fly
using a LFSR-derived PRG. Through integration of PRG elements, the amount
of external randomness needed by the engine is considerably reduced when com-
pared to other TI-based implementations. Our design is fully implemented and
analyzed for remaining side channel leakage. In particular, we validate that the
DPA attack of [6] is no longer feasible. We further show that there are also no
other remaining first-order leakages nor other horizontal leakages as exploited
in [6].

After introducing necessary background in Sect. 2, we present the masked
McEliece engine in Sects. 3 and 4. Performance results are presented in Sect. 5.
A thorough leakage analysis is presented in Sect. 6.

2 Background

In the following we introduce moderate-density parity-check (MDPC) codes and
their quasi-cyclic (QC) variant with a focus on decoding since we aim to protect
the secret key. Afterwards we summarize how McEliece is instantiated with QC-
MDPC codes as proposed in [13]. As our work extends an FPGA implementation
of QC-MDPC McEliece that is unprotected against side channel attacks [19], we
give a short overview of the existing implementation and summarize relevant
works on the masking technique of threshold implementations.

2.1 Moderate-Density Parity-Check Codes

MDPC codes belong to the family of binary linear [n, k] error-correcting codes,
where n is the length, k the dimension, and r = n − k the co-dimension of a
code C. Binary linear error-correcting codes are equivalently described either
by their generator G or by their parity-check matrix H. The rows of generator
matrix G ∈ F

k×n
2 form a basis of C while H ∈ F

r×n
2 describes the code as the

kernel C = {c ∈ F
n
2 |HcT = 0⊥} where 0⊥ represents an all-zero column vector.

The syndrome of any vector x ∈ F
n
2 is defined as s = HxT ∈ F

r
2. Hence, the code

C is comprised of all vectors x ∈ F
n
2 whose syndrome is zero for a particular

Masking Large Keys in Hardware: A Masked Implementation of McEliece 295

parity-check matrix H. MDPC codes are defined by only allowing a moderate
Hamming weight w = O(

√
n log(n)) for each row of the parity-check matrix.

By an (n, r, w)-MDPC code we refer to a binary linear [n, k] code with such a
constant row weight w.

A code C is called quasi-cyclic (QC) if for some positive integer n0 > 0 the
code is closed under cyclic shifts of its codewords by n0 positions. Furthermore,
it is possible to choose the generator and parity-check matrix to consist of p × p
circulant blocks if n = n0 ·p for some positive integer p. This allows to completely
describe the generator and parity-check matrices by their first row. If an (n, r, w)-
MDPC code is quasi-cyclic with n = n0·r, we refer to it as an (n, r, w)-QC-MDPC
code.

Several t-error-correcting decoders have been proposed for (QC-)MDPC
codes [1,8,10,11,13,21]. The implementation that we base our work on imple-
ments the optimized decoder presented in [10], which in turn is an extended
version of the bit-flipping decoder of [8]. Decoding a ciphertext x ∈ F

n
2 , is

achieved by:

1. Computing the syndrome s = HxT .
2. Computing the number of unsatisfied parity checks #upc for every ciphertext

bit.
3. If #upc exceeds a precomputed threshold b, invert the corresponding cipher-

text bit and add the corresponding column of the parity-check matrix to the
syndrome.

4. In case s = 0⊥, decoding was successful, otherwise repeat Steps 2/3.
5. Abort after a defined maximum of iterations with a decoding error.

2.2 McEliece Public Key Encryption with QC-MDPC Codes

The McEliece cryptosystem was introduced using binary Goppa codes [12].
Instantiating McEliece with t-error-correcting (QC-)MDPC codes was proposed
in [13], mainly to significantly reduce the size of the keys while still maintaining
reasonable security arguments. The proposed parameters for an 80-bit security
level are n0 = 2, n = 9602, r = 4801, w = 90, t = 84, which results in a much
more practical public key size of 4801 bit and a secret key size of 9602 bit com-
pared to binary Goppa codes which require around 64 kByte for public keys at
the same security level.

The main idea of the McEliece cryptosystem is to encode a plaintext into a
codeword using the generator matrix of a code selected by the receiver and to
add a randomly generated error vector of weight t to the codeword which can
only be removed by the intended receiver. We summarize QC-MDPC McEliece
in the following by introducing key-generation, encryption and decryption.
Key-Generation. The parity-check matrix H is the secret key in QC-MDPC
McEliece. As the code is quasi-cyclic, the parity-check matrix consists of n0

concatenated r×r blocks H = (H0 | . . . |Hn0−1). We denote the first row of each
of these blocks by h0, . . . , hn0−1 ∈ F

r
2. The public key in QC-MDPC McEliece is

296 C. Chen et al.

the corresponding generator matrix G, which is computed from H in standard
form as G = [Ik |Q] by concatenation of the identity matrix Ik ∈ F

k×k
2 with

Q =

⎛

⎜
⎜
⎝

(H−1
n0−1 · H0)T

(H−1
n0−1 · H1)T

· · ·
(H−1

n0−1 · Hn0−2)T

⎞

⎟
⎟
⎠ .

The key generation starts by randomly selecting first row candidates
h0, . . . , hn0−1 ∈R F

r
2 such that the overall row weight (wt) sums up to w =∑n0−1

i=0 wt(hi). Since we intend to generate a code which is quasi-cyclic, the n0

blocks of the parity-check matrix are generated from the first rows by cyclic
shifts. The resulting parity-check matrix belongs to an (n, r, w)-QC-MDPC code
with n = n0 · r. If the last block Hn0−1 is non-singular, i. e., if H−1

n0−1 exists, the
public key is computed as G = [Ik |Q]. Otherwise new candidates for hn0−1 are
generated until a non-singular Hn0−1 is found.
Encryption. A plaintext m ∈ F

k
2 is encrypted by encoding it into a codeword

using the recipient’s public key G and by adding a random error vector e ∈ F
n
2 of

weight wt(e) ≤ t to it. Hence, the ciphertext is computed as x = (m·G⊕e) ∈ F
n
2 .

Decryption. Given a ciphertext x ∈ F
n
2 , the intended recipient removes the

error vector e from x using the secret code description H and a QC-MDPC
decoding algorithm ΨH yielding mG. Since G = [Ik |Q], the first k positions of
mG are equal to the k-bit plaintext.

2.3 FPGA Implementation of QC-MDPC McEliece

Our work extends on the lightweight implementation of McEliece based on QC-
MDPC code for reconfigurable devices by [19]. Their resource requirements are
64 slices and 1 block RAM (BRAM) to implement encryption and 159 slices and
3 BRAMs to implement decryption on a Xilinx Spartan-6 XC6SLX4 FPGA. The
goal of our work is to protect the secret key. Hence, only the decryption engine
is discussed in this paper. From a high-level point of view, decryption works
as follows: at first the syndrome of the ciphertext is computed. Then for each
ciphertext bit the number of unsatisfied parity-checks #upc are counted and if
they exceed a defined threshold, the ciphertext bit is inverted. When a ciphertext
bit is inverted, the corresponding row of the parity-check matrix is added to the
syndrome. The DPA presented in [6] shows that the described architecture is
vulnerable to an efficient horizontal key recovery attack, since neither the key
nor internal states are masked.

2.4 Threshold Implementation

Threshold implementation (TI) is a masking-based technique to prevent first
order and higher order side channel leakage. Since its introduction in [15], many
symmetric cryptosystems have been implemented in TI [2–4,14,17]. More impor-
tantly, most of these works have performed thorough leakage analysis and have

Masking Large Keys in Hardware: A Masked Implementation of McEliece 297

shown that TI actually prevents the promised order leakage (if carefully imple-
mented). Even higher-order leakage, while not prevented, usually comes at a
highly increased cost of needed observations. TI performs Boolean secret shar-
ing on all sensitive variables. Computations on the shares are then performed in
a way that ensures correctness, maintains uniformity of the shares, and ensures
non-completeness of the computation, that is, each sub-operation can only be
performed on a strict sub-set of the inputs. A detailed description of TI is avail-
able in [15].

We choose TI for McEliece because TI is fairly straightforward to apply
and to implement, yet it is effective. Furthermore, large parts of McEliece are
linear, and hence cheap to mask using TI. The decoder part, while not linear,
is also fairly efficient to mask using TI, as shown in Sect. 4. At the same time,
our implementation avoids several of the disadvantages of TI: Unlike [16], we
convert our addition to arithmetic masking once the values get larger, yielding a
much more efficient addition engine than one solely relying on TI. By including
the pseudorandom mask generation in the crypto core, we significantly cut both
the required memory space usually unavoidably introduced by TI as well as the
required overhead of random bits consumed by TI engines. Note that the TI-
AES engines presented in [3,14] consume about 8000 bits of randomness per
encryption, while our engine only consumes 160 bits per decryption.

3 Masking QC-MDPC McEliece

An effective way to counteract side channel analysis is to employ masking. Mask-
ing schemes aim to randomize sensitive intermediate states such that the leakage
is independent of processed secrets. In QC-MDPC McEliece, the key bits and
the syndrome are sensitive values that need to be protected and therefore they
must be masked whenever they are manipulated. Similarly, since the decoding
operation processes the sensitive syndrome, leakage of the decoder needs to be
masked as well.

3.1 Masked Syndrome Computation

As described in Sect. 2.1, the decoding algorithm begins with the syndrome com-
putation s = HxT . Both the parity-check matrix H and the syndrome s are sen-
sitive values and can cause side channel leakage. However, since the syndrome
computation is a linear operation, masking this operation is simple and efficient.
Intuitively, H can be split into two shares, Hm and M such that H = Hm ⊕ M ,
by Boolean masking. The mask matrix M is created in correspondence to H, by
first generating uniformly distributed random masks for hi, m0, . . . ,mn0−1 ∈ F

r
2

of the n0 blocks, which then comprise the first row of mask matrix M . Each
bit in the mi is uniformly set to 0 or 1. Next, the remaining rows of the mask
matrix M are obtained by quasi-cyclic shifts of the first row, according to the
construction of H. The masked syndrome sm and the syndrome mask ms can
be computed independently as sm = HmxT and ms = MxT . The syndrome s is
available as the combination of the two shares s = sm ⊕ ms.

298 C. Chen et al.

Algorithm 1. Masked Error Correction Decoder
Input: Hm, M1, M2, sm, ms1 , ms2 , x, B = b0, ..., bmax−1, max
Output: Error free codeword x or DecodingFailure
1: for i = 0 to max−1 do
2: for every ciphertext bit xj do
3: #upc = SecHW(SecAND(sm, ms1 , ms2 , Hm,j , M1,j , M2,j))
4: d = (#upc > bi) , d ∈ {0, 1}
5: x = x ⊕ (d · 1j) � Flip the jth bit of x
6: sm = sm ⊕ (d · Hm,j ⊕ d̄ · M2,j) � Update syndrome
7: ms1 = ms1 ⊕ M1,j � Update masks
8: ms2 = ms2 ⊕ M2,j ⊕ (d̄ · M1,j)
9: end for

10: if SecHW(sm, ms1 , ms2) == 0 then � Check for remaining errors
11: return x
12: end if � For constant run time, this if-statement can be moved after the

for-loop
13: end for
14: return DecodingFailure

3.2 Masked Decoder

After syndrome computation, the error correction decoder computes the num-
ber of unsatisfied parity check equations between the sensitive syndrome and
one row of the sensitive parity check matrix. By comparing that number with
a predefined threshold (usually denoted b), the decoder decides whether to flip
the corresponding bit in the ciphertext. Masking the actual decoding steps is
more complex, since both inputs, namely the syndrome and the parity check
matrix, as well as the control flow of the decoder can leak sensitive information
and thus need to be protected. Unlike the syndrome computation, the decoder
performs a binary AND and a Hamming weight computation on sensitive data.
Both operations are non-linear and thus need more elaborate protection than
just a straightforward Boolean masking. In the following we explain how these
operations can be implemented. Algorithm 1 describes the masked version of the
decoder. Note that the algorithm has been formulated with a constant execu-
tion flow to better represent the intended hardware implementation. Further
note that the algorithm and its FPGA implementation exhibit a constant tim-
ing behavior (except the number of decoder iterations) and that all key-related
variables are masked. The number of decoder iterations can be set to maximum
by simply moving the if-statement out of the loop. For the chosen 9602/4801
parameter set, max would be set to 5, increasing the average run time roughly
by a factor 2 (cf. [21]).

In Algorithm 1, we make use of two special functions. Function SecAND com-
putes the bitwise AND operation between syndrome s and secret key H in a
secure way without leaking any sensitive information. The other function SecHW
computes the Hamming Weight of a given vector. Both functions are explained in

Masking Large Keys in Hardware: A Masked Implementation of McEliece 299

detail in the following. An all-zero vector with the jth bit equal to 1 is indicated
by 1j .
Secure AND Computation. One important step when decoding a QC-MDPC
code is to compute the unsatisfied parity-check equations which starts with a
non-linear bitwise AND operation between the syndrome and one row of the
secret key matrix. Our function SecAND performs a bitwise AND operation
between two bit vectors, namely s ∧ h. Since the AND is a non-linear opera-
tion, simple two-share Boolean masking is not applicable. Instead, we follow the
concept of Threshold Implementation as described in Sect. 2.4. We adopt the bit-
wise AND operation from [15], which provides first-order security when applied
to three Boolean shares. This means that the two-share representations of the
two inputs, i. e., the syndrome and parity check matrix, need to be extended to
a three-share representation.

To achieve a three-share representation of both syndrome and parity check
matrix, the masking is expanded in the following way: After syndrome compu-
tation as explained in Sect. 3.1, the syndrome is represented as sm ⊕ms and the
secret key is represented as Hm,j ⊕ Mj . Next, the syndrome representation is
extended as sm ⊕ ms1 ⊕ ms2 and the key as Hm,j ⊕ M1,j ⊕ M2,j . Here, ms2 and
M2,j are two new uniformly distributed random mask vectors and ms1 is derived
as ms1 = ms ⊕ ms2 and M1,j = Mj ⊕ M2,j . The following equations show how
to achieve a TI version of s ∧ h that satisfies correctness and non-completeness,
but not uniformity.

s ∧ h = (sm ⊕ ms1 ⊕ ms2) ∧ (Hm,j ⊕ M1,j ⊕ M2,j)
= (sm ∧ Hm,j) ⊕ (sm ∧ M1,j) ⊕ (Hm,j ∧ ms1)⊕

(ms1 ∧ M1,j) ⊕ (ms1 ∧ M2,j) ⊕ (M1,j ∧ ms2)⊕
(ms2 ∧ M2,j) ⊕ (ms2 ∧ Hm,j) ⊕ (M2,j ∧ sm)

(1)

As pointed out in [15], in order to fulfill uniformity, one can introduce addi-
tional uniform random masks to mask each share. By introducing two more
uniformly random vectors r1 and r2, the three output shares can be computed
as follows. Let sh denote the result of the TI version of the AND operation.
Using the equations above, sh can be split into three shares shi, which are now
uniformly distributed thanks to the ri and are given as:

sh1 = (sm ∧ Hm,j) ⊕ (sm ∧ M1,j) ⊕ (Hm,j ∧ ms1) ⊕ r1

sh2 = (ms1 ∧ M1,j) ⊕ (ms1 ∧ M2,j) ⊕ (M1,j ∧ ms2) ⊕ r2

sh3 = (ms2 ∧ M2,j) ⊕ (ms2 ∧ Hm,j) ⊕ (M2,j ∧ sm) ⊕ r1 ⊕ r2

(2)

Secure Hamming Weight Computation. In the unprotected FPGA imple-
mentation of [19], the Hamming weight computation of sh is performed by look-
ing up the weight of small chunks of sh from a precomputed table and then
accumulating those weights to get the Hamming weight of sh. However, the
weight of a chunk is always present in plain and the computation of it can result
in side channel leakage that will lead to the recovery of the Hamming weight.

300 C. Chen et al.

Even though the knowledge of the weight does not necessarily recover the chunk
value, it still yields information about sh and thus the secret key h.

For a side-channel secure implementation, both the input and the output
of a Hamming weight computation for each chunk must be masked. Since the
weight of all chunks needs to be accumulated, it is preferable to use Arithmetic
masking instead of Boolean masking. For example, the Hamming weight of sh
can be calculated using the following equation:

wt(sh) =
|sh|∑

i=1

sh1,i ⊕ sh2,i ⊕ sh3,i (3)

where subscript i refers to the i-th bit of each share and |sh| is the length of sh
in bits. Using a secure conversion function from Boolean masking to Arithmetic
masking [7], each Boolean mask tuple (sh1,i, sh2,i, sh3,i) can be converted to an
Arithmetic mask pair (A1,i, A2,i) such that sh1,i ⊕ sh2,i ⊕ sh3,i = A1,i + A2,i.
Then, the Hamming weight of sh can be computed as:

wt(sh) =
|sh|∑

i=1

A1,i + A2,i =
|sh|∑

i=1

A1,i +
|sh|∑

i=1

A2,i (4)

According to Eq. (4), we only accumulate A1 =
∑|sh|

i=1 A1,i and A2 =
∑|sh|

i=1 A2,i,
respectively, and sum them up in the end to obtain the total Hamming weight
wt(sh) = A1 + A2.
Secure Syndrome Checking. In order to test whether decoding of the input
vector was successful, the syndrome has to be tested for zero. If the Hamming
weight of the syndrome is zero, then all bits of the syndrome must be zero.
Otherwise, there must be some bits set as 1 and the number of set bits equals
the Hamming weight of the syndrome. Note that we perform SecHW operation
over the three shares of syndrome s in order to prevent the leakage.

4 Implementing a Masked QC-MDPC McEliece

This section presents more details of the masked FPGA implementation of QC-
MDPC McEliece decryption based on the unprotected one in [19]. We follow
the structure of the original design, including the same security parameters, but
replace vulnerable logic circuits with masked circuits.

4.1 Overview of the Masked Implementation

Each time before the decryption is started, both the ciphertext and the masked
secret keys h0m, h1m are written into the BRAMs of the decryption engine. As
shown in Fig. 1, one BRAM stores the 2 · 4801-bit ciphertext, the second BRAM
stores the 2 · 4801-bit masked secret key and third BRAM stores the 4801-bit
masked syndrome and the 4801-bit syndrome mask. Note that the secret keys are

Masking Large Keys in Hardware: A Masked Implementation of McEliece 301

Fig. 1. Abstract block diagram of the masked QC-MDPC McEliece decryption imple-
mentation.

masked before being transferred to the crypto core. The seeds for the internal
PRG are transferred with the masked key. Each BRAM is dual-ported, offers
18/36 kBit, and allows to read/write two 32-bit values at different addresses in
one clock cycle.

Computations are performed in the same order as in [19]: To compute the
masked syndrome sm, set bits in the ciphertext x select rows of the masked
parity-check matrix blocks that are accumulated. In parallel, the syndrome mask
ms is computed in the same manner. Rotating the two parts of the secret key is
implemented in parallel, as in the unprotected implementation. Efficient rotation
is realized using the Read First mode of Xilinx’s BRAMs which allows to read
the content of a 32-bit memory cell and then to overwrite it with a new value,
all within one clock cycle.

An abstraction of this implementation is depicted in Fig. 1. The three block
RAMs are used to store the masked keys (h0m and h1m), the shared syndrome
(sm and ms) and the ciphertext (ct0 and ct1). The LFSR blocks are used to
generate the missing masks on-the-fly. The logic blocks for the two phases of the
McEliece decryption are shown on the left side of Fig. 1.

4.2 Masking Syndrome Computation

The syndrome computation is a linear operation and requires only two shares
for sensitive variables. Once the decryption starts, 32-bit blocks of the masked
secret keys h0m, h1m are read from the secret key BRAM at each clock cycle
and are XORed with the 32-bit block of sm read from the syndrome BRAM
depending on whether the corresponding ciphertext bits are 1. Then the result
will be written back into the syndrome BRAM at the next clock cycle and at
the same time the rotated 32-bit blocks of the masked keys will be written back
into the secret key BRAM. Meanwhile, we need to keep track of the syndrome
mask ms. Since syndrome computation is a linear operation, we can similarly
add up the secret key masks synchronously to generate the syndrome mask.

302 C. Chen et al.

In our secure engine, we use two 32-bit leap forward LFSRs to generate random
32-bit secret key masks each clock cycle which are XORed with the 32-bit block
of ms read from the syndrome BRAM depending on the ciphertext.
Cyclic Rotating LFSRs. Our 32-bit leap forward LFSRs not only generate
a 32-bit random mask at each clock cycle but also rotate synchronously with
the key. For example, the LFSR for h0m first needs to generate the 4801-bit
mask mh0 in the following sequence: mh0 [0 : 31],mh0 [32 : 63], . . . ,mh0 [4767 :
4799],mh0 [4800]. This is done in 150 clock cycles. In the next round, the secret
key is rotated by one bit as h0m ≫ 1 and hence the mask sequence should be:
mh0 [4800 : 30],mh0 [31 : 62], . . . ,mh0 [4766 : 4798],mh0 [4799]. After 4801 rounds
of rotation, the LFSR ends up with its initial state. In order to construct a cyclic
rotating PRG with a period of 4801 bits, we combine a common 32-bit leap
forward LFSR with additional memory and circuits, based on the observation
that the next state of the LFSR either completely relies on the current state or
actually sews two ends of the sequence together, e.g., mh0 [4800 : 30]. As shown in
Fig. 2, five 32-bit registers are employed instead of just one. The combinational
logic circuit computes the next 32-bit random mask given the input stored in
IntStateReg. The following steps describe the functionality of our LFSR:

1. Initially, the 32-bit seed seed [0 : 31] of the sequence is stored in register
IvReg and the first 32 bits of the sequence, e.g., mh0 [0 : 31] are stored in the
other registers.

2. During the rotation, the combinational logic circuits output the new 32-bit
result and feed it back. If the new result is part of the 4801-bit sequence,
then it will go through the Mux, overwriting the current state registers
IntStateReg and ExtStateReg at the next clock cycle.

3. If the new result contains bits that are not part of the sequence, then those
bits will be replaced. For example, when mh0 [4767 : 4799] is in IntStateReg,
the new result will be mh0 [4800 : 4831] in which only bit mh0 [4800] is in the
mask sequence and mh0 [4801 : 4831] will be dropped. The Mux gate will only
let mh0 [4800] go through together with mh0 [0 : 30] stored in ExtBit0 31 and
the concatenation mh0 [4800 : 30] will overwrite register ExtStateReg.

4. mh0 [4800 : 30] will not be written into register IntStateReg because given
mh0 [4800 : 30] as input, the combinational logic circuit will not output the
next valid state mh0 [31 : 62]. Therefore, we concatenate part of the seed in
IvReg and part of the first 32-bits in IntBit0 31, e.g., {seed[31],mh0 [0 : 30]}
and overwrite IntStateReg. Then, the new output will be mh0 [31 : 62]. The
concatenation is implemented as a cyclic bit rotation as shown in Fig. 2. After
32 rotations, the seed is rotated to IntBit0 31 and the first 32-bit mh0 [0 : 31]
is rotated to IvReg. Hence, they will be swapped back in the next clock
cycle.

To sum up, ExtStateReg always contains the valid 32-bit mask while
IntStateReg always contains 32-bit input that results in the next valid state.
The rotated secret key is generated in 150 clock cycles. After 4801 × 150 clock
cycles, the LFSR returns to its initial state and idles.

Masking Large Keys in Hardware: A Masked Implementation of McEliece 303

Fig. 2. The structure of the cyclic
rotating LFSR that is used to generate
the masks on-the-fly.

Fig. 3. Layout of our pipelined
QC-MDPC McEliece decoder for the
first part of the secret key, h0.

4.3 Masking the Decoder

As mentioned in Sect. 3, the masked secret keys and the syndrome are extended
to three shares. Hence, more LFSRs are instantiated to generate the additional
shares as shown in Fig. 1. Two LFSRs generate the third shares of h0 and h1,
another LFSR generates the third share of the syndrome.

We use h0 as example to describe the decoder, since h1 is processed in parallel
using identical logic circuits. We split h0 into three shares: h0m stored in the
BRAM and m1,h0 and m2,h0 generated by two LFSRs. The syndrome is split
into sm and ms1 which are stored in BRAM and ms2 which is generated by an
LFSR. After decoding is started, each 32-bit share is read or generated at each
clock cycle and then SecAND and SecHW are performed. This is implemented
using a pipelined approach as shown in Fig. 3.

The left part of Fig. 3 illustrates the bitwise SecAND operation using Eq. (2).
The 32-bit shares are fed into shared functions f1, f2, f3, and the outputs are
three 32-bit shares of the result. As mentioned before, two additional random
vectors r1, r2 are required to mask the outputs in order to achieve uniformity.
Our design uses only two fresh random bits b1, b2 together with the shifted input
shares as the random vectors because the neighboring bits are independent of
each other. That is r1 = {b1,m1,h0 [0 : 30]} and r2 = {b2,m2,h0 [0 : 30]}. Both
m1,h0 [31] and m2,h0 [31] are shifted out and are used as b1 and b2 in the next clock
cycle. The right part shows the structure of SecHW. To compute the Hamming
weight of the unmasked result sh1 ⊕ sh2 ⊕ sh3 without leaking side channel
information, a parallel counting algorithm is applied to accumulate the weight
of each bit position of the word. We use 32×2 6-bit Arithmetic masked counters1

and each bit in the word sh1 ⊕ sh2 ⊕ sh3 will be added into the corresponding
counter during each clock cycle. More specifically, the three shares of each bit
of sh are converted and added into the two Arithmetic masked counters. After
150 clock cycles, we sum the overall Arithmetic masked Hamming weight. To
convert and accumulate the masked weights, we employ the secure conversion
method developed in [7].

1 Note that the Hamming weight of s ∧ H is bounded to the weight of hi, i. e., wt(s ∧
hi) ≤ w/2 = 45, i. e., 6-bit registers are always sufficient.

304 C. Chen et al.

5 Implementation Results

The masked design is implemented in VHDL and is synthesized for Xilinx
Virtex-5 XC5VLX50 FPGA which holds the crypto engine in the side chan-
nel evaluation board SASEBO-GII. The implementation results are listed in
Table 1 in comparison with the unprotected implementation of [19]. In terms of
Flip-Flops (FFs) and Look-Up Tables (LUTs), the masked implementation uses
8 times as many resources as the unprotected implementation. The increase is
mainly due to the masked Hamming weight computation which requires many
registers to store the Hamming weights of small chunks. Moreover, the leap for-
ward LFSR also utilizes many Flip-Flops and has to be instantiated five times in
our design. The number of occupied BRAMs remains constant, only the occupied
memory within the syndrome BRAM increases by a factor of 2 in the masked
implementation because the syndrome masks are also stored in this BRAM. The
performance of the masked design is compromised for security and the maximum
clock frequency is reduced by a factor of 4.3. This is mainly because the addi-
tion of 32 6-bit weight registers in SecHW is done in one clock cycle resulting
a long critical path and in turn a low clock frequency. Shortening the critical
path can be an interesting goal in future work. Note that the number of clock
cycles remains the same as for the unprotected implementation, unless the early
termination of the decoder is disabled, in which case the average run time dou-
bles compared to [19] (assuming that the maximum number of iterations is set
to 5 similarly to [20], with early termination enabled the decoder requires 2.4
iterations on average as was shown in [10,21]). The resulting mean overhead of
our implementation is 4, which is in line with other masked implementations2.
The TI AES engine in [14] introduces an area overhead of a factor 4 as well, but
that implementation does not include the pseudorandom generators needed to
generate the 48 bits of randomness consumed per cycle, while ours does.

Table 1. Resources usage comparison between the unprotected and masked implemen-
tations on Xilinx Virtex-5 XC5VLX50 FPGAs.

Implementation FFs LUTs Slices BRAMs Frequency

Unprotected [19] 412 568 148 3 318 MHz

Masked 3045 4672 1549 3 73 MHz

Overhead factor 7.4x 8.2x 10.5x 1x 4.3x

6 Leakage Analysis

Next we analyze the implementation for remaining leakage. We first apply the
DPA presented in [6] on the protected implementation. Next we use the leak-
age detection methodology developed in [9] to detect any other potentially
2 When computing the geometric mean of the overhead of the three hardware compo-

nents (LUTs, FFs, and BRAMs), the resulting area overhead is actually 3.9.

Masking Large Keys in Hardware: A Masked Implementation of McEliece 305

exploitable leakages. The evaluated implementation is placed on the Xilinx
Virtex-5 XC5VLX50 FPGA of the SASEBO-GII board. The power measure-
ments are acquired using a Tektronix DSO 5104 oscilloscope. The board was
clocked at 3 MHz and the sampling rate was set to 100 M samples per second. In
order to quantify the resilience of our masked implementation to power analysis
attacks, we collected 10, 000 measurements using the same ciphertext but two
different sets of secret keys. The first set is actually 5, 000 repetitions of a fixed
key while the second set contains 5, 000 random keys. The two sets of keys are
fed into the decryption engine alternatingly.

6.1 Differential Power Analysis

A Differential Power Analysis on the FPGA implementation of QC-MDPC
McEliece of [19] was presented in [6]. The attack exploits the leakage caused
by the key rotation in the syndrome computation phase. The 4801-bit keys h0

and h1 rotate in parallel for 4801 rounds, each round lasts for 150 clock cycles.
Thus during one decryption, each key bit is rotated into the one bit carry reg-
ister 150 times which results in a strong leakage. By averaging the 150 leakage
samples for each key bit, one can generate the 4801-sample differential trace
which contains features caused by the set key bits and then one can recover the
value of the key bits by interpreting the features. For the unprotected implemen-
tation, the secret key can be completely recovered using the average differential
trace of only 10 measurements. For more details about the key recovery we refer
to [6]. In contrast to the unprotected implementation, no features are present
in the differential trace of the fixed secret key (red line) even with 500 times
more traces, as shown in Fig. 4. Hence, the key bit value cannot be recovered.
The peaks in the trace are not the features caused by set key bits because in the
differential trace of the random secret keys where the key bits are randomly set
as 1 the same peaks appear. Thus, they cannot be used as features to recover
secret key bits as done in [6]. The two differential traces almost overlap, showing
that the leakage is indistinguishable between fixed key and random key when
using a masked implementation.

6.2 Leakage Detection

We employ Welch’s T-test suite to quantify the leakage indistinguishability
between two sets of secret keys. Welch’s T-test is a statistical hypothesis test
used to decide whether the means of two distributions are the same. T-statistic
t can be computed as:

t =
X − Y

√
sX2

NX
+ sY 2

NY

(5)

where X,Y are the sample means of random variables X,Y , sX , sY are the
sample variances and NX , NY are the sample sizes. The pass fail criteria is

306 C. Chen et al.

500 1000 1500 2000 2500 3000 3500 4000 4500

0.4

0.5

0.6

0.7

0.8

0.9

1

key bits

Δ c
Differential trace of fixed secret key
Differential trace of random secret keys

Fig. 4. Comparison between two differential traces of two sets of secret keys.

defined as [−4.5, 4.5] as developed in [9]. In our case, we obtained two groups of
leakage samples, one for the fixed key set and the other for the random key set.
Each group has 5, 000 power traces as well as 5, 000 derived differential traces.
We first performed the T-test using the original power traces and Fig. 5.1 shows
the t-statistics along the whole decryption. The t-statistics are within the range
of [−4.5, 4.5] which implies a confidence of more than 99.999 % for the null
hypothesis showing that the two sample groups are indistinguishable.

To assess the vulnerability to first-order horizontal attacks, we also performed
a T-test on the derived differential traces. The results are shown in Fig. 5.2.
Similarly, the t-statistics are also within the predefined range and it validates
the indistinguishability between the two sets of secret keys. Hence, it can be
concluded that the design does not contain any remaining first-order leakage of
the key.

6.3 Masking the Ciphertext?

The decoder corrects errors in the ciphertext x, eventually yielding the plaintext
derived value m · G and thereby implicitly the error vector e. Similarly, the
values d and #upc assigned in line 3 and 4 of Algorithm1 are not masked and
can potentially reveal the error locations, hence e. In either case, the equivalent
leakage of information of e or m · G is possible. In our implementation, we
chose not to mask x and its intermediate state, nor d and #upc. This choice is
justifiable for two reasons. First, both e or m·G are key-independent and will not
reveal information about the secret key. Furthermore, e or m · G are ciphertext
dependent, that is, any information that can be revealed will be only valid for the
specific encrypted message. Hence, if such information is to be discovered, it must
be recovered using SPA-like approaches. More explicitly, the only possible attack
is a message recovery attack, and that requires SPA techniques, as, e.g., applied
in [20]. Nevertheless, d and #upc are variables that have dependence on both the
ciphertext and the key, just as the number of decoding iterations that might be
revealed by a non-constant time implementation, i. e., if the decoding algorithm

Masking Large Keys in Hardware: A Masked Implementation of McEliece 307

1 2 3 4 5 6 7

x 10
4

−8

−6

−4

−2

0

2

4

6

8

Time samples

t−
st

at
is

tic

5.1: Results of original traces

500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

8

key bits

t−
st

at
is

tic

5.2: Results of differential traces

Fig. 5. T-test between the two groups of original power traces (5.1) and differential
power traces (5.2) corresponding to the two sets of secret keys. Both cases indicate the
absence of leakage for the given number of traces.

tests the syndrome for zero after each decoding iteration and exits when this
condition is reached. However, up to now there is no evidence suggesting that
their information can be used to perform key recovery attacks. We leave this as
an open question for future research.

7 Conclusion

This work presents the first masked implementation of a McEliece cryptosystem.
While masking the syndrome computation is straightforward and comes at a low
overhead, the decoding algorithm requires more involved masking techniques.

308 C. Chen et al.

Through on-the-fly mask generation, the area overhead is limited to a factor of
approximately 4. While the maximum clock frequency of the engine decreases,
the number of clock cycles for the syndrome computation and each decoder run
is unaffected by the countermeasures. The effectiveness of the applied masking
has been analyzed by leakage detection methods and by showing that previous
attacks do not succeed anymore. Exploring if any information about the secret
key can be derived from the number of decoding iterations leaves an interesting
challenge for future work.

Acknowledgments. This work is supported by the National Science Foundation
under grant CNS-1261399 and grant CNS-1314770. IvM was supported by the Euro-
pean Union H2020 PQCrypto project (grant no. 645622) and the German Research
Foundation (DFG). RS is supported by NATO’s Public Diplomacy Division in the
framework of “Science for Peace”, Project MD.SFPP 984520.

References

1. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability
of certain coding problems (corresp.). IEEE Trans. Inf. Theor. 24(3), 384–386
(1978)

2. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer,
Heidelberg (2014)

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

5. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 36th IEEE Sym-
posium on Security and Privacy (2015)

6. Chen, C., Eisenbarth, T., von Maurich, I., Steinwandt, R.: Differential power analy-
sis of a McEliece cryptosystem. In: Malkin, T., et al. (eds.) ACNS 2015. LNCS, vol.
9092, pp. 538–556. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28166-7 26.
Preprint http://eprint.iacr.org/2014/534

7. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014)

8. Gallager, R.: Low-density Parity-check Codes. IRE Trans. Inf. Theor. 8(1), 21–28
(1962)

9. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011)

10. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg
(2013)

http://dx.doi.org/10.1007/978-3-319-28166-7_26
http://eprint.iacr.org/2014/534

Masking Large Keys in Hardware: A Masked Implementation of McEliece 309

11. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. cambridge
University Press, Cambridge (2010)

12. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Netw. Prog. Rep. 44, 114–116 (1978)

13. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: Proceedings of
the IEEE International Symposium on Information Theory (ISIT), pp. 2069–2073.
IEEE (2013)

14. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

15. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

16. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking.
In: Malkin, T., et al. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-28166-7 27

17. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent SIMON: a threshold implementa-
tion under 100 slices. In: Proceedings of IEEE Symposium on Hardware Oriented
Security and Trust (HOST) (2015)

18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

19. von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In: Design, Automation and Test
in Europe - DATE, pp. 1–6. IEEE (2014)

20. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations
of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.)
PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Heidelberg (2014)

21. von Maurich, I., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece
encryption. ACM Trans. Embed. Comput. Syst. 14(3), 44:1–44:27 (2015)

http://dx.doi.org/10.1007/978-3-319-28166-7_27

	Masking Large Keys in Hardware: A Masked Implementation of McEliece
	1 Motivation
	2 Background
	2.1 Moderate-Density Parity-Check Codes
	2.2 McEliece Public Key Encryption with QC-MDPC Codes
	2.3 FPGA Implementation of QC-MDPC McEliece
	2.4 Threshold Implementation

	3 Masking QC-MDPC McEliece
	3.1 Masked Syndrome Computation
	3.2 Masked Decoder

	4 Implementing a Masked QC-MDPC McEliece
	4.1 Overview of the Masked Implementation
	4.2 Masking Syndrome Computation
	4.3 Masking the Decoder

	5 Implementation Results
	6 Leakage Analysis
	6.1 Differential Power Analysis
	6.2 Leakage Detection
	6.3 Masking the Ciphertext?

	7 Conclusion
	References

