
Formal Treatment of Privacy-Enhancing
Credential Systems

Jan Camenisch1, Stephan Krenn2(B), Anja Lehmann1,
Gert Læssøe Mikkelsen3, Gregory Neven1, and Michael Østergaard Pedersen4

1 IBM Research – Zurich, Rüschlikon, Switzerland
{jca,anj,nev}@zurich.ibm.com

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

3 Alexandra Institute, Aarhus, Denmark
gert.l.mikkelsen@alexandra.dk
4 Miracle A/S, Aarhus, Denmark

mop@miracleas.dk

Abstract. Privacy-enhancing attribute-based credentials (PABCs) are
the core ingredients to privacy-friendly authentication systems. They
allow users to obtain credentials on attributes and prove possession of
these credentials in an unlinkable fashion while revealing only a subset of
the attributes. In practice, PABCs typically need additional features like
revocation, pseudonyms as privacy-friendly user public keys, or advanced
issuance where attributes can be “blindly” carried over into new creden-
tials. For many such features, provably secure solutions exist in isolation,
but it is unclear how to securely combined them into a full-fledged PABC
system, or even which properties such a system should fulfill.

We provide a formal treatment of PABCs supporting a variety of
features by defining their syntax and security properties, resulting in
the most comprehensive definitional framework for PABCs so far. Unlike
previous efforts, our definitions are not targeted at one specific use-case;
rather, we try to capture generic properties that can be useful in a variety
of scenarios. We believe that our definitions can also be used as a start-
ing point for diverse application-dependent extensions and variations of
PABCs. We present and prove secure a generic and modular construction
of a PABC system from simpler building blocks, allowing for a “plug-
and-play” composition based on different instantiations of the building
blocks. Finally, we give secure instantiations for each of the building
blocks.

Keywords: Privacy · Anonymous credentials · Provable security

This work was supported by the Horizon 2020 project PRISMACLOUD under grant
agreement no. 644962, and the FP7 projects FutureID and ABC4Trust under grant
agreement nos. 318424 and 257782. Parts of this work were done while the second
author was at IBM Research – Zurich. The full version is available online [1].

c© Springer International Publishing Switzerland 2016
O. Dunkelman and L. Keliher (Eds.): SAC 2015, LNCS 9566, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-31301-6 1



4 J. Camenisch et al.

1 Introduction

Privacy-enhancing attribute-based credentials systems (aka PABCs, anonymous
credentials, or pseudonym systems) allow for cryptographically strong user
authentication while preserving the users’ privacy by giving users full control
over the information they reveal. There are three types of parties in a PABC
system. Issuers assign sets of attribute values to users by issuing credentials for
these sets. Users can present (i.e., prove possession of) their credentials to ver-
ifiers by revealing a subset of the attributes from one or more credentials. The
verifiers can then check the validity of such presentations using the issuers’ pub-
lic keys, but they do not learn any information about the hidden attributes and
cannot link different presentations by the same user. This basic functionality of a
PABC system can be extended in a large number of ways, including pseudonyms,
revocation of credentials, inspection, proving relations among attributes hidden
in presented credentials, and key binding [2,3].

The importance of privacy and data minimization has been emphasized, e.g.,
by the European Commission in the European privacy standards [4,5] and by
the US government in the National Strategy for Trusted Identities in Cyberspace
(NSTIC) [6]. With IBM’s Identity Mixer based on CL-signatures [7–10] and
Microsoft’s U-Prove based on Brands’ signatures [11,12], practical solutions for
PABCs exist and are currently deployed in several pilot projects [2,13–15]. In
fact, numerous anonymous credential schemes as well as special cases thereof
such as group signatures, direct anonymous attestation, or identity escrow have
been proposed, offering a large variety of different features [8,10–12,16–24].

Despite this large body of work, a unified definitional framework for the secu-
rity properties of a full-fledged PABC system is still missing. Existing schemes
either have targeted security definitions for specific use cases [8,18–20] or do not
provide provable security guarantees at all [12,21,22]. One possible reason for
the lack of a generic framework is that dedicated schemes for specific scenarios
are often more efficient than generic solutions. However, defining, instantiating,
and re-proving tailored variants of PABCs is hard and error-prone. Clearly, it is
desirable to have a unified definitional approach providing security definitions
for a full-fledged PABC system. It turns out that achieving such definitions is far
from trivial as they quickly become very complex, in particular, if one allows for
relations between hidden attributes when issuing and presenting credentials, as
we shall discuss. Nevertheless, in this paper we take a major step towards such
a unified framework for PABCs by formally defining the most relevant features,
detached from specific instantiations or use cases. We further provide a generic
construction of a PABC system based on a number of simpler building blocks
such as blind signatures or revocation schemes, and a formal proof that this con-
struction meets our security definitions. Finally, we give concrete instantiations
of these components, with detailed security proofs provided in the full version.

Considered Features. Our definition of PABC systems comprises the richest
set of features integrated into a holistic PABC scheme so far. It supports creden-
tials with any fixed number of attributes, of which any subset can be revealed



Formal Treatment of Privacy-Enhancing Credential Systems 5

during presentation. A single presentation can reveal attributes from multiple
credentials. Users can prove equality of attributes, potentially across different
credentials, without revealing their exact values. Users have secret keys from
which arbitrarily many scope-exclusive pseudonyms can be derived. That is, for
a given secret key and scope, only one unique pseudonym can be derived. Thus,
by reusing the same scope in multiple presentations, users can intentionally
create linkability between presentations; using different scopes yields mutually
unlinkable pseudonyms.

Credentials can optionally be bound to the users’ secret keys to prevent
users from sharing their credentials. For a presentation that involves multiple
credentials and/or a pseudonym, all credentials and the pseudonym must be
bound to or derived from the same user secret key, respectively. Issuers can
revoke credentials, so that they can no longer be used. During issuance, some
attribute values may be hidden from the issuer or “carried over” from existing
credentials. This latter advanced issuance means that the issuer does not learn
their values but is guaranteed that they are equal to an attribute in an existing
credential.

Our Contributions. We give formal security definitions for a full PABC system
that incorporates all of the features mentioned above. We provide a generic
construction from lower-level building blocks that satisfies our definitions and
we present secure instantiations of the building blocks.

In terms of security, informally, we expect presentations to be unforgeable, i.e.,
users can only present attributes from legitimately obtained and unrevoked cre-
dentials, and to be private, i.e., they do not reveal anything more than intended.
For privacy, we distinguish weak privacy, where presentations of a credential
cannot be linked to a specific issuance session, and the strictly stronger notion
of simulatable privacy, where in addition presentations of the same credential
cannot be linked to each other. This allows us to cover (slight variants of) the
most prevalent schemes used in practice, U-Prove and Identity Mixer.

Formally defining these properties is far from trivial because of the com-
plexity of our envisaged system. For example, user can obtain credentials on
(i) revealed, (ii) blindly carried-over, and (iii) fully blind attributes. Each type
comes with different security expectations that must be covered by a single
definition. Carried-over attributes, for example, present a challenge when defin-
ing unforgeability: While the issuer never learns the attributes, the adversary
must not be able to present a value that was not previously issued as part of a
pre-existing credential. For privacy, one challenge is to formalize the exact infor-
mation that users intend to reveal, as they might reveal the same and possibly
identifying attributes in different presentations. Revocation gives the issuer the
power to exclude certain credentials from being used, which must be modeled
without cementing trivial linking attacks into the model that would turn the
definition moot.

As our definitions are rather complex, proving that a concrete scheme sat-
isfies them from scratch can be a challenging and tedious task. Also, proofs for
such monolithic definitions tend to be hard to verify. We thus further define



6 J. Camenisch et al.

building blocks, strongly inspired by existing work, and show how to generically
compose them to build a secure PABC system. Our construction is efficient in
the sense that its complexity is roughly the sum of the complexities of the build-
ing blocks. Additionally, this construction allows for simple changes of individual
components (e.g., the underlying revocation scheme) without affecting any other
building blocks and without having to reprove the security of the system. Finally,
we give concrete instantiations for all our building blocks based on existing pro-
tocols.

Related Work. Our definitions are inspired by the work of Chase et al. [18,25],
who provide formal, property-based definitions of delegatable anonymous cre-
dential systems and give a generic construction from so-called P-signatures [26].
However, their work focus on pseudonymous access control with delegation, but
lacks additional features such as attributes, revocation, and advanced issuance.

PABCs were first envisioned by Chaum [16,27], and they have been a vivid
area of research over the last decade. The currently most mature solutions are
IBM’s Identity Mixer based on CL-signatures [7–10] and Microsoft’s U-Prove
based on Brands’ signatures [11,12]. A first formal definition [8] in the ideal-
real world paradigm covered the basic functionalities without attributes and
revocation. Their definition is stand-alone and does not allow composability as
honest parties never output any cryptographic values such as a credentials or
pseudonyms. This restriction makes it infeasible to use their schemes as building
block in a larger system. These drawbacks are shared by the definition of Garman
et al. [19].

A recent MAC-based credential scheme [20] allows for multiple attributes
per credential, but requires issuer and verifier to be the same entity. It does
not cover pseudonyms, advanced issuance, or revocation and provides rather
informal definitions only. Similarly, Hanser and Slamanig [28] do not consider
any of these features nor blind issuance, i.e., the issuer always learns all the
user’s attributes.

Baldimtsi and Lysyanskaya [29] define a blind signature scheme with
attributes and claim that it yields an efficient linkable anonymous credential
scheme, again without giving formal definitions. The scheme can be seen as
a weakened version of our signature building block without unlinkability or
extractability of hidden attributes – properties that are crucial for our PABC
system.

Camenisch et al. [24] provide a UC-definition for anonymous credentials and
a construction based on bilinear maps. However, their definition does not cover
a full-blown credential systems but just a primitive to issue and verify signatures
on attributes, i.e., a primitive we call privacy-enhancing signatures in this paper.

Finally, existing definitions of attribute-based signatures, e.g., [30–32] differ
substantially from those of our building block for privacy-enhancing attribute-
based signature (cf. Sect. 4.3), as again they do not consider, e.g., blind issuance.



Formal Treatment of Privacy-Enhancing Credential Systems 7

2 Notation

Algorithms and parties are denoted by sans-serif fonts, e.g., A,B. For deter-
ministic (probabilistic) algorithms we write a ← A(in) (a ←$ A(in)), if a is
the output of A on inputs in. For an interactive protocol (A,B) let (outA, outB)
← 〈A(inA),B(inB)〉 denote that, on private inputs inA to A and inB to B, A and
B obtained outputs outA and outB, respectively. For a set S, s ←$ S denotes
that s is drawn uniformly at random from S. We write Pr[E : Ω] to denote
the probability of event E over the probability space Ω. We write vectors as
�x = (xi)k

i=1 = (x1, . . . , xk).
A function ν : N → R is negligible if for every k and all sufficiently large n

we have ν(n) < 1
nk . Let ±{0, 1}k := [−2k + 1, 2k − 1] ∩ Z, and [n] := {1, . . . , n}.

Finally, κ is the main security parameter, and ε the empty string or list.

3 Privacy ABC Systems

A privacy-enhancing attribute-based credential system for an attribute space
AS is a set of algorithms SPGen, UKGen, IKGen, Present, Verify, ITGen, ITVf,
and Revoke and a protocol 〈U .Issue, I.Issue〉. Wherever possible (i.e., except for
(advanced) issuance which is inherently interactive), we opted for non-interactive
protocols. This is because rounds of interaction are an expensive resource in
practice, and should thus be kept as few as possible.

Parties are grouped into issuers, users, and verifiers. The publicly available
system parameters are generated using SPGen by a trusted party (in practice,
this might be implemented using multiparty techniques). Each issuer can issue
and revoke credentials that certify a list of attribute values under his issuer
public key. Users hold secret keys that can be used to derive pseudonyms that are
unique for a given scope string, but are unlinkable across scopes. Using Present,
users can create non-interactive presentation tokens from their credentials that
reveal any subset of attributes from any subset of their credentials, or prove
that certain attributes are equal without revealing them. Presentation tokens
can be publicly verified using Verify, on input the token and the issuers’ public
keys. To obtain a credential, a user generates an issuance token defining the
attribute values of the new credential using ITGen. After the issuer verified the
issuance token using ITVf, the user and the issuer run 〈U .Issue, I.Issue〉, at the
end of which the user obtains a credential. Issuance can be combined with a
presentation of existing credentials to hide some of the attribute values from the
issuer, or to prove that they are equal to attributes in credentials that the user
already owns. Hence, issuance tokens can be seen as an extension of presentation
tokens. Credentials can optionally be bound to a user’s secret key, meaning that
knowledge of this key is required to prove possession of the credential. Now, if a
pseudonym or multiple key-bound credentials are used in a presentation token,
then all credentials and the pseudonym must be bound to the same key. Finally,
an issuer can revoke a credential using the Revoke algorithm. This algorithm
outputs some public revocation information RI that is published and should be
used as input to the verification algorithm of presentation and issuance tokens.



8 J. Camenisch et al.

Issuers and users agree on the parameters for issuance tokens including a
revocation handle and the revealed attributes of the new credential (upon which
the user has generated the issuance token) in a step preceding issuance. Issuers
further verify the validity of these tokens before engaging in this protocol. There
are no requirements on how revocation handles are chosen, but in practice they
should be different for each credential an issuer issues.

3.1 Syntax

Before formalizing the security properties, we introduce the syntax of PABCs.

System parameter generation. The system parameters of a PABC-system are
generated as spar ←$ SPGen(1κ). For simplicity we assume that the system
parameters in particular contain an integer L specifying the maximum number
of attributes that can be certified by one credential, as well as a description of
the attribute space AS. For the rest of this document, we assume that all honest
parties only accept attributes from AS and abort otherwise.

The system parameters are input to all algorithms presented in the following.
However, for notational convenience, we will sometimes not make this explicit.

User key generation. Each user generates a secret key as usk ←$ UKGen(spar).

Issuer key generation. Each issuer generates a public/private issuer key pair and
some initial revocation information as (ipk, isk,RI) ←$ IKGen(spar). We assume
that RI also defines the set of all supported revocation handles for this issuer,
and that honest parties only accept such revocation handles and abort otherwise.

Presentation. A user generates a pseudonym nym and presentation token pt as

(nym, pt) ←$ Present
(
usk, scope,

(
ipki,RIi, credi, (ai,j)ni

j=1, Ri

)k

i=1
, E,M

)
, where

• usk is the user’s secret key, which can be ε if scope = ε and none of the
credentials (credi)k

i=1 is bound to a user secret key;
• scope is the scope of the generated pseudonym nym, where scope = ε if no

pseudonym is to be generated (in which case nym = ε);
• (credi)k

i=1 are k user-owned credentials that are involved in this presentation;
• ipki and RIi are the public key and current revocation information of the

issuer of credi;
• (ai,j)ni

j=1 is the list of attribute values certified in credi, where each ai,j ∈ AS;
• Ri ⊆ [ni] is the set of attribute indices for which the value is revealed;
• E induces an equivalence relation on {(i, j) : i ∈ [k] ∧ j ∈ [ni]}, where

((i, j), (i′, j′)) ∈ E means that pt will prove that ai,j = ai′,j′ without revealing
the actual attribute values. That is, E enables one to prove equality predicates;

• M ∈ {0, 1}∗ is a message to which the presentation token is to be bound.
This might, e.g., be a nonce chosen by the verifier to prevent replay attacks
in which a verifier uses a valid presentation token to impersonate a user.

If k = 0 and scope 
= ε, only a pseudonym nym is generated while pt = ε.



Formal Treatment of Privacy-Enhancing Credential Systems 9

Presentation verification. A verifier can check the validity of a pseudonym nym
and a presentation token pt:

accept/reject ← Verify
(
nym, pt, scope,

(
ipki,RIi, (ai,j)j∈Ri

)k

i=1
, E,M

)
,

where the inputs are as for presentation. For notational convenience from now
on a term like (ai,j)j∈Ri

implicitly also describes the set Ri.

Issuance token generation. Before issuing a credential, a user generates an
issuance token defining the attributes of the credentials to be issued, where
(some of) the attributes and the secret key can be hidden from the issuer and
can be blindly “carried over” from credentials that the user already possesses (so
that the issuer is guaranteed that hidden attributes were vouched for by another
issuer). Similarly to a presentation token we have:

(nym, pit, sit) ←$ ITGen
(
usk, scope, rh,

(
ipki,RIi, credi, (ai,j)ni

j=1, Ri

)k+1

i=1
, E,M

)
,

where most of the inputs and outputs are as before, but

• pit and sit are the public and secret parts of the issuance token,
• credk+1 = ε is the new credential to be issued,
• rh is the revocation handle for credk+1 (maybe chosen by the issuer before),
• ipkk+1 and RIk+1 are the public key and current revocation information of

the issuer of the new credential,
• (ak+1,j)j∈Rk+1 are the attributes of credk+1 that are revealed to the issuer,
• (ak+1,j)j �∈Rk+1 are the attributes of credk+1 that remain hidden, and
• ((k + 1, j), (i′, j′)) ∈ E means that the jth attribute of the new credential will

have the same value as the j′th attribute of the i′
th credential.

Issuance token verification. The issuer verifies an issuance token as follows:

accept/reject ←$ ITVf
(
nym, pit, scope, rh,

(
ipki,RIi, (ai,j)j∈Ri

)k+1

i=1
, E,M

)
.

For j ∈ [k] all inputs are as for Verify, but for k+1 they are for the new credential
to be issued based on pit.

Issuance. Issuance of credentials is a protocol between a user and an issuer:

(cred,RI′) ←$ 〈(U .Issue(sit, pit); I.Issue(isk, pit,RI)〉.

The inputs are defined as before, and pit has been verified by the issuer before.
The user obtains a credential as an output, while the issuer receives an updated
revocation information RI′.

Revocation. To revoke a credential with revocation handle rh, the issuer runs:
RI′ ←$ Revoke(isk,RI, rh) to generate the new revocation information RI′ based
on the issuer’s secret key, the current revocation information, and the revocation
handle to be revoked.



10 J. Camenisch et al.

3.2 Oracles for Our Security Definitions

Our security definitions of PABC systems require a number of oracles, some of
which are the same for different definitions. We therefore present them all in one
place. The oracles are initialized with a set of honestly generated keys of nI honest
issuers {(ipk∗

i , isk
∗
i ,RI

∗
i )}nI

i=1 and nU users with keys {usk∗
i }nU

i=1, respectively. Let
IK∗ = {ipk∗

i }nI
i=1. The oracles maintain initially empty sets C, HP, IT , IRH,

RRH, RI. Here, C contains all credentials that honest users have obtained as
instructed by the adversary, while HP contains all presentation tokens generated
by honest users. All public issuance tokens that the adversary used in successful
issuance protocols with honest issuers are stored in IT . The set IRH contains
all issued revocation handles, i.e., the revocation handles of credentials issued
by honest issuers, while RRH contains the revoked handles per issuer. Finally,
RI contains the history of the valid revocation information of honest issuers at
any point in time. Time is kept per issuer I through a counter epoch∗

I that is
initially 0 and increased at each issuance and revocation by I.

Honest Issuer Oracle Oissuer. This oracle allows the adversary to obtain and
revoke credentials from honest issuers. It provides the following interfaces:

• On input (issue,nym, pit, scope, rh, (ipki,RIi, (ai,j)j∈Ri
)k+1
i=1 , E,M) the oracle

checks that ITVf accepts the issuance token pit and that the revocation infor-
mation of all honest issuers is authentic, i.e., that a tuple (ipki,RIi, ·) exists
in RI for all honest issuers ipki. Further, it verifies that ipkk+1 is the public
key of an honest issuer ipk∗

I with corresponding secret key isk∗
I and current

revocation information RI∗I = RIk+1. If one of the checks fails, the oracle out-
puts ⊥ and aborts.
The oracle then runs I.Issue(iskk+1, pit,RI∗I) in interaction with A until
the protocol outputs RIk+1. It returns RIk+1 to A, sets RI∗I ← RIk+1,
increases epoch∗

I , adds (ipk∗
I ,RI

∗
I , epoch

∗
I) to RI. It adds

(
nym, pit, scope, (ipki,

RIi, (ai,j)j∈Ri
)k+1
i=1 , E,M

)
to IT and adds (ipk∗

I , rh) to the set IRH.
• On input (revoke, I, rh) the oracle checks that the revocation handle rh has

been the input of a successful issuance protocol with an honest issuer with
key ipk∗

I , or returns ⊥ otherwise. The oracle runs RI∗I ←$ Revoke(isk∗
I ,RI

∗
I , rh),

increases epoch∗
I , adds (ipk∗

I , rh, epoch
∗
I) to RRH, adds (ipk∗

I ,RI
∗
I , epoch

∗
I) to

RI, and returns RI∗I to the adversary.

Honest User Oracle Ouser. This oracle gives the adversary access to honest users,
which he can trigger to obtain credentials and request presentation tokens on
inputs of his choice. The adversary does not get the actual credentials, but
only unique credential identifiers cid by which he can refer to the credentials. It
provides the following interfaces:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)k
i=1, E,M) the oracle checks if

U ∈ [nU] and if, for all i ∈ [k], a tuple (U, cidi, credi, (ai,j)ni
j=1) ∈ C exists.

For all credentials from honest issuers, Ouser verifies if RIi is authentic, i.e.,
if for all honest issuer public keys ipki = ipk∗

I there exists (ipki,RIi, ·) ∈ RI.



Formal Treatment of Privacy-Enhancing Credential Systems 11

If any check fails, Ouser returns ⊥, otherwise it computes (nym, pt) ←$

Present
(
usk∗

U , scope, (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k

i=1, E,M
)

and adds
(
nym,

pt, scope, (ipki,RIi, (ai,j)j∈Ri
)k
i=1, E,M

)
to HP. It returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)k+1
i=1 , E,M, (ak+1,j)

nk+1
j=1 ) the

oracle checks if U ∈ [nU] and, for all i ∈ [k], a tuple (U, cidi, credi, (ai,j)ni
j=1) ∈

C exist. It further checks that the revocation information of honest issuers is
authentic, i.e., that a tuple (ipki,RIi, ·) ∈ RI exists for all honest issuers
ipki ∈ IK∗. The oracle computes the issuance token (nym, pit, sit) ←$

ITGen
(
usk∗

U , scope, rh, (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k+1

i=1 , E,M
)
. If ipkk+1 
∈

IK∗, the oracle sends (nym, pit) to the adversary and runs U .Issue(sit, pit)
in interaction with the adversary until it returns a credential cred and stores
(U, cidk+1, cred, (ak+1,j)

nk+1
j=1 ) in C. If ipkk+1 = ipk∗

I ∈ IK∗, the oracle runs
U .Issue(sit, pit) internally against I.Issue(isk∗

I , pit) until they output a cre-
dential cred and revocation information RI′, respectively. The oracle adds
(U, cidk+1, cred, (ak+1,j)

nk+1
j=1 ) to C and adds (ipk∗

I , rh) to IRH. It further
increases epoch∗

I , sets RI∗I ← RI′, and adds (ipk∗
I ,RI

∗
I , epoch

∗
I) to RI. Finally,

the oracle chooses a fresh and unique credential identifier cidk+1 for the new
credential and outputs it to A (note that A’s choice of cidk+1 is ignored).

3.3 Security Definitions for PABCs

We now formalize the security properties required from PABC-systems.

Correctness. The correctness requirements are what one would expect, i.e.,
whenever all parties are honest and run all algorithms correctly, none of the
algorithms aborts or outputs reject. That is, (i) if all inputs are correct, Issue
always outputs a valid credential, (ii) holding valid credentials satisfying the
specified relations allows a user to generate valid presentation- and issuance
tokens, and (iii) issuers are able to revoke any attribute of their choice.

Pseudonym Collision-Resistance. On input spar ←$ SPGen(1κ), no PPT
adversary can come up with two user secret keys usk0 
= usk1 and a scope
scope such that NymGen(spar, usk0, scope) = NymGen(spar, usk1, scope) with non-
negligible probability.

Furthermore, we require that a pseudonym is a deterministic function of the
system parameters, user secret and the scope. That is, we require that for some
deterministic function NymGen, and for all usk, scope, rh, E,E′,M,M′ and all
honest tuples C,C ′ of the form (ipki,RIi, credi, (ai,j)ni

j=1, Ri)k
i=1 it holds that:

Pr[nym = nymi = nymp : spar ←$ SPGen(1κ),nym ← NymGen(spar, usk, scope),

(nymi, pit, sit) ←$ ITGen(usk, scope, rh, C ′, E′,M′),

(nymp, pt) ←$ Present(usk, scope, C,E,M)] = 1.



12 J. Camenisch et al.

Unforgeability. In the unforgeability game, the adversary can request creden-
tials from honest issuers, or trigger honest users to receive or present creden-
tials, using the oracles from Sect. 3.2. After this interaction, the adversary out-
puts a number of presentation tokens and pseudonyms, i.e., a set FT of tuples
(nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri

)k
i=1), E,M) as defined in the syntax of the

Verify algorithm. The adversary wins the game if at least one of the presentation
tokens is a forgery or if at least one of the issuance tokens submitted to the hon-
est issuer oracle was a forgery. Note that unforgeability of credentials is implied
by this definition, as the adversary can always derive a forged presentation token
from a forged credential.

Experiment ForgeA(1
κ, nI, nU):

spar ←$ SPGen(1κ)

(ipk∗
I , isk∗

I ,RI∗
I ) ←$ IKGen(spar) for I = 1, . . . , nI

usk∗
U ←$ UKGen(spar) for U = 1, . . . , nU

FT ←$ AOissuer,Ouser
(spar, (ipk∗

I ,RI∗
I )

nI
I=1, nU)

Return 1 if and only if:
FT , IT , HP, IRH, RRH, and RI are not consistent.

Fig. 1. ForgeA(1κ, nI, nU)

Informally, a forgery is an issuance or presentation token for which the cor-
responding credentials were not issued to the adversary or are not supposed to
be valid w.r.t. the revocation information stated in the token. Now, as the issuer
does not see all attributes nor the user secret key of issued credentials, it is often
not clear whether or not a given issued credential is one of the credentials corre-
sponding to a token. However, if we assume that we knew all hidden values for
each credential issued (including the user secret key), then we can efficiently test
whether or not a given issuance or presentation token is a forgery. Thus, if there
is an assignment for all the hidden values of the issued credentials such that all
the issuance and presentation tokens presented by the adversary correspond to
valid credentials, then there is no forgery among the tokens. Or, in other words,
if there is no such assignment, then the adversary has produced a forgery and
wins the game. Regarding the validity of credentials, the adversary also wins if
he outputs a valid token for a credential that was already revoked with respect to
the revocation information specified by the adversary (which may not necessarily
be the latest published revocation information).

Definition 1 (Unforgeability). A PABC-scheme satisfies unforgeability, if
for every PPT adversary A and all nU, nI ∈ N there exists a negligible func-
tion ν such that Pr[ForgeA = 1] ≤ ν, where the experiment is described in Fig. 1,
and the oracles Oissuer and Ouser are as in Sect. 3.2.

We now define what consistency of the sets FT , IT , HP, IRH, RRH, and
RI means. First, the set FT must only contain “fresh” and valid presentation
tokens, meaning that for each tuple (nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri

)k
i=1),



Formal Treatment of Privacy-Enhancing Credential Systems 13

E,M) in FT must pass Verify and that for all i ∈ [k] where ipki ∈ IK∗ there
exists a tuple (ipki,RIi, ·) ∈ RI. If any tuple in FT does not satisfy these con-
ditions, then the adversary loses the game. Let USK ⊂ {0, 1}∗ be a hypothetical
set containing the user secret keys that the adversary may have used through-
out the game, and let CRED be a hypothetical set containing the credentials
from honest issuers that the adversary may have collected during the game. In
the latter set, we write (usk, ipk∗

I , rh, (α1, . . . , αn)) ∈ CRED if the adversary
obtained a credential from issuer ipk∗

I with revocation handle rh and attribute
values (α1, . . . , αn) bound to user secret usk. Now, we consider the sets FT , IT ,
HP, IRH, RRH and RI to be consistent if there exist sets USK and CRED
such that the following conditions hold:

1. Each credential is the result of a successful issuance. For all revocation handles
rh and honest issuer public keys ipk∗

I , the number of tuples (·, ipk∗
I , rh, ·) ∈

CRED is at most the number of tuples (ipk∗
I , rh) ∈ IRH.

2. All presentation or issuance tokens correspond to honestly obtained unrevoked
credentials. For every tuple

(
nym, pt, scope, (ipki,RIi, epochi, (ai,j)j∈Ri

)k
i=1, E,

M
)

∈ FT ∪ IT there exists a usk ∈ USK and a set of credentials {credi =
(uski, ipki, rhi, (αi,j)ni

j=1) : ipki ∈ IK∗} ⊆ CRED such that:
(a) uski ∈ {usk, ε} (all key-bound credentials are bound to the same key),
(b) nym = scope = ε or nym = NymGen(spar, usk, scope) (if there is a

pseudonym, it is for usk and scope),
(c) αi,j = ai,j for all j ∈ Ri (the revealed attribute values are correct),
(d) αi,j = αi′,j′ for ((i, j), (i′, j′)) ∈ E with ipki′ ∈ IK∗ (the attributes satisfy

the equality relations to other credentials from honest issuers), and
(e) there exists (ipki,RIi, epochi) ∈ RI such that there exists no tuple

(ipki, rhi, epoch′
i) ∈ RRH with epoch′

i ≤ epochi (the credentials were not
revoked in the epoch where they were presented).

Thus, the adversary wins the game, if there do not exist sets USK and CRED
that satisfy all the information captured in FT , IT , HP, IRH, RRH, and RI.

We had to make a number of design decisions for our definitions, which we
want to explain in the following:

• First, we do not require strong unforgeability, i.e., we do not consider a token
a forgery if it contains the identical elements as a pt or pit generated by an
honest user. In practice, tokens will be bound to messages M that uniquely
identify the current session, and thus an adversary will neither be able to reuse
pt or pit, nor will it be able to benefit from a weak forgery thereof.

• Next, we do not require that adversarially generated issuance tokens are satis-
fied until the issuance protocol finishes. That is, we consider forgery of issuance
tokens to be a problem only if they are later used in a successful issuance proto-
col. This is acceptable, as an invalid issuance token does not give an adversary
any meaningful power if he cannot use it to obtain a credential. Requiring the
stronger property that issuance tokens are unforgeable by themselves is pos-
sible, but would further increase the complexity of our definitions – without
providing stronger guarantees in practice.



14 J. Camenisch et al.

• For blindly issued attributes we require that they satisfy E, but do not for-
bid, e.g., that an adversary runs the issuance protocol twice with the same
issuance token, but with the resulting credentials containing different values
for the blinded attributes as long as they satisfy E. This is not a real-world
problem, as the adversary could otherwise just run multiple sessions for dif-
ferent issuance tokens, as the issuer will, by definition of blind attributes, not
obtain any guarantees on those attributes apart from what E specifies.

• Finally, we allow presentation tokens for earlier epochs than the one under-
lying a credential to be generated. This makes sense for off-line verifiers who
cannot update their revocation information continuously. However, our defi-
nition and construction could easily be modified to forbid such tokens.

Simulatable Privacy. For privacy, all issuance protocols and presentation
tokens performed by honest users must be simulatable using only the public
information that is explicitly revealed during the issuance or presentation. That
is, the simulator is not given the credentials, values of hidden attributes, or even
the index of the user that is supposed to perform the presentation or issuance,
but must provide a view to A that is indistinguishable from a real user.

Experiment PrivacyA(1
κ, nU):

b ←$ {0, 1}
If b = 0: If b = 1:

spar ←$ SPGen(1κ) (spar, τ) ←$ S1(1
κ)

usk∗
U ←$ UKGen(spar) for U = 1, . . . , nU

USK∗ = {usk∗
U }nU

U=1
b ←$ AOuser

(spar, nU) b ←$ AF(nU,·)|S2(τ)(spar, nU)

Return 1 if and only if b = b .

Fig. 2. PrivacyA(1κ, nU)

Formalizing this is not straightforward, however. It does not suffice to require
two separate simulators that work for issuance and presentation, respectively,
because pseudonyms and revocation introduce explicit dependencies across dif-
ferent issuance and presentation queries that must also be reflected in the simu-
lation. Moreover, the simulator must not generate presentation tokens that could
not have been generated in the real world, e.g., because the user does not have
the required credentials. But as the simulator does not see any user indices or
hidden attribute values, it cannot know which queries can be satisfied.

We therefore define a game where an adversary A either runs in a real world
with access to an honest user oracle performing the actual protocols, or runs
in a simulated world, where oracle queries are first filtered by a filter F and
then responded to by a stateful simulator S. The filter’s role is to sanitize the
queries from non-public information such as user indices, credential identifiers,
etc., and to intercept queries that could not be satisfied in the real world. Note
that the filter thereby enforces that the adversary can only obtain presentation



Formal Treatment of Privacy-Enhancing Credential Systems 15

tokens for valid inputs. This must be guaranteed by the credential system as
well, otherwise the adversary could distinguish between both worlds.

Definition 2 (Privacy). A PABC system is private, if there exist PPT algo-
rithms S1,S2 such that for every PPT adversary A and every nU ∈ N there
exists a negligible function ν such that: Pr[PrivacyA(1κ, nU) = 1] ≤ 1/2 + ν(κ),
cf. (Fig. 2).

Here, Ouser is as described in Sect. 3.2, while F maintains initially empty
lists C and P , a counter ctr = 0, and internal state stS = τ , and behaves as
follows:

• On input (present, U, scope, (ipki,RIi, cidi, Ri)k
i=1, E,M), the filter checks if

U ∈ [nU] and if, for all i ∈ [k], a tuple (U, cidi, ipki, (ai,j)ni
j=1, revi) ∈ C exists.

Here, revi is the code of an algorithm that on input RIi outputs a bit indicating
whether credi is to be considered revoked. F checks if revi(RIi) = 0 ∀i ∈ [k] and
that ai,j = ai′,j′ for all ((i, j), (i′, j′)) ∈ E. If a check fails, the filter returns ⊥.
If scope 
= ε and (U, scope, p) 
∈ P then F sets ctr ← ctr + 1, p ← ctr, and
adds (U, scope, p) to P . It then executes (stS,nym, pt) ←$ S2(stS, present,
scope, p, (ipki, (ai,j)j∈Ri

)k
i=1, E,M). Finally, it returns (nym, pt) to A.

• On input (obtain, U, scope, rh, (ipki,RIi, cidi, Ri)k+1
i=1 , E,M, (ak+1,j)

nk+1
j=1 ), the

filter checks if U ∈ [nU] and if, for all i ∈ [k], a tuple (U, cidi, ipki, (ai,j)ni
j=1,

revi) ∈ C exists. For all credentials, F checks if revi(RIi) = 0 ∀i ∈ [k] and
that ai,j = ai′,j′ for all ((i, j), (i′, j′)) ∈ E. If any of the checks fails, the filter
returns ⊥. The filter then looks up the same value p as in Opresent. It sets
(stS,nym, pit) ←$ S2(stS, obtain, scope, p, (ipki, (ai,j)j∈Ri

)k+1
i=1 , E,M, rh) and

returns (nym, pit) to A. For the subsequent flows in the issuance protocol, F
answers each incoming message Min from A by running (stS,Mout) ←$ S2(stS,
Min). At the last flow, S2 returns a tuple (stS,Mout, cid, rev). If cid 
= ⊥, F
adds (U, cid, ipkk+1, (ak+1,j)

nk+1
j=1 , rev) to C and returns Mout to A.

Weak Privacy. The definition above ensures a very strong notion of privacy that
is not satisfied by all existing PABC schemes as they do not provide unlinkability
across multiple presentation tokens that were derived from the same credential.
For instance, for U-Prove [11,12] an arbitrary number of presentations cannot
be linked to a specific issuance session, but any two presentations of the same
credential can be linked to each other. We thus also introduce a strictly weaker
privacy notion called weak privacy. Informally, we there give the simulator some
more information to be able to generate “linkable” presentation tokens if the
adversary requests multiple presentations tokens for some credential. This is
done by giving S2 “anonymized” pointers to credential identifiers as input, and
thus, the simulator is aware if the same credential is used in multiple presen-
tation sessions and can prepare the simulated token accordingly. Due to the
anonymization, the simulator still does not learn the connection between an
issued credential and a presentation token, thus untraceability (meaning presen-
tation sessions cannot be linked to the actual issuance of the credential) still
holds.



16 J. Camenisch et al.

4 Building Blocks

We next introduce the syntax for the building blocks needed in our construction.
We omit detailed security definitions of the building blocks here and refer to the
full version [1], where we also present concrete instantiations of all components.
Compared to PABC-systems, most of the security requirements presented in the
following are relatively easy to formalize and prove for a specific instantiation.
However, in Sect. 5 we will show that these properties are actually sufficient to
obtain PABC-systems, by giving a generic construction for PABC-systems from
these building blocks. We stress that the following definitions are heavily inspired
by existing work, but have been adapted to facilitate the generic construction.

4.1 Global Setup

Global system parameters are parameters that are shared by all building blocks.

Global System Parameter Generation. The global system parameters are gen-
erated as sparg = (1κ,AS, 	, L, sparc, ck, spar′

g) ←$ SPGeng(1κ), where AS ⊆
±{0, 1}� is the message space of the signature scheme, and the revocation and
pseudonym systems support inputs from at least ±{0, 1}�. The integer L spec-
ifies the maximum number of attributes that can be signed by one signature.
Furthermore, sparc ←$ SPGenc(1κ, 	) and ck ←$ ComKGen(sparc) is a public
master commitment key. Finally, spar′

g potentially specifies further parameters.

4.2 Commitment Schemes

A commitment scheme is a tuple of six algorithms (SPGenc,ComKGen,Com,
ComOpenVf,ComPf,ComProofVf), where SPGenc generates commitment para-
meters sparc. Taking these as inputs, ComKGen generates commitment keys ck,
which can be used to compute a commitment/opening pair (c, o) to a mes-
sage m using the commitment algorithm Com. This pair can be verified using
ComOpenVf. Furthermore, we require that one can generate a non-interactive
proof of knowledge π of the content m of a commitment c, and the corre-
sponding opening c, using ComPf. This proof can then be publicly verified using
ComProofVf.

4.3 Privacy-Enhancing Signatures

We next define the main building block: privacy-enhancing attribute-based signa-
tures (PABS). Informally, parties are split into issuers signing attributes, users
obtaining signatures, and verifiers checking whether users possess valid signa-
tures on certain attributes. After setting up some PABS-specific system parame-
ters, each issuer computes his signing/verification key pair, such that everybody
can verify that keys are well-formed. At issuance time, users can reveal certain
attributes to the issuer and get the remaining attributes signed blindly. Hav-
ing received a signature, a user can verify its correctness. Presentation is then



Formal Treatment of Privacy-Enhancing Credential Systems 17

done in a non-interactive manner: users compute signature presentation tokens,
potentially revealing certain attributes, and verifiers can check these tokens.

System Parameter Generation. The signature system parameters are generated
as spars = (sparg, spar′

s) ←$ SPGens(sparg), where the input are global system
parameters and spar′

s potentially specifies further parameters.
Similar to Sect. 3.1, we assume that the respective system parameters are

input to all the other algorithms of the given scheme. However, for notational
convenience, we will sometimes not make this explicit.

Key Generation. An issuer generates a key pair (ipk, isk) ←$ IKGen(spars).
We assume that the issuer public key implicitly also defines a maximum L of
attributes a signature may contain.

Key Verification. An issuer public key ipk can be verified for correctness with
respect to κ as accept/reject ← KeyVf(ipk).

Signature Issuance. Issuance of a signature is a protocol between a user and a
signature issuer:

(sig/⊥, ε) ←$ 〈U .Sign(ipk, (cj , oj)j /∈R,�a); I.Sign(isk, (ai)i∈R, (cj , πj)j �∈R)〉,where

• �a = (ai)L
i=1 ∈ ASL are the attributes to be signed,

• R denotes indices of attributes that are revealed to the issuer
• cj is a verified commitment to aj , oj is the associated opening information, and

πj is a non-interactive proof of knowledge of the opening of cj . In particular,
cj might be re-used from a preceding signature presentation, allowing users
to blindly carry over attributes into new credentials.

Signature Verification. The correctness of a signature can be verified using SigVf
on input a signature sig, attributes �a and a issuer public key ipk:

accept/reject ← SigVf(sig,�a, ipk).

Signature Presentation Token Generation. The user can compute a signature
presentation token spt that proves that he possesses a signature for a set of
revealed attributes R and committed attributes (cj , oj)j∈C where C ∩ R = ∅.
Furthermore, a signature presentation token can be bound to a specific mes-
sage M specifying, e.g., some context information or random nonce to disable
adversaries to re-use signature presentation tokens in subsequent sessions:

spt/⊥ ←$ SignTokenGen(ipk, sig,�a,R, (cj , oj)j∈C ,M).

Signature Presentation Token Verification. A signature presentation token can
be verified as accept/reject ←$ SignTokenVf(ipk, spt, (ai)i∈R, (cj)j∈C ,M).



18 J. Camenisch et al.

4.4 Revocation Schemes

Suppose a set of users, e.g., employees, who are granted access to some online
resource. Then this set will often change over time. While adding users would
be possible with the features presented so far, revoking access for specific users
would not. In the following we thus define revocation for signature systems.

We chose a blacklisting approach rather than whitelisting, as whitelists
require verifiers to update their local copy of the revocation information every
time a new signature gets issued, which makes it harder to realize offline applica-
tions. For blacklists, different verifiers may obtain updates at different intervals,
depending on their security policies. As a consequence, our generic construction
also only supports blacklisting, while the interfaces and definitions from Sect. 3
would also support whitelisting or hybrid approaches.

After having set up system parameters, a revocation authority generates a
secret revocation key, together with some public revocation key and revocation
information. Using its secret key, the authority can revoke revocation handles
by updating the revocation information accordingly. Proving that a revocation
handle has not yet been revoked is again done non-interactively: a user can
generate a token showing that some commitment contains an unrevoked handle.
This token can later be publicly verified.

System Parameter Generation. On input global system parameters, revocation
parameters are generated as sparr = (sparg,RS, spar′

r) ←$ SPGenr(sparg), where
RS specifies the set of supported revocation handles, and spar′

r potentially spec-
ifies further parameters.

Revocation Setup. The revocation authority (in the definitions of Sect. 3 this role
is taken by the issuer) runs the revocation setup to obtain a secret key rsk, an
associated public key rpk and a public revocation information RI:

(rsk, rpk,RI) ←$ RKGen(sparr).

Attribute Revocation. A revocation handle rh can get revoked by a revocation
authority by updating the public revocation information RI to incorporate rh:

RI′ ←$ Revoke(rsk,RI, rh).

Revocation Token Generation. A user can generate a token proving that a certain
revocation handle, committed to in c, has not been revoked before:

rt/⊥ ←$ RevTokenGen(rh, c, o,RI, rpk).

In practice, a revocation presentation will always be tied to a signature pre-
sentation to prove that the signature presentation is valid. The value of c in the
former will therefore be one of the commitments from the latter.

Revocation Token Verification. A revocation token is verified by:

accept/reject ← RevTokenVf(rt, c,RI, rpk).



Formal Treatment of Privacy-Enhancing Credential Systems 19

4.5 Pseudonyms

Users can be known to different issuers and verifiers under unlinkable
pseudonyms.

System Parameter Generation. The parameters of a pseudonym system are gen-
erated as sparp = (sparg, spar′

p) ←$ SPGenp(sparg), where the input are global
system parameters, and spar′

p potentially specifies further pseudonym parame-
ters.

User key generation. A user generates his secret key as usk ←$ UKGen(sparp).

Pseudonym generation. A pseudonym nym for given usk and scope ∈ {0, 1}∗ is
computed deterministically as nym ← NymGen(usk, scope).

Pseudonym presentation. On input a user’s secret key usk, a commitment c to usk
with opening information o, and a scope string scope ∈ {0, 1}∗, the pseudonym
presentation algorithm generates a pseudonym nym with a proof π:

(nym, π) ←$ NymPres(usk, c, o, scope).

Pseudonym verification. A pseudonym nym and proof π are verified for a com-
mitment c and scope scope as accept/reject ← NymVf(sparp, c, scope,nym, π).

5 Generic Construction of PABCs

We next present a generic construction of PABC systems from the building blocks
introduced above. Our construction uses a global setup procedure, a commitment
scheme, a PABS scheme, a revocation scheme, as well as a pseudonym scheme,
where the syntax is as introduced in Sect. 4.

The idea underlying our construction is to use the pseudonym and revocation
schemes unchanged to obtain the according properties for the PABC-system.
Issuance and presentation are realized via the given PABS-scheme. However,
instead of just signing the attributes, the issuer additionally signs the user secret
key and the revocation handle whenever applicable. Similarly, whenever a user
computes a presentation token for a set of credentials, it proves knowledge of the
corresponding signature on the contained attributes, the revocation handle, and
the user secret key, where the latter is always treated as an unrevealed attribute.

These independent components are linked together using commitments. For
instance, to show that indeed the revocation handle contained in a credential was
shown to be unrevoked, the same commitment/opening pair is used to generate
revocation and signature presentation tokens.



20 J. Camenisch et al.

5.1 Formal Description of the Construction

Let eq be a function mapping an attribute index (i, j) to its equivalence class as
induced by E, i.e., eq(i, j) = {(i, j)}∪{(i′, j′) : ((i, j), (i′, j′)) ∈ E}. Let E be the
set of all these equivalence classes, and (ae)e∈E be the corresponding attribute
values, i.e., eq(i, j) = e ⇒ ai,j = ae. Finally, let Ei = {j : ((i, j), (i′, j′)) ∈ E}.

As some algorithm names from PABC schemes also appear in the building
blocks, we stress that all algorithms called in the construction are those from
the building blocks and never from the PABC scheme.

System parameter generation. This algorithm outputs spar = (sparg, spars, sparr,
sparp), where the different parts are generated using the system parameter algo-
rithms of the building blocks. We assume that the algorithms of all building
blocks take their respective parameters as implicit inputs.

User key generation. Users generate their secret keys as usk ←$ UKGen(1κ).

Issuer key generation. Issuers generate signature keys (ipk′, isk′) ←$ IKGen(spars)
and revocation keys (rsk, rpk,RI′) ←$ RKGen(sparr). The algorithm outputs
(ipk, isk,RI) = ((ipk′, rpk), (isk′, rsk),RI′).

Presentation. On inputs (usk, scope, (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k

i=1, E,M), this
algorithm outputs whatever AuxPresent (cf. Fig. 3) outputs, where ipki =
(ipk′

i, rpki), credi = (sigi, rhi), and M̂ = pres‖M.

Presentation verification. On inputs (nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri
)k
i=1, E,

M), Verify outputs whatever AuxVerify described in Fig. 4 outputs.

Issuance token generation. An issuance token for inputs (usk, scope, rhk+1,
(ipki,RIi, credi, (ai,j)ni

j=1, Ri)k+1
i=1 , E,M), is generated as specified in Fig. 5.

(cusk, ousk) ←$ Com(usk)
(nym, πnym) = (ε, ε)
if scope �= ε:
(nym, πnym) ←$ NymPres(usk, cusk, ousk, scope)

(ce, oe) ←$ Com(ae) ∀e ∈ E
for i = 1, . . . , k do:
(crh,i, orh,i) ← (ε, ε)
if credi is revocable:
(crh,i, orh,i) ←$ Com(rhi)

rti ←$ RevTokenGen(rhi, crh,i, orh,i, RIi, rpki)

M̂
′
= M̂‖scope‖(ipki, (ai,j)j∈Ri

)k
i=1‖E

for i = 1, . . . , k do:
spti ←$ SignTokenGen(ipk′

i, sigi, ((ai,j)
ni
j=1, usk, rhi), Ri,

((ceq(i,j), oeq(i,j))j∈Ei
, cusk, ousk, crh,i, orh,i), M̂

′
)

pt = (cusk, πnym, (ce)e∈E , (crh,i, rti, spti)
k
i=1)

if rti �= ⊥ and spti �= ⊥ for i = 1, . . . , k :
Output (nym, pt)

Output (⊥, ⊥)

Fig. 3. AuxPresent(usk, scope, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E, M̂)



Formal Treatment of Privacy-Enhancing Credential Systems 21

M̂
′
= M̂‖scope‖(ipki, (ai,j)j∈Ri

)k
i=1‖E

if scope �= ε ∧ NymVf(cusk, scope, nym, πnym) = reject:
Output reject

for i = 1, . . . , k do:
if RevTokenVf(rti, crh,i, RIi, rpki) = reject or

SignTokenVf(ipki, spti, (ai,j)j∈Ri
, ((ceq(i,j))j∈Ei

, cusk, crh,i)
k
i=1, M̂

′
) = reject:

Output reject
Output accept

Fig. 4. AuxVerify(nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri)
k
i=1, E, M̂)

(nym, pt) ←$ AuxPresent(usk, scope, (ipki, RIi, credi, (ai,j)
ni
j=1, Ri)

k
i=1, E, iss‖M)

thereby saving the used (ce, oe)e∈E

(cj , oj) ←$ Com(ak+1,j) ∀j /∈ Rk+1 ∪ Ek+1

πj ←$ ComPf(ceq(k+1,j), oeq(k+1,j), ak+1,j) ∀j ∈ Ek+1

πj ←$ ComPf(cj , oj , ak+1,j) ∀j /∈ Rk+1 ∪ Ek+1

πusk ←$ ComPf(cusk, ousk, usk)
pit = (pt, rhk+1, (cj)j �∈Rk+1∪Ek+1 , πusk, (πj)j /∈Rk+1

)

sit = ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1 , (cj , oj)j /∈Rk+1∪Ek+1
, cusk, ousk, ipk

′
k+1,

(ak+1,j)
nk+1
j=1 , usk, rhk+1)

Output (pit, sit, nym)

Fig. 5. ITGen(usk, scope, rhk+1, (ipki,RIi, credi, (ai,j)
ni
j=1, Ri)

k+1
i=1 , E,M)

Issuance token verification. To verify pit = (pt, rhk+1, (ck+1,j , πk+1,j)j �∈Rk+1 ,
πusk), the verifier returns the output of:

AuxVerify
(
nym, pt, scope, (ipki,RIi, (ai,j)j∈Ri

)k
i=1, E, iss‖M

)
.

Issuance. For issuance, the user and the issuer run:

〈U .Sign(ipk′
k+1, ((ceq(k+1,j), oeq(k+1,j))j∈Ek+1 , (cj , oj)j /∈Rk+1∪Ek+1 , cusk, ousk),

((ak+1,j)
nk+1
j=1 , usk, rhk+1));

I.Sign(isk′, ((ai)i∈Rk+1 , rhk+1), ((ceq(k+1,j), πj)j∈Ek+1 , (cj , πj)j /∈Rk+1∪Ek+1 ,

(cusk, πusk)))〉,

where they extract their inputs from sit, and isk and pit, respectively. When the
user’s protocol returns sig, the user outputs cred = (sig, rhk+1).

Revocation. On input an issuer secret key isk = (isk′, rsk), a revocation infor-
mation RI and a revocation handle rh, the revocation algorithm returns RI′ ←$

Revoke(rsk,RI, rh).
The formal statements and proofs of the following theorem are given in [1].

Theorem 1 (informal). Let the used building blocks satisfy all security prop-
erties introduced in Sect. 4. Then the PABC scheme resulting from the above
construction is secure and simulatably private according Sect. 3.3. Furthermore,
if the PABS scheme is weakly user private, the resulting scheme is secure and
weakly private.



22 J. Camenisch et al.

6 Conclusion

We provided security definitions, a modular construction, and secure instan-
tiations of a PABC system. Our framework encompasses a rich feature set
including multi-attribute credentials, multi-credential presentations, key bind-
ing, pseudonyms, attribute equality proofs, revocation, and advanced credential
issuance with carried-over attributes. Prior to our work, most of these features
found provably secure instantiations in isolation, but their combination into a
bigger PABC system was never proved secure, nor even defined formally.

Proving formal implications among existing definitions and ours might
require substantial further research as for each related work, all definitions would
first have to be reduced to the set of commonly considered features.

Finally, even though we think that our feature set is rich enough to cover a
wide range of use cases (cf. Sect. 1), there are more features that can be added to
our framework. Among these features are inspection, where presentation tokens
can be de-anonymized by trusted inspectors, or attribute predicates, allowing to
prove for example greater-than relations between attributes.

References

1. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen, M.O.:
Formal Treatment of Privacy-Enhancing Credential Systems. ePrint, 2014/708
(2014)

2. ABC4Trust - Attribute-based Credentials for Trust: EU FP7 Project (2015).
http://www.abc4trust.eu

3. Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-
S.: Concepts and languages for privacy-preserving attribute-based authentication.
In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT,
vol. 396, pp. 34–52. Springer, Heidelberg (2013)

4. European Parliament and Council of the European Union: Regulation (EC) No
45/2001. Official Journal of the European Union (2001)

5. European Parliament and Council of the European Union: Directive 2009/136/EC.
Official Journal of the European Union (2009)

6. Schmidt, H.A.: National strategy for trusted identities in cyberspace. Cyberwar-
Resources Guide, Item 163 (2010)

7. Camenisch, J., Herreweghen, E.V.: Design and Implementation of the idemix
Anonymous Credential System. In: Atluri, V. (ed.) ACM CCS 02, pp. 21–30. ACM
(2002)

8. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

9. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

10. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

http://www.abc4trust.eu


Formal Treatment of Privacy-Enhancing Credential Systems 23

11. Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates - Build-
ing in Privacy. Ph.D. thesis, Eindhoven Institute of Technology (1999)

12. Paquin, C., Zaverucha, G.: U-prove Cryptographic Specification v1.1 (Revision 2).
Technical report, Microsoft Corporation (2013)

13. IRMA - I Reveal My Attributes: Research Project (2015). https://www.irmacard.
org

14. IBM Research Security Team: Specification of the Identity Mixer Cryptographic
Library. IBM Technical report RZ 3730 (99740) (2010)

15. Corporation, M.: Proof of Concept on integrating German Identity Scheme
with U-Prove technology (2011). http://www.microsoft.com/mscorp/twc/
endtoendtrust/vision/eid.aspx

16. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

17. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 533. Springer, Heidelberg (2001)

18. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

19. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS
2014. The Internet Society (2014)

20. Chase, M., Meiklejohn, S., Zaverucha, G.M.: Algebraic MACs and Keyed-
Verification Anonymous Credentials. eprint, 2013/516 (2013)

21. Nguyen, L., Paquin, C.: U-Prove Designated-Verifier Accumulator Revocation
Extension. Technical report MSR-TR-2013-87 (2013)

22. Zaverucha, G.: U-Prove ID escrow extension. Technical report MSR-TR-2013-86
(2013)

23. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 82–99. Springer, Heidelberg (2013)

24. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable &
modular anonymous credentials: definitions and practical constructions. In: Iwata,
T., Jung, H.C. (eds.) ASIACRYPT 2015, PartII. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015)

25. Chase, M.: Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applica-
tions. Ph.D. thesis, Brown University (2008)

26. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

27. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

28. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014)

29. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM CCS 13,
pp. 1087–1098. ACM (2013)

30. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: Feng, D., Basin, D.A., Liu, P. (eds.) ASIACCS 10, pp. 60–69.
ACM (2010)

https://www.irmacard.org
https://www.irmacard.org
http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/eid.aspx
http://www.microsoft.com/mscorp/twc/endtoendtrust/vision/eid.aspx


24 J. Camenisch et al.

31. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

32. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures
and their application to anonymous credential systems. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)


	Formal Treatment of Privacy-Enhancing Credential Systems
	1 Introduction
	2 Notation
	3 Privacy ABC Systems
	3.1 Syntax
	3.2 Oracles for Our Security Definitions
	3.3 Security Definitions for PABCs

	4 Building Blocks
	4.1 Global Setup
	4.2 Commitment Schemes
	4.3 Privacy-Enhancing Signatures
	4.4 Revocation Schemes
	4.5 Pseudonyms

	5 Generic Construction of PABCs
	5.1 Formal Description of the Construction

	6 Conclusion
	References


