Skip to main content

Ochratoxin A and Epigenetics

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 283 Accesses

Abstract

Ochratoxin A is a thermoresistant mycotoxin produced by ubiquitous molds of Aspergillus and Penicillium genera. It contaminates foodstuffs and feedstuffs worldwide and therefore is of human and animal concern.

Ochratoxin A induces oxidative stress, inflammation, and fibrosis, and is nephrotoxic, hepatotoxic, and neurotoxicin particularly in male subjects. Toxicity is mainly exerted through epigenetic mechanisms.

Nephrotoxicity is probably due to ochratoxin A-induced suppression of the collagen regulator mir-29b that results in an increase of translated collagen, fibrotic alteration, and nephropathy. Alternatively, ochratoxin A induces mir-132 upregulation that occurs in neurologic and psychiatric conditions as well as in oxidative stress. Undeniably, mir-132 acts in the reciprocal regulation of autism-related genes MeCP2 and PTEN decreasing the antioxidant Nrf2 that leads to the formation of high levels of reactive oxygen species. Reactive oxygen species, in turn, enhance the expression of mir-200c that impairs antioxidative mechanisms and synaptic plasticity through the reduction of HO-1 and NLGN4X. As for apoptosis, OTA exposure increases mir-122 that suppresses the anti-apoptotic genes Bcl-w and caspase-3 leading to cell death and hepatic damage.

Interestingly, both MECP2 and NLGN4X are involved in neurodevelopmental disorders, including autism, and are mapped on the X chromosome. As autism is a male predominant disorder, a possible contribution of ochratoxin A in its pathogenesis and in its strong male bias can be suggested.

Very few papers report about ochratoxin A-induced deacetylation:cells exposed to OTA underwent to a dramatic block of histone acetyltransferases leading to mitotic arrest and Nrf2 inhibition that, again, lead to reactive oxygen species formation.

Further studies are needed to obtain a complete picture of ochratoxin A-dependent epigenetic effects and to prevent or to counteract them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AREs:

Antioxidant responsive elements

ASD:

Autism spectrum disorder (ASD)

BACE1:

β-Secretase-1 enzyme

BBB:

Blood brain barrier

BDNF :

Brain-derived neurotropic factor

BEN:

Balkan endemic nephropathy

CASP3 :

Caspase3

CBP:

CREB-binding protein

CNS:

Central nervous system

DGCR8 :

DiGeorge syndrome critical region gene 8

FMRP:

Fragile X mental retardation protein

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HO-1 :

Heme oxygenase-1

MeCP2 :

Methyl-CpG-binding protein 2

NLGN4X :

Neuroligin4x

OTA:

Ochratoxin A

p300:

Adenoviral E1A-associated protein

PAH :

Phenylalanine hydroxylase

phe:

Phenylalanine

PKU:

Phenylketonuria

PTEN :

Phosphatase and tensin homolog

TGFβ:

Transforming-growth factor-beta

Nrf2 :

Nuclear factor erythroid 2-like 2

ROS:

Reactive oxygen species

tyr:

tyrosine

ZEB1 :

Zinc finger E-box binding homeobox 1

References

  • Baieli S, Pavone L, Meli C et al (2003) Autism and phenylketonuria. J Autism Dev Disord 33(2):201–204

    Article  PubMed  Google Scholar 

  • Baskerville TA, Douglas AJ (2010) Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther 16(3):e92–123. doi:10.1111/j.1755-5949.2010.00154.x. Review. PubMed PMID: 20557568

    Article  CAS  PubMed  Google Scholar 

  • Baudrimont I, Sostaric B, Yenot C, Betbeder AM, Dano-Djedje S, Sanni A, Steyn PS, Creppy EE (2001) Aspartame prevents the karyomegaly induced by ochratoxin A in rat kidney. Arch Toxicol 75(3):176–83

    Article  CAS  PubMed  Google Scholar 

  • Bemben MA, Nguyen QA, Wang T et al (2015) Autism-associated mutation inhibits protein kinase C-mediated neuroligin-4X enhancement of excitatory synapses. Proc Natl Acad Sci U S A 112(8):2551–2556. doi:10.1073/pnas.1500501112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge NJ, Gardiner E, Carroll AP et al (2010) Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 15(12):1176–1189. doi:10.1038/mp.2009.84

    Article  CAS  PubMed  Google Scholar 

  • Bhat PV, Md P, Khanum F et al (2016) Cytotoxic effects of ochratoxin A in neuro-2a cells: role of oxidative stress evidenced by N-acetylcysteine. Front Microbiol 7:1142. doi:10.3389/fmicb.2016.01142

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudra H, Le Bars P, Le Bars J (1995) Thermostability of ochratoxin A in wheat under two moisture conditions. Appl Environ Microbiol 61:1156–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caccamo A, Maldonado MA, Bokov AF et al (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107:22687–22692. doi:10.1073/pnas.1012851108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai G, Edelmann L, Goldsmith JE et al (2008) Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Med Genet 1:50. doi:10.1186/1755-8794-1-50

    Google Scholar 

  • Castegnaro M, Canadas D, Vrabcheva T et al (2006) Balkan endemic nephropathy: role of ochratoxins A through biomarkers. Mol Nutr Food Res 50(6):519–529

    Article  CAS  PubMed  Google Scholar 

  • Cheng TL, Wang Z, Liao Q et al (2014) MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 28(5):547–560. doi:10.1016/j.devcel.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  • Chou C, Chang N, Shrestha S, Hsu S, Lin Y, Lee W et al (2015) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  • Creppy EE, Chakor K, Fisher MJ et al (1990) The myocotoxin ochratoxin A is a substrate for phenylalanine hydroxylase in isolated rat hepatocytes and in vivo. Arch Toxicol 64(4):279–284

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado-Tejedor M, Vilariño M, Cabodevilla F et al (2011) Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer’s disease transgenic mice: an insight into the pathogenic effects of amyloid-β. J Alzheimers Dis 23(2):195–206. doi:10.3233/JAD-2010-100966

    CAS  PubMed  Google Scholar 

  • Czakai K, Müller K, Mosesso P et al (2011) Perturbation of mitosis through inhibition of histone acetyltransferases: the key to ochratoxin a toxicity and carcinogenicity? Toxicol Sci 122(2):317–329. doi:10.1093/toxsci/kfr110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Q, Zhao J, Qi X et al (2014) MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 15:333. doi:10.1186/1471-2164-15-333

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santis B, Brera C, Mezzelani A et al (2017a) Role of mycotoxins in the pathobiology of autism: a first evidence. Nutr Neurosci 1–13. doi:10.1080/1028415X.2017.1357793

  • De Santis B, Raggi ME, Moretti G et al (2017b) Study on the association among mycotoxins and other variables in children with autism. Toxins 29;9(7). pii: E203. doi:10.3390/toxins9070203

  • Deepmala, Slattery J, Kumar N et al (2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: a systematic review. Neurosci Biobehav Rev 55:294–321. doi:10.1016/j.neubiorev.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  • Denli M, Perez JF (2010) Ochratoxins in feed, a risk for animal and human health: control strategies. Toxins (Basel) 2(5):1065–1077. doi:10.3390/toxins2051065

    Article  CAS  Google Scholar 

  • Eden S, Hashimshony T, Keshet I et al (1998) DNA methylation models histone acetylation. Nature 394(6696):842

    Article  CAS  PubMed  Google Scholar 

  • EFSA, European Food Safety Authority (2006) EFSA Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to ochratoxin A (OTA) in food Quest. N° EFSA-Q-2005-154. EFSA J 365(2006):1–56. doi:10.2903/j.efsa.2006.365

    Google Scholar 

  • Fardmanesh H, Shekari M, Movafagh A et al (2016) Upregulation of the double-stranded RNA binding protein DGCR8 in invasive ductal breast carcinoma. Gene 581(2):146–151. doi:10.1016/j.gene.2016.01.033

    Article  CAS  PubMed  Google Scholar 

  • Faustman EM, Silbernagel SM, Fenske RA, Burbacher TM, Ponce RA (2000) Mechanisms underlying Children’s susceptibility to environmental toxicants. Environ Health Perspect 108(Suppl 1):13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gayathri L, Dhivya R, Dhanasekaran D et al (2015) Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: in vitro study in HepG2 cell. Food Chem Toxicol 83:151–163. doi:10.1016/j.fct.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Huang K, Chen S, Qi X, He X, Cheng WH, Luo Y, Xia K, Xu W (2014) Combination of metagenomics and culture-based methods to study the interaction between ochratoxin a and gut microbiota. Toxicol Sci 141(1):314–323. doi:10.1093/toxsci/kfu128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagelberg S, Hult K, Fuchs R (1989) Toxicokinetics of ochratoxin A in several species and its plasma-binding properties. J Appl Toxicol 9(2):91–96

    Google Scholar 

  • Hennemeier I, Humpf HU, Gekle M et al (2014) Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells. Toxicology 3(324):116–122. doi:10.1016/j.tox.2014.07.012

    Article  Google Scholar 

  • Hope JH, Hope BE (2012) A review of the diagnosis and treatment of ochratoxin A inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis. J Environ Public Health 2012:835059. doi:10.1155/2012/835059

    Article  PubMed  Google Scholar 

  • Jafari N, Dogaheh HP, Bohlooli S et al. (2013) Expression levels of microRNA machinery components Drosha, Dicer and DGCR8 in human (AGS, HepG2, and KEYSE-30) cancer cell lines. Int J Clin Exp Med 6(4):269–274

    Google Scholar 

  • Jennings P, Weiland C, Limonciel A et al (2012) Transcriptomic alterations induced by ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a ratinvivo model. Arch Toxicol 86:571–589

    Article  CAS  PubMed  Google Scholar 

  • Jennings P, Limonciel A, Felice L, Leonard MO (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87:49–72

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Cheng Y, Zhang Y et al (2012) Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 123(4):477–490. doi:10.1111/j.1471-4159.2012.07925.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B, Lee JH, Park JW et al (2014) An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin Exp Med 14(3):331–336. doi:10.1007/s10238-013-0243-8

    Article  CAS  PubMed  Google Scholar 

  • Kriegel AJ, Liu Y, Fang Y et al (2012) The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics 44:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet 39:673–677

    Article  CAS  PubMed  Google Scholar 

  • Limonciel A, Jennings P (2014) A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel) 6(1):371–379. doi:10.3390/toxins6010371

    Article  CAS  Google Scholar 

  • Loboda A, Damulewicz M, Pyza E et al (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247. doi:10.1007/s00018-016-2223-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Clark AG (2012) Impact of microRNA regulation on variation in human gene expression. Genome Res 22(7):1243–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106(2):650–661. doi:10.1111/j.1471-4159.2008.05413.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu JW, Yuan B, Cheng TL et al (2016) Reciprocal regulation of autism-related genes MeCP2 and PTEN via microRNAs. Sci Rep 6:20392. doi:10.1038/srep20392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magenta A, Cencioni C, Fasanaro P et al (2011) MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18(10):1628–1639. doi:10.1038/cdd.2011.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malir F, Ostry V, Pfohl-Leszkowicz A et al (2016) Ochratoxin A: 50 years of research. Toxins (Basel) 8(7):191. doi:10.3390/toxins8070191

    Article  Google Scholar 

  • Mally A, Pepe G, Ravoori S et al (2005) Ochratoxin a causes DNA damage and cytogenetic effects but no DNA adducts in rats. Chem Res Toxicol 18(8):1253–1261. PubMed PMID: 16097798

    Article  CAS  PubMed  Google Scholar 

  • Manners MT, Tian Y, Zhou Z, Ajit SK (2015) MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Bio 5:733–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Kuan M, Nestler S, Verguet C et al (2007) MAPK-ERK activation in kidney of male rats chronically fed ochratoxin A at a dose causing a significant incidence of renal carcinoma. Toxicol Appl Pharmacol 224(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin J, Padfield PJ, Burt JP, O’Neill CA (2004) Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. Am J Physiol Cell Physiol 287(5):C1412–C1417

    Article  CAS  PubMed  Google Scholar 

  • McMasters DR, Angelo Vedani A (1999) Ochratoxin Binding to Phenylalanyl-tRNA Synthetase:   Computational Approach to the Mechanism of Ochratoxicosis and Its Antagonism. Journal of Medicinal Chemistry 42(16):3075–3086

    Google Scholar 

  • Mellios N, Sur M (2012) The emerging role of microRNAs in schizophrenia and autism spectrum disorders. Front Psych 3:39. doi:10.3389/fpsyt.2012.00039

    Google Scholar 

  • Mor F, Kilic MA, Ozmen O et al (2014) The effects of orchidectomy on toxicological responses to dietary ochratoxin A in Wistar rats. Exp Toxicol Pathol 66(5-6):267–275. doi:10.1016/j.etp.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  • Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124. doi:10.1016/S0301-0082(00)00014-9

    Article  CAS  PubMed  Google Scholar 

  • Oba S, Kumano S, Suzuki E et al (2010) miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One 5(10):e13614. doi:10.1371/journal.pone.0013614

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastor L, Vettorazzi A, Campión J, Cordero P, López de Cerain A (2016) Gene expression kinetics of renal transporters induced by ochratoxin A in male and female F344 rats. Food Chem Toxicol 98(Pt B):169–178. doi:10.1016/j.fct.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  • Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S (2013) Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One 8(12):e82562. doi:10.1371/journal.pone.0082562

    Article  PubMed  PubMed Central  Google Scholar 

  • Ringot D, Chango A, Schneider YJ, Larondelle Y (2006) Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem Biol Interact 159(1):18–46

    Article  CAS  PubMed  Google Scholar 

  • Roshan R, Shridhar S, Sarangdhar MA et al (2014) Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA 20(8):1287–1297. doi:10.1261/rna.044008.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Román MS, Holgado MJ (2015) Intercalation of phenylalanine, isocoumarin and ochratoxin A (OTA) into LDH’s. Open Journal of Inorganic Chemistry 5:52–62. doi:10.4236/ojic.2015.53007

    Article  Google Scholar 

  • Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, Altmeyer P, Bechara FG (2012) Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog 51(11):916–922. doi:10.1002/mc.20861

    Article  CAS  PubMed  Google Scholar 

  • Sava V, Reunova O, Velasquez A, Harbison R, Sanchez-Ramos J (2006) (2006a). Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology 27:82–92. doi:10.1016/j.neuro.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  • Schilter B, Marin-Kuan M, Delatour T et al (2005) Ochratoxin A: potential epigenetic mechanisms of toxicity and carcinogenicity. Food Addit Contam 22(Suppl 1):88–93

    Article  CAS  PubMed  Google Scholar 

  • Stachurska A, Ciesla M, Kozakowska M et al (2013) Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol Nutr Food Res 57(3):504–515. doi:10.1002/mnfr.201200456

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Chin YE, Zhang DD (2009) Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29(10):2658–2672. doi:10.1128/MCB.01639-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueta E, Kodama M, Sumino Y et al (2010) Gender-dependent differences in the incidence of ochratoxin A-induced neural tube defects in the Pdn/Pdn mouse. CongenitAnom (Kyoto) 50(1):29–39. doi:10.1111/j.1741-4520.2009.00255.x. PubMed PMID: 20201966

    Article  CAS  Google Scholar 

  • Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76(2):215–228. doi:10.1124/mol.109.056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodmansey EJ (2007) Intestinal bacteria and ageing. Appl Microbiol 102(5):1178–1186

    Article  CAS  Google Scholar 

  • Wu Q, Dohnal V, Huang L et al (2011) Metabolic pathways of ochratoxin A. Curr Drug Metab 12(1):1–10

    Article  PubMed  Google Scholar 

  • Xu J, Zhu X, Wu L et al (2012) MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway. Liver Int 32(5):752–760. doi:10.1111/j.1478-3231.2011.02750.x

    Article  CAS  PubMed  Google Scholar 

  • Xue ZQ, He ZW, Yu JJ et al (2015) Non-neuronal and neuronal BACE1 elevation in association with angiopathic and leptomeningeal β-amyloid deposition in the human brain. BMC Neurol 15:71. doi:10.1186/s12883-015-0327-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanic-Grubisić T, Zrinski R, Cepelak I, Petrik J, Radić B, Pepeljnjak S (2000) Studies of ochratoxin A-induced inhibition of phenylalanine hydroxylase and its reversal by phenylalanine. Toxicol Appl Pharmacol 167(2):132–139

    Article  PubMed  Google Scholar 

  • Zhang X, Boesch-Saadatmandi C, Lou Y, Wolffram S, Huebbe P, Rimbach G (2009) Ochratoxin A induces apoptosis in neuronal cells. Genes Nutr 4(1):41–48. doi:10.1007/s12263-008-0109-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Yu T, Qi X, Yang B, Shi L, Luo H, He X, Huang K, Xu W (2016) miR-122 plays an important role in ochratoxin A-induced hepatocyte apoptosis in vitro and in vivo. Toxicol Res 5:160–167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Mezzelani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Mezzelani, A. (2017). Ochratoxin A and Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics