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Diána Knipl

Abstract The impact of population dispersal between two cities on the spread of a
disease is investigated analytically. A general SIRS model is presented that tracks
the place of residence of individuals, allowing for different movement rates of local
residents and visitors in a city. Provided the basic reproduction number is greater
than one, we demonstrate in our model that increasing the travel volumes of some
infected groups may result in the extinction of a disease, even though the disease
cannot be eliminated in each city when the cities are isolated.

1 Introduction

The spatial spread of infectious diseases has been observed many times in history.
Most recent examples include the 2002–2003 SARS epidemic in Asia and the global
spread of the 2009 pandemic influenza A(H1N1). The Middle East Respiratory
Syndrome coronavirus (MERS-CoV) outbreak emerged in 2012, and West Africa is
currently witnessing the extensive Ebola virus (EBOV) outbreak, that pose a global
threat. There is an increasing interest in the mathematical modelling literature for
the spread of epidemics between discrete geographical locations (patches, or cities).
Such metapopulation models incorporate single or multiple species occupying
multiple spatial patches that are connected by movement dependent or independent
of disease status. Such models have been discussed for an array of infectious
diseases including measles and influenza, by Arino and coauthors [2–5], Sattenspiel
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and coauthors [14, 15], Wang and coauthors [9, 13, 19, 20]. The work of Arino [1],
and Arino and van den Driessche [6] provide a thorough review of the literature.

When considering intervention strategies for epidemic models, our attention is
focused on the basic reproduction number R0, which is the expected number of
secondary cases generated by a typical infected host introduced into a susceptible
population. This quantity serves as a threshold parameter for disease elimination; if
R0 < 1 then the disease dies out when a small number of infected individuals is
introduced whereas if R0 > 1 then the disease can persist in the population. The
above mentioned works illustrate that in metapopulation models R0 often arises
as a complicated formula of the model parameters. Such models include multiple
infected classes, and individuals’ movement makes it challenging to compute the
number of new infections generated by an infected case, and to understand the
dependence of R0 on the movement rates. To calculate R0 in metapopulation
models, the next-generation method is used (see Diekmann et al. [7]).

The models in [4, 5, 14, 15] include residency patch, that is, these models keep
track of the patch of origin of an individual as well as where an individual is
at a given time (either as resident, or as visitor). There are many reasons why
individuals should be distinguished in an epidemic model by their residential
statuses; visitors and local residents may have very different contact rates and
mixing patterns, but more significantly, these groups are different in their travel rates
because in reality, a large part of outbound travels from a city are return trips. In the
above works, the basic reproduction number was calculated and its dependence on
the movement rates was studied numerically. Some complicated behavior of R0

in these parameters was highlighted in [1, 2, 4]: numerical simulations suggest
that when the infection is present in same patches but absent in others without
movement, then travel with small rates can allow for disease persistence in the
metapopulation although higher travel rates can drive the disease to extinction.

In this work we present a demographic SIRS epidemic metapopulation model
in two cities, and analytically investigate the impact of individuals’ movement
between the two cities on the disease dynamics. In each city we distinguish residents
from visitors, and consider the general situation when individuals with different
disease statuses and residential statuses have different movement rates. In our
analysis we utilize the concept of the target reproduction number, developed by
Shuai et al. in [16, 17]. This quantity measures the effort required to eliminate
infectious diseases, when an intervention strategy is targeted at single entries
or sets of such entries of a next-generation matrix. Focusing on the control of
infected individuals’ movement between the two cities—an intervention strategy
often applied in pandemic situations—we give conditions and describe how the
travel rate of a specific group or some of these groups should be changed to prevent
an outbreak.
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2 Model Formulation

We formulate a dynamical model to describe the spread of an infectious disease
among two cities. We divide the entire populations of the two cities into the disjoint
classes Smj , Imj , Rm

j , j 2 f1; 2g, m 2 fr; vg, where the letters S, I, and R represent
the compartments of susceptible, infected, and recovered individuals, respectively.
Lower index j 2 f1; 2g specifies the current city, upper index m 2 fr; vg denotes
the residential status of the individual in the current city (resident or visitor). An
individual who is currently in city j and has residential status v, originally belongs
to city k hence we say that this individual has origin in city k (k 2 f1; 2g; k ¤ j). Let
Smj .t/, Imj .t/, Rm

j .t/, j 2 f1; 2g, m 2 fr; vg be the number of individuals belonging
to Smj , Imj , Rm

j respectively, at time t. The transmission rate between a susceptible
individual with residential status m and an infected individual with residential status
n in region j ( j 2 f1; 2g;m; n 2 fr; vg) is denoted by ˇmn

j , and disease transmission is
modelled by standard incidence. Model parameter �j is the recovery rate of infected
individuals in city j, and dj is the natural mortality rate of all individuals with origin
in city j. Recovered individuals with residential status m in city j lose disease-
induced immunity by rate �m

j . For the total population of residents and visitors
currently being in city j we use the notations Nr

j and Nv
j , and let No

j denote the
total population with origin in j. It holds that

Nr
j D Srj C Irj C Rr

j ; Nv
j D Sv

j C Iv
j C Rv

j ;

No
j D Srj C Irj C Rr

j C Sv
k C Iv

k C Rv
k ; k ¤ j:

For the recruitment term �j into the susceptible resident population we assume that
�j is a function of the populations Nr

j and Nv
k (k ¤ j), that is, the populations with

origin in city j. We denote by mSm
kj , mIm

kj , and mRm
kj the travel rate of susceptible,

infected, and recovered individuals, respectively, with residential status m in city
j travelling to city k. Based on the assumptions formulated above, we obtain the
following system of differential equations for the disease transmission in city j:

dSrj
dt D �j.Nr

j ;N
v
k / � ˇrr

j
Srj I

r
j

Nr
j CNv

j
� ˇrv

j
Srj I

v
j

Nr
j CNv

j
� djSrj C � r

j R
r
j � mSr

kj S
r
j C mSv

jk S
v
k ;

dIrj
dt D ˇrr

j
Srj I

r
j

Nr
j CNv

j
C ˇrv

j
Srj I

v
j

Nr
j CNv

j
� .�j C dj/Irj � mIr

kjI
r
j C mIv

jk I
v
k ;

dRr
j

dt D �jIrj � .� r
j C dj/Rr

j � mRr
kj R

r
j C mRv

jk R
v
k ;

dSv
j

dt D �ˇvr
j

Sv
j I

r
j

Nr
j CNv

j
� ˇvv

j
Sv
j I

v
j

Nr
j CNv

j
� dkSv

j C �v
j R

v
j � mSv

kj S
v
j C mSr

jk S
r
k;

dIvj
dt D ˇvr

j
Sv
j I

r
j

Nr
j CNv

j
C ˇvv

j
Sv
j I

v
j

Nr
j CNv

j
� .�j C dk/Iv

j � mIv
kj I

v
j C mIr

jkI
r
k;

dRv
j

dt D �jIv
j � .�v

j C dk/Rr
j � mRv

kj R
v
j C mRr

jk R
r
k:

(1)
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Standard arguments from the theory of differential equations guarantee that the
system (1) is well posed. The function forming the right hand side of the system
is Lipschitz continuous, which implies the existence of a unique solution. The
derivative of each system variable is nonnegative when the variable is zero, hence
solutions remain nonnegative for nonnegative initial data. For the dynamics of the
total population with origin in city j, we obtain the equation

dNo
j

dt
D �j.N

r
j ;N

v
k / � dj.N

r
j C Nv

k /; k ¤ j:

If �j.Nr
j ;N

v
k / D dj.Nr

j C Nv
k / then the population with origin in j is constant. For

constant recruitment term �j it is easy to derive that ONo
j D �j=dj gives the unique

equilibrium of No
j . With fixed No

1 and No
2 it is obvious from nonnegativity that the

solutions of the system (1) are bounded. The model is at an equilibrium if the time
derivatives in the system (1) are zero. At a disease-free equilibrium it holds that
Ir1 D Iv

1 D Ir2 D Iv
2 D 0 that implies Rr

1 D Rv
1 D Rr

2 D Rv
2 D 0. Thus at a DFE Sr1,

Sv
1 , Sr2, Sv

2 satisfy

�1.Nr
1;Nv

2 / � d1Sr1 � mSr
21S

r
1 C mSv

12S
v
2 D 0;

�d2Sv
1 � mSv

21S
v
1 C mSr

12S
r
2 D 0;

�2.Nr
2;Nv

1 / � d2Sr2 � mSr
12S

r
2 C mSv

21S
v
1 D 0;

�d1Sv
2 � mSv

12S
v
2 C mSr

21S
r
1 D 0:

Hence if No
1 and No

2 are fixed then using that �1 D d1No
1 and �2 D d2No

2 , it follows
that

�
Sr1
Sv

2

�
D

�
d1 C mSr

21 �mSv
12

�mSr
21 d1 C mSv

12

��1 �
d1No

1

0

�
;

�
Sr2
Sv

1

�
D

�
d2 C mSr

12 �mSv
21

�mSr
12 d2 C mSv

21

��1 �
d2No

2

0

�
:

The following result is proved.

Proposition 1 Assume that the total populations with origin in city 1 and with
origin in city 2 are constant. Then there is a unique DFE in the model (1) where

Srj D .djCmSv
jk /djN

o
j

.djCmSr
kj /.djCmSv

jk /�mSv
jk m

Sr
kj

;

Sv
j D mSr

jk dkN
o
k

.dkCmSr
jk /.dkCmSv

kj /�mSv
kj m

Sr
jk

; j; k 2 f1; 2g; k ¤ j;

Irj D Iv
j D 0; Rr

j D Rv
j D 0; and Nr

j D Srj ; Nv
j D Sv

j :

For the stability of the DFE in the full model (1) we linearize the subsystem of (1)
that consists of the equations for Ir1, Iv

1 , Ir2, and Iv
2 —the infected subsystem—about
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the DFE, and give the Jacobian J, as

J D B � G � M:

B D

2
666664

ˇrr
1 Nr

1

Nr
1CNv

1

ˇrv
1 Nr

1

Nr
1CNv

1
0 0

ˇvr
1 Nv

1

Nr
1CNv

1

ˇvv
1 Nv

1

Nr
1CNv

1
0 0

0 0
ˇrr

2 Nr
2

Nr
2CNv

2

ˇrv
2 Nr

2

Nr
2CNv

2

0 0
ˇvr

2 Nv
2

Nr
2CNv

2

ˇvv
2 Nv

2

Nr
2CNv

2

3
777775

; M D

2
664

mIr
21 0 0 �mIv

12

0 mIv
21 �mIr

12 0

0 �mIv
21 mIr

12 0

�mIr
21 0 0 mIv

12

3
775 ;

and G D diag.�1 C d1; �1 C d2; �2 C d2; �2 C d1/ DW diag.gr1; g
v
1; gr2; g

v
2/. Let s.A/

denote the maximum real part of all eigenvalues of any square matrix A, and �.A/

denote the dominant eigenvalue of any square matrix A. We say that a square matrix
A has the Z-sign pattern if all entries of A are nonpositive except possibly those in
the diagonal. If A�1 � 0 holds then A is a non-singular M-matrix (several definitions
exist for M-matrices, see [8, Theorem 5.1]). By [18, Lemma 1] the stability of
the DFE is determined by the eigenvalues of J; more precisely, the DFE is locally
asymptotically stable if s.J/ < 0, meaning that all eigenvalues have negative real
part, and the DFE is unstable if s.J/ > 0, when there is an eigenvalue with positive
real part. The proof of the next proposition follows by similar arguments as those in
the proof of [18, Theorem 2].

Proposition 2 Consider a splitting F�V of the Jacobian of the infected subsystem
about the DFE, where F is a nonnegative matrix and V is a non-singular M-matrix.
Then, it holds that s.J/ < 0 if and only if �.FV�1/ < 1, s.J/ D 0 if and only if
�.FV�1/ D 1, and s.J/ > 0 if and only if �.FV�1/ > 1.

The stability of the DFE is often characterized through the basic reproduction
number R0, that is defined as the dominant eigenvalue of the next-generation
matrix (NGM). The concept of the NGM was initially introduced by Diekmann
et al. [7]. This matrix is computed as K0 WD F0V�1

0 , where F0 equals B, the
transmission matrix describing new infections, and V0 is defined as G C M, the
transition matrix for the transitions between and out of infected classes. F0 and
V0 satisfy the conditions of Proposition 2, hence R0 D �.K0/ D �.F0V�1

0 / is a
threshold quantity for the stability of the DFE. We obtain the following corollary
from Proposition 2.

Corollary 1 Consider a splitting F � V of the Jacobian of the infected subsystem
about the DFE, where F is a nonnegative matrix and V is a non-singular M-matrix.
Then, it holds that �.FV�1/ < 1 if and only if R0 < 1, �.FV�1/ D 1 if and only if
R0 D 1, and �.FV�1/ > 1 if and only if R0 > 1.

With other words, for any splitting F�V of the Jacobian where F is nonnegative
and V is a non-singular M-matrix, there arises an alternative NGM by FV�1;
moreover, �.FV�1/ and R0 agree at the threshold value for the stability of the
DFE. In the next section we will investigate the impact of movement on the disease
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dynamics by constructing some alternative next-generation matrices and utilizing
the method of Shuai et al. [16] to measure the effort required to control the disease.

3 Main Results

Using the definition of G and the transmission matrix F0, we introduce the quantities

Rr
1 D ˇrr

1 Nr
1Cˇvr

1 Nv
1

gr1.Nr
1CNv

1 /
; Rv

1 D ˇrv
1 Nr

1Cˇvv
1 Nv

1

gv
1.Nr

1CNv
1 /

;

Rr
2 D ˇrr

2 Nr
2Cˇvr

2 Nv
2

gr2.Nr
2CNv

2 /
; Rv

2 D ˇrv
2 Nr

2Cˇvv
2 Nv

2

gv
2.Nr

2CNv
2 /

;

where Rm
j denotes the expected number of new cases in city j when a single infected

individual with residential status m who doesn’t travel is introduced into city j.
Consider the matrices F1 D B � M C diag.mIr

21;m
Iv
21;mIr

12;m
Iv
12/ and V1 D

G C diag.mIr
21;m

Iv
21;m

Ir
12;mIv

12/. Then J D F1 � V1 gives another splitting of the
Jacobian, moreover F1 � 0 and V1 is a non-singular M-matrix. We obtain the
following theorem.

Theorem 1 If Rr
1 > 1, Rv

1 > 1, Rr
2 > 1, and Rv

2 > 1 then the DFE is
unstable when the cities are isolated, and movement cannot stabilize the DFE. If
the inequalities are reversed then the DFE is stable when the cities are isolated, and
movement cannot destabilize the DFE.

Proof Consider the splitting J D F1 � V1. As V1 is a diagonal matrix, one easily
computes the alternative NGM

K1 D F1V
�1
1 D

2
6666664

ˇrr
1 Nr

1

.mIr
21Cgr1/.Nr

1CNv
1 /

ˇrv
1 Nr

1

.mIv
21Cgv

1/.Nr
1CNv

1 /
0

mIv
12

.mIv
12Cgv

2/

ˇvr
1 Nv

1

.mIr
21Cgr1/.Nr

1CNv
1 /

ˇvv
1 Nv

1

.mIv
21Cgv

1/.Nr
1CNv

1 /

mIr
12

.mIr
12Cgr2/

0

0
mIv

21

.mIv
21Cgv

1/

ˇrr
2 Nr

2

.mIr
12Cgr2/.Nr

2CNv
2 /

ˇrv
2 Nr

2

.mIv
12Cgv

2/.Nr
2CNv

2 /

mIr
21

.mIr
21Cgr1/

0
ˇvr

2 Nv
2

.mIr
12Cgr2/.Nr

2CNv
2 /

ˇvv
2 Nv

2

.mIv
12Cgv

2/.Nr
2CNv

2 /

3
7777775

:

A standard result for nonnegative matrices (see, e.g., [12, Theorem 1.1]) says that
the dominant eigenvalue of a nonnegative matrix is bounded below and above by
the minimum and maximum of its column sums. We look at the column sums of K1

to give upper and lower bounds on the dominant eigenvalue. The column sum in the

first column is ˇrr
1 Nr

1Cˇvr
1 Nv

1 CmIr
21

.mIr
21Cgr1/.Nr

1CNv
1 /

, and using basic calculus we derive that

1 <
ˇrr

1 Nr
1Cˇvr

1 Nv
1 CmIr

21

.mIr
21Cgr1/.Nr

1CNv
1 /

� ˇrr
1 Nr

1Cˇvr
1 Nv

1

gr1.Nr
1CNv

1 /
if ˇrr

1 Nr
1Cˇvr

1 Nv
1

.Nr
1CNv

1 /
� gr1 > 0 , Rr

1 > 1;

ˇrr
1 Nr

1Cˇvr
1 Nv

1

gr1.Nr
1CNv

1 /
� ˇrr

1 Nr
1Cˇvr

1 Nv
1 CmIr

21

.mIr
21Cgr1/.Nr

1CNv
1 /

< 1 if ˇrr
1 Nr

1Cˇvr
1 Nv

1

.Nr
1CNv

1 /
� gr1 < 0 , Rr

1 < 1:
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Similar results follow for the second, third, and fourth columns. Thus if Rr
1 > 1,

Rv
1 > 1, Rr

2 > 1, and Rv
2 > 1 hold then all column sums are greater than 1 for any

mIr
21, mIv

21, mIr
12, and mIv

12, that implies by Proposition 2 that the dominant eigenvalue
of K1 is greater than 1 and the DFE is unstable. On the other hand, if the above
inequalities are reversed then the column sums are less than 1 for any movement
rates and the DFE is stable by �.K1/ < 1. ut

Next, we investigate some cases when changing the movement rates of some
groups can stabilize the DFE. We construct the matrix K2 WD F2V�1

2 , where F2 is
formed as we let ŒF2�1;1 D ŒF1�1;1 � gr1 and ŒF2�i;j D ŒF1�i;j if .i; j/ ¤ .1; 1/, and
V2 D diag.mIr

21; g
v
1 C mIv

21; g
r
2 C mIr

12; g
v
2 C mIv

12/. V2 is a non-singular M-matrix and

F2 is nonnegative if ˇrr
1 Nr

1

Nr
1CNv

1
> gr1. This condition is equivalent to when the number of

new infections amongst residents of city 1 is less than 1, when an infected resident
who doesn’t travel is introduced into city 1. The alternative NGM is computed as

K2 DF2V
�1
2 D

2
6666664

ˇrr
1 Nr

1

mIr
21.Nr

1CNv
1 /

� gr1
mIr

21

ˇrv
1 Nr

1

.mIv
21Cgv

1/.Nr
1CNv

1 /
0

mIv
12

.mIv
12Cgv

2/

ˇvr
1 Nv

1

mIr
21.Nr

1CNv
1 /

ˇvv
1 Nv

1

.mIv
21Cgv

1/.Nr
1CNv

1 /

mIr
12

.mIr
12Cgr2/

0

0
mIv

21

.mIv
21Cgv

1/

ˇrr
2 Nr

2

.mIr
12Cgr2/.Nr

2CNv
2 /

ˇrv
2 Nr

2

.mIv
12Cgv

2/.Nr
2CNv

2 /

1 0
ˇvr

2 Nv
2

.mIr
12Cgr2/.Nr

2CNv
2 /

ˇvv
2 Nv

2

.mIv
12Cgv

2/.Nr
2CNv

2 /

3
7777775

;

which is irreducible. Denote by L2 the matrix that is formed by replacing ŒK2�1;1 and
ŒK2�2;1 in K2 by 0. Observe that K2 converges to L2 as mIr

21 goes to infinity. We show
that the disease can be eliminated by controlling only the travel rate of the residents
of a single city.

Theorem 2 Assume that R0 > 1, that is, the DFE is unstable. If ˇrr
1 Nr

1

Nr
1CNv

1
> gr1 and

�.L2/ < 1 then increasing mIr
21 can stabilize the DFE. In particular, if ˇrr

1 Nr
1

Nr
1CNv

1
> gr1

and Rv
1 < 1, Rr

2 < 1, and Rv
2 < 1, then increasing mIr

21 can stabilize the DFE.

Proof We utilize some terminology and results from [16, 17]. Let S D
f.1; 1/; .2; 1/g, and define the 4 � 4 matrix KS

2 as ŒKS
2 �i;j D ŒK2�i;j if .i; j/ 2 S and 0

otherwise. Note that S identifies the set of elements in K2 that depend on mIr
21, and KS

2

contains elements of K2 that are subject to change when mIr
21 is targeted. Following

the terminology of [16] it is thus meaningful to refer to S as the target set and to KS
2

as the target matrix. Note that L2 D K2 �KS
2 , hence the condition �.L2/ < 1 implies

that �.K2 � KS
2/ < 1, that is, the controllability condition holds and it is possible to

stabilize the DFE by controlling only the elements in S [16].
We compute T S D �.KS

2.I � K2 C KS
2 /�1/, the number referred to as the target

reproduction number in [16]. Here I denotes the 4 � 4 identity matrix. Let .mIr
21/

c D
mIr

21T S, where we denote by .mIr
21/

c the controlled travel rate of infected residents
of city 1 travelling to city 2. It follows from Corollary 1 and [16, Theorem 2.1] by
R0 > 1 that .mIr

21/
c > mIr

21. The matrix Kc
2, constructed as we replace mIr

21 in K2 by
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.mIr
21/

c, satisfies �.Kc
2/ D 1 by [16, Theorem 2.2], which means that the disease can

be eradicated by increasing mIr
21.

Note that the conditions Rv
1 < 1, Rr

2 < 1, and Rv
2 < 1 ensure that �.L2/ <

1. Indeed, it is easy to see that the column sums of the second, third, and fourth
columns in L2 are less than 1 for any travel rates, and the column sum in the first
column is 1. We now show that 1 is not an eigenvalue of L2, which together with
[12, Theorem 1.1] implies that the dominant eigenvalue of L2 is less than 1. Assume
that 1 is an eigenvalue of L2, and consider a left eigenvector v D Œv1; v2; v3; v4�

corresponding to 1. It holds that

v � L2 D 1 � v;

and we deduce that

v4 D v1; max.v1; v2; v3/ > v2; max.v2; v3; v4/ > v3; max.v1; v3; v4/ > v4:

From the fourth inequality and v4 D v1 it follows that v3 > v4, which together with
the third inequality implies v2 > v3 > v4, but v1 > v2 by the second inequality, a
contradiction to v1 D v4. The proof is complete. ut

To reveal the impact of visitors’ travel, a result analogous to Theorem 2 can be
formulated. The proof of the following theorem follows by similar arguments to
those in Theorem 2.

Theorem 3 Assume that R0 > 1, that is, the DFE is unstable. If ˇvv
1 Nv

1

Nr
1CNv

1
> gv

1, and

Rr
1 < 1, Rr

2 < 1, and Rv
2 < 1, then increasing mIv

21 can stabilize the DFE.

Lastly, we give conditions under which controlling outbound travel from one
city is sufficient for disease elimination. Consider two matrices F3 and V3, defined
as ŒF3�1;1 D ŒF1�1;1 � gr1, ŒF3�2;2 D ŒF1�2;2 � gv

1, and ŒF3�i;j D ŒF1�i;j otherwise, and
V3 D diag.mIr

21;m
Iv
21; gr2 C mIr

12; g
v
2 C mIv

12/. V3 is a non-singular M-matrix and F3 is

nonnegative if ˇvv
1 Nv

1

Nr
1CNv

1
> gv

1 and ˇrr
1 Nr

1

Nr
1CNv

1
> gr1. The following theorem concerns about

whether changing the movement rates of the current population of one city can lead
to disease eradication.

Theorem 4 Assume that R0 > 1, that is, the DFE is unstable. If
ˇrr

1 Nr
1

Nr
1CNv

1
> gr1 and

ˇvv
1 Nv

1

Nr
1CNv

1
> gv

1 but Rr
2 < 1 and Rv

2 < 1, then increasing mIr
21 and mIv

21 can stabilize
the DFE.

Proof The proof is similar to the proof of Theorem 2. We compute the alternative
NGM

K3 DF3V
�1
3 D

2
6666664

ˇrr
1 Nr

1

mIr
21.Nr

1CNv
1 /

� gr1
mIr

21

ˇrv
1 Nr

1

mIv
21.Nr

1CNv
1 /

0
mIv

12

.mIv
12Cgv

2/

ˇvr
1 Nv

1

mIr
21.Nr

1CNv
1 /

ˇvv
1 Nv

1

mIv
21.Nr

1CNv
1 /

� gv
1

mIv
21

mIr
12

.mIr
12Cgr2/

0

0 1
ˇrr

2 Nr
2

.mIr
12Cgr2/.Nr

2CNv
2 /

ˇrv
2 Nr

2

.mIv
12Cgv

2 /.Nr
2CNv

2 /

1 0
ˇvr

2 Nv
2

.mIr
12Cgr2/.Nr

2CNv
2 /

ˇvv
2 Nv

2

.mIv
12Cgv

2 /.Nr
2CNv

2 /

3
7777775

;
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which is irreducible, and define the target set U by identifying the entries of K3 that
depend on mIr

21 and/or mIv
21. We let U D f.1; 1/; .1; 2/; .2; 1/; .2; 2/g, and define the

4 � 4 target matrix KU
3 as ŒKU

3 �i;j D ŒK3�i;j if .i; j/ 2 U and 0 otherwise. Note that
�.K3/ > 1 holds by R0 > 1. However, the result in [12, Theorem 1.1] on the upper
bound of the dominant eigenvalue implies that �.K3 � KU

3 / � 1.
Assume that �.K3 � KU

3 / D 1, that is, 1 is an eigenvalue of K3 � KU
3 . Then there

is a left eigenvector v D Œv1; v2; v3; v4� such that

v � .K3 � KU
3 / D 1 � v

holds. We derive that

v4 D v1; v3 D v2; max.v2; v3; v4/ > v3; max.v1; v3; v4/ > v4;

so v4 > v3 and v3 > v4 hold by the third and fourth inequalities, a contradiction. We
showed that �.K3�KU

3 / < 1, which means that there is a potential to controlmIr
21 and

mIv
21 in a way such that the dominant eigenvalue of the controlled matrix drops below

1 (by decreasing targeted entries of K3 to values close to 0). This condition also
allows us to compute the target reproduction number T U D �.KU

3 .I�K3 CKU
3 /�1/.

By [16, Theorem 2.2], the controlled matrix Kc
3 satisfies �.Kc

3/ D 1 where Kc
3 is

formed by replacing ŒK3�i;j by ŒK3�i;j=T U if .i; j/ 2 U, that is achieved by replacing
mIr

21 by .mIr
21/

c D mIr
21T U, and mIv

21 by .mIv
21/

c D mIr
21T U . Note that T U > 1 by [16,

Theorem 2.2], which means that the disease can be eradicated by increasing mIr
21 and

mIv
21. ut
In the case of transmission coefficients equal for all populations present in a city,

recovery rates equal for all populations and death rates equal for all populations,
Rr

1 and Rv
1 reduce to ˇ1=.� C d/, and Rr

2 and Rv
2 reduce to ˇ2=.� C d/. Note

that these quantities give the expected number of secondary infections generated by
a single infected case in city 1 and city 2, respectively, in the absence of movement
between the cities. Hence the local reproduction numbers in city 1 and city 2 can be
defined as we consider our model without dispersal:

R loc
1 D ˇ1

� C d
; R loc

2 D ˇ2

� C d
:

We derive the following results from Theorems 1 and 4.

Corollary 2 Suppose that ˇmn
1 D ˇ1 and ˇmn

2 D ˇ2 for all m; n 2 fr; vg, �j D �

and dj D d for all j 2 f1; 2g. Then, the DFE is unstable when the cities are isolated
and R loc

1 > 1, Rloc
2 > 1, and movement cannot stabilize the DFE. In the case

when Rloc
1 < 1 and R loc

2 < 1, the DFE is stable when the cities are isolated, and

movement cannot destabilize the DFE. If the DFE is unstable and ˇ1N
r
1

Nr
1CNv

1
> .� Cd/,

ˇ1N
v
1

Nr
1CNv

1
> .� C d/ but R loc

2 < 1, then increasing the movement rates of individuals
in city 1 can stabilize the DFE.



264 D. Knipl

4 Discussion

A two-city compartmental epidemic model was considered to reveal the impact of
population dispersal on disease persistence. This general SIRS model is applicable
for an array of infectious diseases, and it can also be reduced to simpler models (SIS,
SIR models) by setting parameters (or their inverses) to zero. In the model setup we
distinguish local residents from temporary visitors in each city, that results in four
infected classes in the model. We demonstrated that controlling the movement of
one or two infected groups can be sufficient for preventing a disease outbreak. It
was discussed in [11] that the role of different inflow rates of residents and visitors
into a city is not necessarily significant in regards of the total epidemic burden, but
it is of particular importance for pandemic preparedness, when it comes to assessing
the risk for each group to import the infection to a disease-free city.

Modelling the spatial spread of diseases in metapopulations remains a complex
task. This paper does not concern with models that include multiple species, hence
more analysis is needed to quantify the effect of movement between patches in such
models, which are useful in investigating vector-borne diseases and their control
strategies. Combining some intervention measures—like the mutual control of
dispersal rates and transmission rates—requires less effort for disease elimination,
hence there is a potential to incorporate the results of this work into systematic risk
assessment analyses, as described in [10].
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