
Chapter 4
Learning the Temperature Dynamics During
Thermal Laser Ablation

Given the research problem outlined in the previous chapter, here we focus on the
development of a methodology to learn the temperature dynamics of tissues subject
to thermal laser ablation. Chapter 2 introduced the equations that govern the genera-
tion of heat within the tissue during laser irradiation, and the associated increase of
temperature. Such relations constitute the starting point of our investigation: based
on these, we hypothesize that the superficial temperature of tissue can be modeled,
at any given instant in time, as the superposition of Gaussian functions. Nonlinear
fitting methods [1] are used to calculate the Gaussian parameters (amplitude, mean
and variance) that describe the distribution of temperature at discrete moments in
time. The learning problem is formulated as a supervised nonlinear regression, which
aims to predict the temporal evolution of the Gaussian parameters.

To understand the viability of the proposed approach we first consider a simple
scenario, which does not involve motions of the laser beam. Later in the chapter we
present an extension of this methodology to a more general case, to estimate the
temperature dynamics produced by a scanning beam.

4.1 Preliminary Considerations

The hypothesis function f defined in Eq. 3.1 estimates the superficial temperature
of a slab of tissue subject to laser irradiation, given the applied laser power P , the
pulse duration τ , the beam scanning frequency ωs , and the total laser exposure time
texp. Initial exploration was conducted to better understand the nature of function f
and identify an appropriate set of basis functions for the learning task.

Let us consider a simple scenario in which a laser beam, TEM00 profile, irradiates
a fixed spot on the surface R of a sample of tissue. This scenario is represented in
Fig. 4.1. For the sake of simplicity, we assume that the surface of tissue is plain and
that the laser beam is normally incident on it. We further assume that the laser is
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Fig. 4.1 Geometry of tissue
irradiation

perfectly focused on the surface of tissue. A Cartesian reference frame (x, y, z) is
established to describe the tissue geometry, with z being coincident with the beam
axis, x and y laying on the R plane. Based on the heat conduction equation (Eq. 2.12),
a local variation of tissue temperature occurs, that is modeled as the sum of two
distinct contributions: the laser input S (W · m−3), plus a second-order differential
term that accounts for the diffusion of heat within the tissue volume. Although a
general formulation for the temporal evolution of temperature T (t) cannot be given
analytically, exact solutions can be derived under certain assumptions.

The “1 µs rule” (see Sect. 2.4.2) establishes that the effect of heat diffusion is
negligible for short irradiations, i.e. for values of exposure time texp < 1µs [2]. In
this case, the local temperature increase produced by the laser source is:

Ṫ = 1

ρc
S. (4.1)

Let us recall from Chap. 2 that ρ is the density of tissue (kg · m−3) and c is its
specific heat capacity (J · kg−1K−1). Replacing the volumetric energy density S with
its definition (Eq. 2.7) yields

Ṫ = μa

ρc
I, (4.2)

where μa is the absorption coefficient of tissue (m−1). This equation establishes a
relation between the temporal derivative of the temperature and the intensity profile I
of the laser beam within the tissue volume. Such relation depends on the local values
of the absorption coefficient μa , tissue density ρ and heat capacity c. Assuming that
these coefficients are isotropic, i.e. that they are uniform across the tissue sample, it
follows that the temperature increase produced by the laser has precisely the same
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form of the beam intensity, i.e. a Gaussian function. The time dependency of I
can be dropped if a constant beam intensity is used. In such a case, Eq. 4.2 has a
straightforward solution:

T (x, y, z, t) = T0 + μa

ρc
I (x, y, z) t. (4.3)

where T0 is the initial temperature. Imposing z = 0 and replacing the intensity I by
its definition (Eq. 2.5) we obtain a relation that describe the temporal evolution of
the temperature on the surface of tissue:

T (x, y, t) = T0 + μa

ρc
I0 exp

(
−2(x2 + y2)

ω2

)
t. (4.4)

We now consider the homogeneous part of the heat conduction equation, that
models the temperature variation once the laser source is turned off (i.e. S = 0)

Ṫ = κΔT, (4.5)

where κ is the temperature conductivity of tissue (m2 · s−1). This equation admits
solutions of the form1

T (x, y, z, t) = T0 +
α exp

(
− x2+y2+z2

4κt

)

(4πκt)
3
2

, (4.6)

with α being an integration constant. From this relation, it follows that the time-
dependent distribution of temperature at the tissue surface follows a two-dimensional
Gaussian profile:

T (x, y, t) = T0 +
α exp

(
− x2+y2

4κt

)

(4πκt)
3
2

. (4.7)

These theoretical results seem to indicate that a combination of Gaussian functions
could adequately approximate the superficial temperature of tissue during laser abla-
tion. Nonetheless, in our derivation of Eqs. 4.4 and 4.7, we have used many assump-
tions that certainly do not hold in the case of laser ablation. The ablation process
induces disruptive modifications in the tissue both at the mechanical and physical
levels (alterations in the density, absorption and thermal conductivity), whereas the
calculations above assume a fixed tissue geometry and isotropic conditions. Fur-
thermore, the CO2 lasers used in clinical practice present pulse durations τ ≥ 1μs:
for these durations the effects of heat diffusion can no longer be neglected and,
as it was pointed out earlier, the solution T (t) must be extracted using numerical
approximation methods. Based on these considerations, it is unclear whether a

1A proof is given in Appendix B.
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Fig. 4.2 Temperature distribution captured at different moments of the experiment. a Laser exposed
for texp = 0.2 s, b After exposure, laser is turned off (to f f = 0.1 s) and c to f f = 0.4 s. Reproduced
from [3] with kind permission from Springer Science+Business Media

Gaussian model is adequate for the approximation of the superficial tissue tempera-
ture T . To better understand the validity of this hypothesis, we performed a series of
preliminary laser experiments.

Agar-based gel phantoms were irradiated with a CO2 laser source (beam waist
ωs = 250 µm), using an exposure time texp = 0.2 s. The superficial temperature was
captured with an infrared thermal camera, at a rate of 100 Hz. This sensor provides a
sequence of images that contains the values of temperature for a predefined continu-
ous rectangular plane S centered at the point of laser incision. Before being irradiated,
the samples were kept at room temperature (∼25 ◦C) for 10 min. The sequence in
Fig. 4.2 shows typical temperature profiles obtained during the trials: the xy plane
of the plot corresponds to the surface of the tissue, values of temperature have been
plotted in the z-axis. Each pixel represents the temperature value (◦C) of an area that
covers 0.177 × 0.177 mm2.

Visual analysis of the plots in Fig. 4.2 indicates that the superficial temperature
of tissue can be reasonably assumed to have a Gaussian distribution. Temperature
spikes are observed during laser irradiation, next to the peak of the Gaussian surface.
These might be produced by the expulsion of hot plume from the ablation site.

4.2 Single-Point Ablation

In this section we derive a methodology to learn the temporal evolution of tissue
temperature during single-point laser ablation. Let T (R, k) ∈ R

m×n be the two-
dimensional matrix representing the temperature of R at the discrete time step k,
assuming that k = 0 coincides with the time instant when the interaction starts. The
temperature of any point x, y ∈ R will be given by the (i, j)-element of the matrix,
following the quantizations,

i =
⌈

y
Δy

⌉
, j =

⌈
x

Δx

⌉
(4.8)
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where Δy = Y/m, Δx = X/n, and the �·� notation expresses the ceil function, i.e.,
the smallest integer not less than.

Temperature of the surface is not uniform and changes with time, i.e.,

T (R, k) = f (x, y, k). (4.9)

where (x, y) ∈ R correspond to the pixel coordinates of any point on the surface.
Based on the ideas presented in the previous section, we define a hypothesis function
given by a Gaussian function with variable parameters,

T (R, k) = A(k) exp

(
−

(
(x − μx (k))2

2σ 2
x (k)

+ (y − μy(k))2

2σ 2
y (k)

))
(4.10)

where A represents the amplitude σx and σy the spatial spreads of the Gaussian, and
μx , μy the center of the function. Note that this hypothesis assumes symmetry with
respect to the xy axis in the energy distribution delivered by the laser. Thus, this
model can represent elliptical temperature profiles without rotation.

4.2.1 Fitting a Gaussian Function

A thermal camera is used to collect data for the learning task. At each time step, this
provides a set of points

{
(x, y)i , T i

}m×n

i=1 points from which the vector of parameters
θ(k) = [

A, σ 2
x , σ 2

y , μx , μy
]

needs to be estimated. A common approach is to use a
linear version of the model, which is obtained by applying a logarithmic operator to
both sides of the equation,

log T = α0 + α1x + α2 y + α3x2 + α4 y2. (4.11)

Hence, the nonlinear regression for (4.10) is transformed into a linear regression with
meta parameters, α ∈ R

5 [4]. The elements of θ are then given by,

σ 2
x = −(2α4)

−1 , σ 2
y = −(2α3)

−1

μx = α2σ
2
x , μy = α1σ

2
y

A = exp
(
α0 + μ2

x
2σ 2

x
+ μ2

y

2σ 2
y

)
.

(4.12)

A least square regression can then be applied to fit the sensor data in (4.11). Nev-
ertheless, given that there is more data in the tail of the Gaussian than in the bell,
weighting the sample points by its correspondent estimation balance the influence
of the entire data set during the minimization of the sum of square errors. This is
known as weighted least-square minimization (see [5]).
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4.2.2 Meta-Parameters Dynamics

Fitting the hypothesis function (4.10) to the data captured during a real laser expo-
sure provides a different vector of parameters for each time step. Figure 4.2 shows
data corresponding to different times during laser exposure. In order to estimate the
temperature at any point and time using such model a lookup table of hundreds of
vectors of parameters would be required.

We propose to investigate a function describing the dynamics of the parameters
θ(k), i.e. given the initial value θ(0) and an input u(k) signal, the evolution of such
parameters can be described using,

θi (k + 1) = h(θi (k), θi (0), u(k)), (4.13)

where u(k) may assume one of the following values:

u(k) =
{

1 laser on/heating
0 laser off/cooling

(4.14)

At the same time, it is important to note that the sequence of Gaussian parameters
include errors from the noise in the raw data. Furthermore, these errors are propagated
by the use of the logarithmic linear regression method and by the mapping from the
meta parameters in (4.12). This is especially true for the amplitude (A), which is
derived from a nonlinear function of the entire vector of meta parameters. To prevent
the propagation of noise from further affecting the quality of the estimation (i.e., the
quality of h) we propose to model the evolution of the meta parameters, i.e.,

α(k + 1) = g(α(k), α(0), u(k)). (4.15)

The quality of g in (4.15) is expected to be better than the one of h in (4.13), given
the level of noise in the respective data set.

4.2.3 Experiments

This section describes the experiments performed to capture the data to learn and
validate the model. Single spot laser radiations on agar-based phantom tissue were
produced using a CO2 laser system. Temperature of the surface is captured continu-
ously during laser exposure plus a proportional time after the laser is turning off in
order to capture the cooling down process. Exposure time was precisely controlled
with a computerized system.
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Experiment Procedure

Each experiment consisted in firing a CO2 Continuous Wave (CW) beam at constant
power (P = 3W) on the flat surface of a tissue phantom. A different agar sample
was used for each experiment. Samples were stored in a refrigerated bath and taken
out at room temperature (∼25 ◦C) 10 min before the experiment. The exposure time
of each experiment was electronically controlled and an independent sequence of
thermal images was recorded. A total of 26 experiments were conducted, varying
the exposure time from texp = 2.0 s to texp = 4.5 s with increments of 0.1s.

Data Sets

To solve the approximation problems formulated in Sects. 4.2.1 and 4.2.2 different
data sets were created. Here we describe the structure and the content of these sets.

The former is a fitting problem, it aims to find the optimal Gaussian parameters
θk that represent the superficial temperature at any time step k. This problem was
applied to all of the thermal video frames captured during the laser experiments.
During each experiment, a total of (texp + to f f ) × 100 frames were captured, each
being a matrix with l = m × n = 3402 values of temperature. Frames taken both
during the laser exposure and the cooling off phase were considered.

Every experiment corresponds to a sequence of fitted Gaussian parameters θk ,
each representing the time evolution of temperature. These sequences are used to
generate the input (x) and output (y) vectors required to learn function described in
Eq. 4.13:

x = [θ i
k, ui

k] (4.16)

y = [θ i
k+1]. (4.17)

Note that the input incorporates the laser input term ui
k , which is required to estimate

the variation of the values of parameters.

4.2.4 Results

Here we present the results for the Gaussians fitting of the single thermal images,
the models obtained after learning the meta parameter dynamics and the temperature
prediction that resulted from this data.

Gaussian Fitting

As mentioned in the previous section, a total of (texp + tof f ) × 100 Gaussians
are approximated. Figure 4.3 shows an example data set and the corresponding
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Fig. 4.3 The surface represents the linear regression obtained for input space (x, y) mapping to
z = log(T ), using the sensor data (red markers). Note that this is not the geometrical representation
of the tissue. Reproduced from [3] with kind permission from Springer Science+Business Media

Fig. 4.4 Weighted least square estimation of the Gaussian model for a single time step. Corre-
sponding parameters are μ = [9.27 7.67], σ 2 = [26.5 15.78] and A = 60.6457, Approximation
error (mse) = 0.0156. Reproduced from [3] with kind permission from Springer Science+Business
Media

logarithmic linear regression. Figure 4.4 shows the result of fitting the thermal imag-
ing sensor data to the hypothesis function in Eq. (4.10). The approximation error
varies depending on the time of exposure. The temporal evolution of the normalized
and root mean squared errors are presented in Fig. 4.6. It can be observed that the
approximation of most of the frames present relatively low errors. Nonetheless, for
the initial frames the approximation has high values of normalized mean square error
(nMSE), indicating that the assumption of Gaussian shape is not completely verified.
On the other hand, these frames present only a few Celsius of absolute average error
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Fig. 4.5 Initial frames include high peaks of temperature that are not modeled by the Gaussian
function. The peak points correspond to ablated tissue. Reproduced from [3] with kind permission
from Springer Science+Business Media

Fig. 4.6 Gaussian function approximation error for a complete experiment. RMSE (blue) and
nMSE (red) changes depending on the stage of the interaction. The nMSE tends to zero after
the initial time steps. Reproduced from [3] with kind permission from Springer Science+Business
Media

(RMSE). Visual analysis of the initial frames reveals that these errors are largely
due to the presence of the temperature peaks at the center of the beam (Fig. 4.5).
These peaks are values of temperature at the center of the beam that last only one
time step (Δt = 0.01 s) and we consider as noise. As we have commented earlier in
this chapter, these peaks might have the following physical explanation, i.e. that they
correspond to the expulsion of material from the ablation site—for which, therefore,
temperature monitoring is not relevant.

Temporal Evolution of the Gaussian Parameters

Figure 4.7 shows the temporal evolution of the Gaussian parameters A, σ 2
x , σ 2

y during
a total exposure time and laser power similar to those used in laryngeal surgery
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Fig. 4.7 Time evolution of the Gaussian parameters (A, σx , σy) during a texp = 2 s interaction
(t0 = 5.8 s, t f = 7.8 s). It includes the heating and cooling phases. Reproduced from [3] with kind
permission from Springer Science+Business Media

(P = 3.0 W, texp = 2 s). As expected, the parameters evolve differently when the
laser is turned on. Different versions of Eq. (4.13) need to be learned to model both
behaviors (heating, cooling) although the underlying structure of the hypothesis
remains the same.

During laser exposure the amplitude of the Gaussian remains rather constant
(Fig. 4.7), while the spread of the temperature over the tissue clearly increases. The
instantaneous peaks of temperature observed in the center of the beam are naturally
filtered by the linear regression.

When the laser is turned off the maximum temperature decreases and the rate
of change of the variance increases. This is consistent with the analytic solution of
the (homogeneous) heat transfer equation, where the amplitude of the function is
inversely proportional to the square root of time, while the variance is proportional
to it [2]. It can also be observed that the behavior of σ 2

x and σ 2
y are similar but not

exactly the same: although the energy density produced by our laser is cylindrically
symmetric (TEM00), the orientation of the camera with respect to the target introduces
a perspective deformation. This deformation was kept under control maintaining the
position of the camera constant throughout the experiments. The sequence of means
(μx , μy) is not showed as it remain almost constant throughout the experiment.

Dynamics of the Metaparameters

The exponential time evolution shown by the meta parameters in Fig. 4.8 suggests a
first order dynamics for g of the form,
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Fig. 4.8 Meta parameters time evolution α1 (blue), α2 (red), α3 (black), α4 (green), α5 (magenta).
Reproduced from [3] with kind permission from Springer Science+Business Media

Fig. 4.9 First order dynamics in the meta parameter space α(k), α(k + 1). Reproduced from [3]
with kind permission from Springer Science+Business Media

α(k + 1) = g(α(k), α(0))

α(k + 1) = C1α(k) + C0
(4.18)

where C1 and C0 can be extracted with a simple polynomial regression between α(k +
1) and α(k), as shown in Fig. 4.9. Simplified plots of the discrete dynamics of the
meta parameters (both for heating and cooling models) are shown for completeness
in Fig. 4.10. The resulting model parameters (C0, C1) are presented in Table 4.1.

Temperature Estimation

The estimation of temperature only requires the initial state of the meta parameters
vector, then the recursion in (4.18) evolves with the activation/deactivation of the
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Fig. 4.10 Discrete dynamics of the meta parameters (αi i = 1, 2, 3, 4). Both models are shown;
‘laser on/heating’ (first row) and ‘laser off/cooling’ (second row). Reproduced from [3] with kind
permission from Springer Science+Business Media

Table 4.1 Table of constants for the meta parameters linear dynamics for both models: heating
(laser on) and cooling (laser off)

α C0on C1on C0of f C1of f

1 0.9637 0.0333 0.9557 0.0772

2 0.9705 0.0155 0.9869 0.0019

3 0.9646 0.0108 0.9864 0.0012

4 0.9716 –0.0010 0.9876 –0.0001

5 0.9649 –0.0007 0.9879 –0.0001

Reproduced from [3] with kind permission from Springer Science+Business Media

laser input. The Gaussian parameters and therefore the surface temperature can be
estimated at any time of interest. Figure 4.11 shows the comparison between the real
time change of the meta parameters and that obtained with the recursion. Figure 4.12
shows an example of surface temperature reconstruction (nMSE = 0.0137).

4.2.5 Discussion

The model presented in this section is able to predict temperature of the surface of
tissue gel phantoms during single point CO2 laser ablation. The modeling process
takes advantage of the Gaussian structure of the data and here we explain such
structure analyzing the shape of the energy spatial profile in the laser beam.

Although the hypothesis function allows us to model elliptical shapes for the
Gaussian, it assumes that it is not rotated. Due to the physical location of the sensor
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Fig. 4.11 Time evolution of the meta parameters (αi ). Learned dynamics (blue) extracted from
data (red). Reproduced from [3] with kind permission from Springer Science+Business Media

some perspective was generated and data captured by the thermal camera showed
that minor rotation were present. The model can be augmented, including parameters
for the xy distribution of temperature, improving the fitting error. This fitting error
may also be improved using an iterative method for Gaussian approximation [5].

The assumption that the dynamics of the meta parameters α is easier to model
than the one of the Gaussian parameters θ can be observed in Fig. 4.13, where the
sequence of values for the first element of both sets is shown. It can be seen that
the pattern of α1 can be described using a first order dynamics, whereas that of θ1 is
much more complicated to describe.
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Fig. 4.12 Temperature reconstruction. At a given time during laser exposure (texp = 1.92) the
temperature of the surface is estimated using the evolution of the meta parameters with nMSE =
0.0137. Reproduced from [3] with kind permission from Springer Science+Business Media

Fig. 4.13 Discrete dynamics
of the first element of the
meta parameter vector (α1)
as well as of the Gaussian
parameter (θ1). The pattern
of α1(k) can be modeled
with a first order system.
Reproduced from [3] with
kind permission from
Springer Science+Business
Media

4.3 Temperature Dynamics During Laser Scanning

We now seek to extend our modeling methodology to the more general case of tissue
ablation by means of a scanning laser beam. The motion of the laser beam directly
affects the time-dependent energy density S, thus determining a different thermal
response. Evidence presented so far in this chapter indicates that, in the case of
single point ablation, the temperature T (t) on the surface of tissue may be modeled
by a single Gaussian function with time-varying parameters. The use of a moving
laser beam imposes the use of a different model, whose structure is determined
experimentally, from the analysis of data collected during preliminary laser trials.
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Fig. 4.14 First row Tissue temperature profile during computer controlled incision (l =
0.3 mm, w = 10 Hz). Although the Gaussian distribution of the energy in the laser beam is present,
the profile does not show any particular pattern as it grows in time. Second row Temporal change
on temperature ΔT = T (R, k + 1) − T (R, k − 1). Adapted from [6]

Incisions were created on ex-vivo chicken muscle tissue samples, by means of a
laser scanning system (described in Sect. 3.6.1). The laser beam is moved repeatedly
along a line of length (l = 4.6 mm), during certain exposure time (texp). The motion of
the laser scans the complete line at a configurable velocity and oscillatory frequency
(ωs). Therefore, the number of times the laser scans the incision is given by η =
texp/ωs . The period of time the tissue is exposed to the laser is uniformly distributed
along the incision line.

Examples of the superficial temperature profile for different times k of the process
T (R, k) are shown in the first row of Fig. 4.14. With the aim of reducing the problem
complexity, we take the y axis to be coincident with the laser scanning trajectory. We
further assume symmetry with respect to the incision line, thus only the temperature
along the x axis is shown. The Gaussian-shaped contribution of the laser input S can
be visually recognized in the correspondence of the temperature peaks. Nonetheless,
as the beam moves along the incision, the temperature profile does not seem to present
any specific pattern as it evolves in time.

The second row of Fig. 4.14 shows the temperature increments for the corre-
sponding exposure time. These sequence suggests that the temporal increment of
the temperature ΔT (k) = T (R, k + 1) − T (R, k) could be described as a set of
Gaussian functions with centers along the incision line. The positive part of ΔT
seems always amenable to be described by a single Gaussian, while the negative
part shows diverse conformations. Based on the heat conduction equation (2.12),
the positive corresponds to the thermal effects of the input S plus the heat exchange
with underlying and surrounding tissue. Thus, the center of this Gaussian is expected

http://dx.doi.org/10.1007/978-3-319-30330-7_3
http://dx.doi.org/10.1007/978-3-319-30330-7_2
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to move together with the laser beam along the incision. The negative part of ΔT
constitutes the effects of heat diffusion within tissue, which is modeled by the homo-
geneous part of the heat conduction equation (Eq. 4.5) by a second-order differential
term. This indicates that the shape of the negative part should contain higher order
differences of T (R, k).

Based on these observations, we theorize that the function describing the temper-
ature of the surface at each frame of the process can be approximated as a sum of
Gaussian functions,

T (R, k) =
p∑

i=1

exp(x, y, ai , σi , μi ) (4.19)

where p is the total number of Gaussians and ai , μi and σi are the corresponding
amplitude, mean and covariance. Nonlinear least square fitting regression [1] can be
applied to fit (4.19) to the experimental data.

4.3.1 Experiments

Ex-vivo chicken muscle tissue is used as target for the incision trials. Incision length
(l = 4.6 mm/25 pixels) and scanning frequency (w = 10 Hz) are kept constant. Laser
power (P = 3 W), and exposure mode (Continuous Wave) were also configured.
Total exposure time is set to texp = 1.0 s.

4.3.2 Results

The x-axis is aligned with the incision line and the spatial distribution of the temper-
ature is assumed to be symmetric with respect to the y-axis. Here we compare the
quality of the model for different values of p. Based on the knowledge provided by
(Eq. 2.12), we may hypothesize that the number of Gaussians required for the model
is p = 4. Nevertheless here we compare the models for different values of p.

For the simplified case of one-dimensional distribution of temperature, the tem-
perature on the incision line Tk(x) is defined by the function

Tk(x) ≈
p∑

i=1

exp(x, μi , σi ) (4.20)

Each experiment is composed by 100 data sets (texp = 1.0 s,Δt = 0.01 s). The num-
ber of input-output pairs per data set is given by the width (in pixels) of the area of
interest. Thus, the model is composed by a total of 100 regressions, each one is
obtained using m = 60 data pairs {x j , Tj }m

j=1. Figure 4.16 shows three examples of
function approximated.

http://dx.doi.org/10.1007/978-3-319-30330-7_2
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Table 4.2 Regression results analysis: Mean square error (MSE) for n = 100 regressions

p MSEmax MSEmin Mean Median Q3–Q1

3 17.57 0.24 3.42 2.93 2.03

4 6.87 0.21 2.31 1.99 1.72

5 4.67 0.23 1.85 1.63 1.35

Adapted from [6]

Fig. 4.15 Regression result
(p = 3). Real temperature is
also shown. Adapted
from [6]

Modeling Error

The output of the regression at each time step is a vector of parameters (amplitudes,
means and standard deviation), θk = [ak, μk, σk], where a, μ, σ ∈ R

p. Each data set
generates an approximation error, i.e., it is variable along the experiment. The mean
square error (MSE) is analyzed to compare the quality of the model for different
values of p = 3, 4, 5. Table 4.2 summarizes the information about the variability of
the regression error along the experiment, including maximum, minimum, mean,
median and interquartile range. It can be seen that the model fits better when using
more Gaussians: p = 4 performs better than p = 3, while not significant improve-
ments can be observed by increasing the number of basis functions to p = 5. With
p = 4, the regression achieves an accuracy (Root-Mean-Square Error) of 1.52 ◦C,
with the largest error (RMSEmax ) being 2.62 ◦C. Figure 4.15 shows the temper-
ature estimation when modeling with few Gaussian basis functions. On the other
hand, Fig. 4.16 shows three examples of regressions with p = 4. Different forms of
temperature profile are shown.

4.3.3 Model Validation

Based on the analysis presented above, a model using p = 4 is selected to estimate
the temperature dynamics during laser exposure. A total of 12 parameters for each
time step are used for prediction.

In order to validate the model, a new experiment is performed and thermal data
is captured while the model estimates the temperature profile. Validation error is
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Fig. 4.16 Temperature profile at different stages of the incision. Continuous line (solid blue line)
shows data collected from experiments, dash line (red) shows the result of the regression p = 4.
Adapted from [6]

Fig. 4.17 Validation experiments. Sensor data (solid blue line) and the corresponding temperature
predicted by the model (dashed violet line). Adapted from [6]

Table 4.3 Validation results analysis: Mean square error (MSE) for p = 4 and n = 100 regressions

MSEmax MSEmin Mean Median Q3–Q1

19.27 4.44 12.52 13.41 10.34

Adapted from [6]

computed pixel-wise during texp = 1 s. Figure 4.17 shows the real temperature profile
for the validation experiment and the resulted temperature estimation (for the same
time steps used in Fig. 4.16). It can be observed that the new experiment slightly
varies with respect to the learning data set. This causes a relatively high pixel-wise
error, as presented in Table 4.3.

Nevertheless, the range and distribution of the temperature is effectively estimated
at each time step. In order to illustrate this, a comparison between the maximum value
at each time step is shown in Fig. 4.18. It can be observed that the model captures
the dynamics of the temperature change. The shape of the temperature profile is
compared by computing the area under the curve at each time step, also shown in
Fig. 4.18. It can be observed that the model is able to effectively estimate the thermal
state of the tissue surface.

4.3.4 Discussion

The experimental evidence presented in this section indicates that statistical learning
enables the creation of models capable of reliably estimating tissue temperature
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Fig. 4.18 Validation experiment. Maximum values of temperature for each time step are presented
(top). The integral of the area under the curve for each time step is also presented (bottom). Adapted
from [6]

variations during laser incisions. These models are straightforward to implement in
a surgical setup, as they do not require any additional sensing device.

The model presented here was derived on ex-vivo chicken muscle tissue. Although
not representative of the variety of tissues that are encountered during a laryngeal
intervention [7], these targets present the behavior of a generic soft tissue, allow-
ing to prove the proposed concept. Our modeling study does not explicitly take
into account heat transfer mechanisms typical of living tissues, e.g. blood perfu-
sion. Nonetheless, the contribution of these mechanisms to the local variation of
temperature is neglectable in first approximation [2].

In Chap. 6, we shall describe the integration of this model in an experimental
surgical platform. Activation and deactivation of the model will be synchronized
with the laser activation, allowing online estimation of the temperature of the tissue
surface.
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