Chapter 4
Principles Ensuring Anti-fragility

While it is impossible to predict all potential swan events that can severely impact
complex information and communications technology (ICT) systems, we know the
general reasons for extreme global behavior: single points of failure such as shared
resources, local failures initiating systemic failures due to chain reactions, scal-
ing effects, and cascading failures between system layers and different systems
[35, Chap.4]. Because the removal of single points of failure is a well-understood
problem [47], this chapter first introduces four design principles that together iso-
late local failures before they propagate and cause systemic failures. It then presents
one operational principle to quickly remove exploitable vulnerabilities. Finally, the
chapter discusses how a systemic failure can occur in a complex adaptive system even
when no parts fail, as well as the need to build models to understand such extreme
global behavior.

The current chapter defines and illustrates five principles needed to design and
operate anti-fragile ICT systems, while the following chapters discuss how these
principles can be implemented in different types of complex ICT systems. The prin-
ciples are rooted in the analysis in Chap. 2, showing the need to isolate local failures
and use natural and induced failures to learn about vulnerabilities. The reader may
recognize some of the principles as software patterns described in books on software
design [35, 48]. Here, we use the term principle rather than pattern to emphasize
that these ideas or concepts can be found in many research fields, not only software
design [3, 4, 19, 35, 48, 49, 50].

4.1 Modularity

A complex adaptive ICT system with tightly interconnected units tends to exhibit
surprising and undesirable global behavior due to the many non-linear interactions
between the units [5, 6]. A local failure due to an internal error in a unit or abnormal

© The Author(s) 2016 35
K.J. Hole, Anti-fragile ICT Systems, Simula SpringerBriefs on Computing 1,
DOI 10.1007/978-3-319-30070-2_4


http://dx.doi.org/10.1007/978-3-319-30070-2_2

36 4 Principles Ensuring Anti-fragility

Fig. 4.1 Because a system
of tightly interconnected
units facilitates systemic
failures, we need a system of
modules with weak links
(dashed lines) that break

when modules experience - Weak link
local failures

Module

interactions between several units could cause problems for other units and eventually
take down the whole system. The first step to avoid propagating local failures in
networked computer systems is to modularize the systems at both the hardware and
software levels [1, 3, 4]. Conceptually, we represent the modules of a system by
nodes in a hierarchical system graph (Figure4.1 illustrates one level of the graph),
where each module is a subgraph of tightly cohesive units.

We use the expressions strong connection and weak connection to describe the
varying levels of dependence between system modules. The terms dependency and
connection are used in much the same way in this book. A module A is strongly
connected with (or strongly dependent on) a module B if A’s functionality is badly
affected when B misbehaves or fails. The module A is weakly connected (or weakly
dependent) if .4’s important functionality is preserved when B malfunctions or ter-
minates. When modules are weakly connected, a change to a module should not
necessitate changes to any other module. The modules must have well-defined inter-
faces and these interfaces must be the only way modules can interact with each
other. In particular, the internal state of a module must not be directly accessible to
another module, but only made available via an interaction mechanism that commu-
nicates state information. A communication protocol is an important example of an
interaction mechanism.

The system graphs in Fig.4.1 illustrate the transition from a system of tightly
interconnected units to a system of weakly connected modules. The units constituting
a module depend on the system level being studied. If we study a complete software
solution consisting of a set of well-defined software services, then a module is a
service and a unit is a collection of subroutines. In a distributed hardware system,
for example, a collection of network routers, a printed circuit board is a unit, while a
module is a collection of boards that constitute a cohesive part of a hardware device.
If we study interconnected systems, then a module is a whole system.

Itis important to understand the difference between strong and weak dependencies
in modular systems. Strong dependencies were actually first defined in Sect.2.7,
although the definition did not explicitly introduce the concept of strength. The
same section stated that the impact of recurrent incidents in a modular system can
be mitigated by introducing additional strong dependencies between the modules.
Unfortunately, we may introduce new positive feedback loops at the same time, thus


http://dx.doi.org/10.1007/978-3-319-30070-2_2

4.1 Modularity 37

increasing the probability of extreme global behavior in the form of nonrecurrent
swan incidents. The next section outlines how to avoid swans by limiting the strength
of dependencies in modular systems.

4.2 Weak Links

When the functionality of a module .A at some system level depends on the function-
ality of another module B3, there is a directed link from A to B in the system graph
to represent this dependency. In Fig.4.1, each directed link signifies the relation
depends on. Different dependencies have varying strengths [5]. We can measure the
strength of a dependency by determining the damage a misbehaving module causes
in the dependent module.

The next step to prevent local failures from propagating is to ensure that the
incoming links to a misbehaving module break in such a way that there is little
or no damage to the dependent modules. These so-called weak links [49] enhance
robustness to propagating failures by restricting damage to a single module. The
weak links are represented by dashed lines in Fig.4.1.

A weak link can be compared to a circuit breaker that protects an electrical sys-
tem against excessive current. The circuit breaker is an automatic electrical switch
designed to detect a fault condition and interrupt current flow. Unlike a fuse, which
operates once and then must be replaced, a circuit breaker can be reset to resume
normal operation. We are interested in weak links that can restore themselves after
they break. Chapter5 studies how to implement weak links with default fallback
responses.

It is necessary to determine the dependencies between modules at different levels
of a system [2]. Modules are weakly connected when they have weak links. If the
hierarchical system graph of weakly connected modules (see Fig.4.1) is sparse and
of limited size, then the remaining fragility can be analyzed. A dense and large
graph of strong dependencies signals intolerable fragility because it becomes hard
to determine the cause(s) of an incident and, therefore, countermeasures to avoid
similar incidents in the future [4].

4.3 Redundancy

According to Taleb [10], redundancy is an inherent property of anti-fragile systems.
They do not make “efficiency” their primary goal. Since the goal of anti-fragile
systems is to thrive in randomness, the systems contain “inefficiencies” through lay-
ered redundancies. Computer systems enhance their robustness to module failures by


http://dx.doi.org/10.1007/978-3-319-30070-2_5

38 4 Principles Ensuring Anti-fragility

Redundant and
Lean system Redundant system diverse system

® 000 00@®
o 000 O 000
O OO0 LOLO

Different Identical modules Nearly equal functionality
modules and different realizations

Fig. 4.2 Transition from a lean system to a redundant system and then to a system with both
redundancy and diversity

deploying multiple copies of modules at the software and hardware levels. Figure 4.2
illustrates the transition from a lean system to a redundant system. The redundancy
is obtained by introducing extra copies of each module.

Two examples illustrate the redundancy principle. First, when a virtual machine
fails in a cloud-based system, an identical instance is started automatically. Second,
a critically important system should have at least one secondary backup system that
runs in parallel with the primary system to ensure a safe fallback. Leading up to the
next principle, we note that the secondary system should differ from the primary
system to avoid both failing for the same reasons.

4.4 Diversity

A modular system has diversity [S0] when it contains differently designed or imple-
mented modules with (nearly) the same functionality. Figure 4.2 depicts the transition
from a redundant system to a system that is both redundant and diverse. Diversity
makes it less likely that many modules will fail at the same time. Only a diverse
system is highly robust to propagating failures; single modules remain fragile. Fail-
ures of fragile modules are warning signals of impending systemic instability. If a
computer system is a “monoculture,” where all computing devices are based on the
same hardware or run the same software [28, 29], then it is highly fragile, because
a local failure can propagate very easily. This is particularly true for infectious mal-
ware that can easily spread to many modules in a large software monoculture. The
use of software diversity to halt malware spreading is discussed in Part III.



4.5 Fail Fast 39

Develop and
test fix

\ 4
Introduce
change to Vulnerability?
system
Y
Introduce ol .
local failure P Monitor system

Fig. 4.3 How to use the fail fast principle in an ICT system

4.5 Fail Fast

To create complex adaptive systems that are anti-fragile to classes of negative events,
it is necessary to learn from problems and downright failures in the systems because
itis effectively impossible to predict all future incidents with a large negative impact.
Hence, a system should fail early when the impact is small and stakeholders should
learn from these incidents how to adapt the system to limit the impact of future
incidents.

When the four design principles of modularity, weak links, redundancy, and diver-
sity are used to avoid failure propagation, we can induce local failures (with only a
tiny probability of systemic failure) to detect vulnerabilities early and quickly learn
how to improve the ability to prevent propagating failures. The flow diagram in
Fig.4.3 illustrates how the fail fast principle can be used in a system. Netflix pio-
neered the depicted technique in its cloud-based subscription service for films and
TV series (http://techblog.netflix.com). Chapter5 will discuss Netflix’s realizations
of the operational fail fast principle and the four outlined design principles.

4.6 Systemic Failure Without Failed Modules

A local failure can propagate over a system and cause a systemic failure. Although
there is a strong tendency to assume that a local failure is a well-defined event occur-
ring inside a single module, this is not necessarily true for complex adaptive systems.
A well-functioning technical system with normally behaving stakeholders could drift
into a systemic failure in the form of a swan event without any well-defined initial


http://techblog.netflix.com
http://dx.doi.org/10.1007/978-3-319-30070-2_5

40 4 Principles Ensuring Anti-fragility

Inputs — Output
from other = B1aCk DOX —é to other

m |
modules odule modules

Fig. 4.4 A module in a complex adaptive system viewed as a black box with multiple inputs from
other modules and a single output connected to yet other modules

module failure. Swans are often caused by internal and external changes that affect
the global pattern of interactions between the modules, between the stakeholders,
and between the stakeholders and modules. The changes all seem reasonable when
studied in isolation. It is only the combination of the changes that causes a systemic
failure [18].

To better understand how a systemic failure can occur without any module failure,
we consider a module as a black box with multiple input links and a single output link
(see Fig.4.4). A module receives inputs from other modules and generates an output
that becomes input to yet other modules. A module is designed to generate particular
output values from combinations of specified input values. If a module receives an
unknown or a partial combination of inputs that it was not designed to handle, it can
produce an extreme output value. When the extreme output becomes input to another
module, it can result in another extreme output. Hence, an unusual combination of
inputs to a module can cause more and more modules to generate extreme outputs,
leading to a systemic failure. This rare and extreme global behavior occurs despite
all modules correctly executing their designed input—output transformations, that is,
there are no module failures per se.

The reader should note that incomplete or extreme input combinations to mod-
ules could occur due to random noise or temporary faults in the communication
links. These transient failures can be hard to recreate and may even be completely
overlooked during an investigation to determine why a system misbehaved. This
is particularly true when multiple transient errors combine to create incomplete or
extreme input combinations.

Since classical risk analysis is based on the notion that a large failure is caused
by a chain of smaller events initiated by a well-defined starting event, the analysis
may not predict the above systemic failure. The classical approach to risk analysis
based on simple, or linear, cause and effect thinking only works satisfactorily when
the system’s parts are weakly connected with limited interaction. Complex adaptive
systems are often strongly connected with a great deal of interaction. To understand
the risks associated with complex systems, analysts must avoid thinking that restricts
failures to simple chains of events, because this approach ignores potential swans
and thus seriously underestimates the total risk taken by stakeholders [18].

The earlier stated principle of weak links is critical to avoid failure propagation
that is not initiated by a local failure in a single module but caused by an unusual
combination of inputs to one or more modules leading to extreme global behavior.
Consider a system monitoring its modules to break the output links, perhaps after



4.6 Systemic Failure Without Failed Modules 41

some delay, when the modules produce extreme output. The modules exist in a
(logical) hierarchy, where each module belongs to a particular level. A given module
may receive inputs from several modules at a lower level. Even if each of the lower-
level modules generates normal output, the combination of values taken as input
to the upper-level module may still cause this module to generate extreme output.
However, since the module is monitored and stopped when it generates extreme
output, a systemic failure is, most likely, avoided.

4.7 The Need for Models

While it is quite easy to understand the descriptions of the five principles, it is hard
to determine how to realize them in complex adaptive ICT systems to achieve anti-
fragility to a particular type of impact. Paraphrasing Yaneer Bar-Yam [51], we argue
that it is necessary to create system models, especially during the design phase, to
ensure anti-fragility.

The beginning of Chap. I discussed the complexity of an ICT system consisting
of a large networked computer system and many stakeholders (see Fig.1.1). The
complexity is due to the numerous interactions between the stakeholders and the
computer system, the large amounts of communications between the networked
subsystems, and the influence of changing security and privacy policies, as well
as threats such as equipment failure, extreme weather, and sabotage. An alternative
to this communication view of complexity is the behavioral complexity obtained
by viewing a complete ICT system as a black box and then studying the minimum
amount of information, measured in bits, needed to describe all possible input-output
relations.

Let us consider an ICT system with N;, input values and N,,; output values.
The values can be in the form of vector or scalar values. We need a minimum of
A = log, N, bits to represent an output because all the 24 outputs must have
unique descriptions. Similarly, we need I = log, N;, bits to uniquely label an input.
The labels allow us to order the inputs. Assume that we have an ordered list of 2/
entries, where the first entry contains the output corresponding to the first input, the
second entry contains the output corresponding to the second input, and so on. Since
we need A bits to specify an output, the total number of bits needed to completely
describe all input—output relations is 2/ - A. This expression measures the behavioral
complexity of an ICT system.

The idea of classical software development is to build a system that realizes a
set of well-defined input—output relations. Before the system goes into production, it
must be tested. A complex adaptive ICT system with huge numbers of computational
devices and users has a huge number of possible inputs. If, for example, I = 200
bits, then the complexity is greater than 2°%° &~ 10% bits, which is an enormous
number.


http://dx.doi.org/10.1007/978-3-319-30070-2_1
http://dx.doi.org/10.1007/978-3-319-30070-2_1

42 4 Principles Ensuring Anti-fragility

Since it is clearly impossible to exhaustively test all inputs, theory is essential to
understand how to realize the five principles in complex adaptive systems. Models are
especially useful because they characterize global emergent behaviors without having
to test all possible inputs. For systems without adequate models, the limitations of
testing lead to significant uncertainty about the systems’ global behaviors, especially
their fragility to swans. While models help reduce the risk to stakeholders, complex
adaptive systems will always have hidden risks due to their highly non-linear and
time-varying relations between the inputs and outputs [7]. Hence, as first stated in
Sect. 2.5, there is no absolute guarantee that complex ICT systems are swan free.

In Chap. 3, we built a model to understand how a user population’s trust in an
ICT system could change from pervasive trust to massive distrust. Because of the
great behavioral complexity, no effort was made to accurately model all aspects of
the trust relationship between users and system operators. Instead, we developed an
explanatory toy model. Although toy models cannot predict the detailed behavior of
systems, the models can be used to uncover fragility to particular types of impacts.

4.8 Discussion

The four design principles of modularity, weak links, redundancy, and diversity and
the fail fast operational principle are not new, since various descriptions can be
found in different research fields [3, 4, 19, 35, 48, 49, 50]. However, Taleb’s [8, 9,
10] conceptual foundation and the way the principles are melded in Part II outline a
novel strategy to design and operate anti-fragile ICT systems.

The reader may wonder if the five principles are sufficient to ensure anti-fragility
to any given class of impacts. At the time of this writing, in late 2015, the answer to
this question is not fully known. Most likely, the set of principles needed to design
and operate an anti-fragile system depends on the type of system and the class of
impacts considered. In Parts II and III, we argue that the five principles provide anti-
fragility to downtime and malware spreading. More work is required to determine
the need for additional principles. A short discussion of possible additional design
principles can be found in Chap. 13.

Chapter 3 argued that it is important to build trust between the owner and the users
of a system to avoid the formation of massive distrust in the user population after
an incident. It is of course possible to introduce an additional operational principle
highlighting the importance of building and maintaining trust. Since the rest of the
book concentrates on other aspects of anti-fragile systems, it does not contain an
explicit trust principle. However, the building of trust should permeate through all
work done to create and operate anti-fragile systems, because the loss of trust is an
inherent and general threat to all ICT systems that can cause user populations to
abandon systems altogether.


http://dx.doi.org/10.1007/978-3-319-30070-2_2
http://dx.doi.org/10.1007/978-3-319-30070-2_3
http://dx.doi.org/10.1007/978-3-319-30070-2_13
http://dx.doi.org/10.1007/978-3-319-30070-2_3

4.8 Discussion 43

What to learn from Part I

Part I modeled large ICT systems as complex adaptive systems and explained
that positive feedback loops cause extreme global behavior with an intolerable
impact. A complex system is fragile, robust, or anti-fragile to a particular class
of negative impacts. It is not enough to create a complex system that is robust
to a type of impact when the system is new. Because a complex system and
its environment change over time, a robust system becomes fragile. While risk
management methods can detect and mitigate many negative events, a complex
system has too many interactions between its units and modules for a risk analyst
to predict all incidents. It is particularly difficult for a group of stakeholders to
predict rare and large-impact incidents called gray swans. Even worse, black
swans may exist that are totally unpredictable to all stakeholders in the group.

It is necessary to build complex ICT systems that fail early when the impacts
are still small and to learn from the remaining small events how to maintain and
improve the systems. Four design principles, namely, modularity, weak links,
redundancy, and diversity, and one operational principle, fail fast, were intro-
duced to provide anti-fragility to different types of impact. The common goal
of the design principles is to prevent inevitable local failures from propagating
into global failures. The goal of the operational principle is to quickly determine
vulnerabilities and remove them before they can cause serious damage. Here,
a vulnerability can be a flaw in the design, a bug in the implementation, or a
mistake in the operation or management of a system.

Because there is no absolute guarantee that a systemic failure will never
occur, an owner or operator of a complex ICT system must build and maintain
a trust relationship with the customers, especially since it can be argued that
trust is fragile and distrust is robust. If a company allows distrust to grow, for
example, by relegating, ignoring, or attacking individuals pointing out system
weaknesses, then the company may not survive a failure, especially when it is
heavily reported in the press.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
noncommercial use, distribution, and reproduction in any medium, provided the original author(s)
and source are credited.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.


http://creativecommons.org/licenses/by-nc/2.5/

	4 Principles Ensuring Anti-fragility
	4.1 Modularity
	4.2 Weak Links
	4.3 Redundancy
	4.4 Diversity
	4.5 Fail Fast
	4.6 Systemic Failure Without Failed Modules
	4.7 The Need for Models
	4.8 Discussion


