Skip to main content

X-Ray Tomography

Abstract

Over the past years, a large number of novel X-ray imaging and data processing methods have been developed. The application areas of X-ray computed tomography (XCT) are highly diverse and extensive, since any material or component may be examined using XCT. The major application areas of XCT in science and industry are found in non-destructive testing, 3D materials characterization, and dimensional measurements (metrology). The nonmedical XCT market is steadily growing, but the full potential of this technique for industrial applications has not been exploited yet. There are many useful XCT applications which still have to be discovered. This chapter provides an overview of the principles of XCT, of drawbacks such as measurement artifacts as well as their correction, of different XCT methods and scanning protocols, as well as of applications of XCT. The focus of this chapter lies on XCT for materials simulation and high-resolution, quantitative, in situ, and phase-contrast XCT.

This is a preview of subscription content, log in via an institution.

References

  • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647. https://doi.org/10.1109/34.295913.3

    Article  Google Scholar 

  • Amirkhanov A (2012) Visualization of Industrial 3DXCT Data, PhD Thesis, TU Vienna

    Google Scholar 

  • Amirkhanov A, Heinzl C, Reiter M, Gröller E (2010) Visual Optimality and Stability Analysis of 3DCT Scan Positions. IEEE Trans Vis Comput Graph 16:1477–1487

    Article  Google Scholar 

  • Amirkhanov A, Heinzl C, Kastner J, Gröller E, Fuzzy CT (2013) Metrology: dimensional measurements on uncertain data. In: SCCG proceedings (digital library) Smolenice castle, Slovakia, p 8

    Google Scholar 

  • Amirkhanov A, Amirkhanov A, Salaberger D, Kastner J, Gröller M, Heinzl C (2016) Visual analysis of defects in glass fiber reinforced polymers for 4DCT interrupted in-situ tests. Comput Graphics Forum 35:201–210

    Article  Google Scholar 

  • Banhart J (ed) (2008) Advanced tomographic methods in materials research and engineering. Research Oxford University Press, Oxford

    MATH  Google Scholar 

  • Bartscher M, Neuschaefer-Rube U, Illemann J, Borges de Oliveira F, Stolfi A, Carmignato S (2018) Qualification and testing of CT systems. In: Carmignato S, De Wulf W, Bartscher M (eds) Industrial X-ray computed tomography. Springer, Cham

    Google Scholar 

  • Baruchel J, Buffiere JY, Maire E, Peix G (eds) (2000) X-ray tomography in material science. Hermes Science Publications, Paris

    Google Scholar 

  • Beucher S, Lantuejoul C (1979) Use of watersheds in contour detection. In: International workshop on image processing: real-time edge and motion detection/estimation, Rennes, Sept 1979

    Google Scholar 

  • BIPM JCGM 100 (2008) Evaluation of measurement data – guide to the expression of uncertainty in measurement. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Buffiere J-Y, Maire E, Adrien J, Masse J-P, Boller E (2010) In-situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50:289–305

    Article  Google Scholar 

  • Buzug TM (2008) Computed tomography: from photon statistics to modern Cone-Beam CT. Springer, Berlin/Heidelberg

    Google Scholar 

  • Carmignato S, Dewulf W, Leach R (eds) (2018) Industrial X-ray computed tomography. Springer, Berlin/Heidelberg

    Google Scholar 

  • De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Ann Manuf Technol 63:655–677

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am 6:612–619

    Article  Google Scholar 

  • Gusenbauer C, Reiter M, Salaberger D, Kastner J (2016) Comparison of metal artefact reduction algorithms from medicine applied to industrial XCT applications. In: Proceedings 19th World conference on non-destructive testing 2016 (WCNDT 2016). www.ndt.net

  • Hanke R, Fuchs T, Uhlmann N (2008) X-ray based methods for non-destructive testing and material characterization. Nucl Inst Methods Phys Res A 59:14–18

    Article  Google Scholar 

  • Harrer B, Kastner J (2011) Cone Beam CT for non-destructive testing Fabrication and Characterization in the Micro-Nano Range: new Trends for two and three dimensional Structures, ‘X-ray Microtomography: characterization of structures and defect analysis’. Springer, Heidelberg, pp 119–150

    Google Scholar 

  • Heinzl C, Stappen S (2017) STAR: visual Computing in Materials Science. Comput Graphics Forum 36(3):647–666

    Article  Google Scholar 

  • Heinzl C, Kastner J, Gröller E (2007) Surface extraction from multi-material components for metrology using dual energy CT. IEEE Trans Vis Comput Graph 13:1520–1528

    Article  Google Scholar 

  • Heinzl C, Amirkhanov A, Kastner J (2018) Processing, analysis and visualization of CT data. In: Carmignato S, De Wulf W, Bartscher M (eds) Industrial X-ray computed tomography. Springer, Cham

    Google Scholar 

  • Herman GT (1979) Correction for Beam Hardening in computed tomography. Phys Med Biol 24:81–106

    Article  Google Scholar 

  • Hermanek P, Carmignato S (2017) Porosity measurements by X-ray computed tomography: accuracy evaluation using a calibrated object. Precis Eng 49:377–387

    Article  Google Scholar 

  • Hsieh J (2003) Computed tomography, principles, design, artifacts and recent advances. In: SPIE The International Society for Optical Engineering, Bellingham

    Google Scholar 

  • Janssens E, Pereira LF, De Beenhouwer J, Tsang R, Van Dael M, Verboven P, Nicolaï B, Sijbers J (2016) Fast inline inspection by Neural Network Based Filtered Backprojection: application to apple inspection. Case Stud Nondestruct Test Eval 6:14–20. https://doi.org/10.1016/j.csndt.2016.03.003

    Article  Google Scholar 

  • Jensen T, Bech M, Bunk O, Donath T, David C, Feidenhans’l R, Pfeiffer F (2010) Directional x-ray dark-field imaging. Phys Med Biol 55:3317–3323

    Article  Google Scholar 

  • Joseph PM, Spital RD (1982) The effects of scatter in x-ray computed tomography. Med Phys 9:464–472

    Article  Google Scholar 

  • Kasperl S (2005) Qualitätsverbesserungen durch referenzfreie Artefaktreduzierung und Oberflächennormierung in der industriellen 3D-Computertomographie. PhD Thesis, Technische Fakultät der Universität Erlangen, Nürnberg

    Google Scholar 

  • Kastner J (2016) Proceedings of 6th conference on industrial computed tomography (iCT2016) 2016, 9–12 Feb 2016, Wels. www.ndt.net

  • Kastner J, Harrer B, Requena G, Brunke O (2010a) A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe- and Al-alloys. NDT&E Int 43:599–605

    Article  Google Scholar 

  • Kastner J, Plank B, Salaberger D, Sekelja J (2010b) Defect and porosity determination of fiber reinforced polymers by X-ray computed tomography. In: 2nd international symposium on NDT in Aerospace. www.ndt.net

  • Kastner J, Salaberger D, Plank B (2012a) High resolution X-ray computed tomography of fibre and particle filled polymers. In: Proceedings of 12th World conference on non-destructive testing, Durban. www.ndt.net

  • Kastner J, Salaberger D and Plank B (2012b) Microstructure characterization of high-strength Al-alloys by high resolution X-ray computed tomography. In: Proceedings of 12th World conference on non-destructive testing

    Google Scholar 

  • Kastner J, Harrer B, Requena G (2012c) Non-destructive characterization of polymers and Al-alloys by poly-chromatic cone-beam phase contrast tomography. Mater Charact 64:79–87

    Article  Google Scholar 

  • Kastner J, Zaunschirm S, Baumgartner S, Requena G, Pinto H, Garcés G (2014) 2D-microstructure characterization of thermo-mecanically treated Mg-alloys by high resolution X-ray computed tomography. In: 11th European conference on non-destructive testing (ECNDT 2014), October 6–10, Prague

    Google Scholar 

  • Kastner J, Heinzl C, Plank B, Salaberger D, Gusenbauer C, Senck S (2017a) New X-ray computed tomography methods for research and industry. In: 7th conference on industrial computed Tomography (iCT2017), Leuven

    Google Scholar 

  • Kastner J, Salaberger D, Heinzl C, Gusenbauer C, Rao G (2017b) High resolution X-ray computed tomography for non-destructive characterization and in-situ investigations. In: 15th Asia Pacific conference for non-destructive testing (APCNDT2017), Singapore

    Google Scholar 

  • Krumm M, Kasperl K, Franz M (2008) Reducing Non-linear artifacts of multimaterial objects in industrial 3D computed tomography. NDT&E Int 41:242–251

    Article  Google Scholar 

  • Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A (2011) Computed tomography for dimensional metrology. CIRP Ann Manuf Technol 60:821–842

    Article  Google Scholar 

  • Lambert JH (1760) Photometria, sive de mensura et gradibus luminis colorum et umbrae. Sumptibus Vidae Eberhardi Klett, Leipzig

    Google Scholar 

  • Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61:1305–1316

    Article  Google Scholar 

  • Liu Y, Straumit I, Vasiukov D, Lomov SV, Panier S (2017) Prediction of linear and non-linear behavior of 3D woven composite using mesoscopic voxel models recon-structed from X-ray micro-tomography. Compos Struct 179:568–579

    Article  Google Scholar 

  • Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59:1–43

    Article  Google Scholar 

  • Malecki A D (2013) X-ray tensor tomography from two-dimensional directional X-ray dark-field imaging to three dimensions, PhD Thesis, TU Munich

    Google Scholar 

  • McDonald AA, Holzner C, Lauridsen EM, Reischig P, Merkle AP, Withers PJ (2017) Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT). Sci Rep 7:5251. https://doi.org/10.1038/s41598-017-04742-1

    Article  Google Scholar 

  • Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M (2010) Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 37:5482–5493

    Article  Google Scholar 

  • Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71. https://doi.org/10.1118/1.594555

    Article  Google Scholar 

  • Müller P (2012) Coordinate metrology by traceable computed tomography, pavel müller, PhD thesis, Technical University of Denmark

    Google Scholar 

  • Oberpeilsteiner S, Salaberger D, Reiter T (2014) Coupling of in-situ-CT with virtual testing by FEM of short fiber reinforced materials. In: Proceeding ICT2014, 25–28 Feb 2014, Wels

    Google Scholar 

  • Oh W, Lindquist WB (1999) Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 21:590–602

    Article  Google Scholar 

  • Oster R (1999) Computed tomography as a non-destructive test method for Fiber Main Rotor Blades in development, series and maintenance. In: Proceedings of international symposium on digital industrial radiology and computed tomography Berlin (DGZfP-Berichtsband 67-CD), www.dgzfp.de. (DGZfP-Berichtsband 67-CD)

  • Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206:33–40. https://doi.org/10.1046/j.1365-2818.2002.01010.x

    Article  MathSciNet  Google Scholar 

  • Pereira L, Janssens E, Cavalcanti G, Tsang IR, Van Dael M, Verboven P, Nicolai B, Sijbers J (2017) Inline discrete tomography system. Comput Electron Agric 138:117–126. https://doi.org/10.1016/j.compag.2017.04.010

    Article  Google Scholar 

  • Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261

    Article  Google Scholar 

  • Plank B, Kastner J, Schneider R, Busch R (2009) Charakterisierung von Porositäten in Sintermetallen mit 3D-CT Anwendungsbeispiel selektives Lasersintern. In: Proceedings of DGZfP annual conference. DGZfP, Münster, pp 810–816

    Google Scholar 

  • Prade F, Schaff F, Senck S, Meyer P, Mohr J, Kastner J, Pfeiffer F (2017) Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography. NDT&E Int 86:65–72

    Article  Google Scholar 

  • Reh A, Plank B, Kastner J, Gröller E, Heinzl C (2012) Porosity maps: interactive exploration and visual analysis of porosity in carbon fiber reinforced polymers using X-ray computed tomography. Comput Graph Forum 31(3):1185–1194

    Article  Google Scholar 

  • Reims N, Schoen T, Boehnel M, Sukowski F, Firsching M (2014) Strategies for efficient scanning and reconstruction methods on very large objects with high-energy x-ray computed tomography. SPIE Optical Engineering & Applications:921209–921209

    Google Scholar 

  • Reiter M, Erler M, Kuhn C, Gusenbauer C, Kastner J (2016) SimCT: a simulation tool for X-ray imaging. In: Proceedings 6th conference on industrial computed tomography (iCT2016) 2016, 9–12 February 2016, Wels. www.ndt.net

  • Requena G, Cloetens P, Altendorfer W, Poletti C, Tolnai D, Warchomicka F, Degischer HP (2009) Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick–Baez optics. Scr Mater 61:760–763. https://doi.org/10.1016/j.scriptamat.2009.06.025 ISSN 1359-6462

    Article  Google Scholar 

  • Revol V, Plank B, Kaufmann R, Kastner J, Kottler C, Neels A (2013) Laminate fiber structure characterization of carbon fiber-reinforced polymers by X-ray scatter dark field imaging with a grating interferometer. NDT&E Int 58:64–71

    Article  Google Scholar 

  • Russ JC (2002) The image processing handbook. CRC Press LLC, Boca Raton

    MATH  Google Scholar 

  • Salaberger D, Kannappan KA, Kastner J, Reussner J, Auinger T (2011) CT Data evaluation of fiber reinforced polymers to determine fiber length distribution. Int Polym Process 3:283–291

    Article  Google Scholar 

  • Salvo L, Suérya M, Marmottant A, Limodin N, Bernard D (2010) 3D imaging in material science: application of X-ray tomography. C R Phys 11:641–649

    Article  Google Scholar 

  • Schladitz K (2011) Quantitative micro-CT. J Microsc 243:111–117

    Article  Google Scholar 

  • Schmitt R, Niggemann C (2010) Uncertainty in measurement for X-Ray computer tomography using calibrated work pieces. Meas Sci Technol 21:1–9

    Article  Google Scholar 

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168

    Article  Google Scholar 

  • Sheppard AP, Sok RM, Averdunk H (2004) Techniques for image enhancement and segmentation of tomographic images of porous materials. Phys A 339:145–151

    Article  Google Scholar 

  • Straumit S, Hahn C, Winterstein E, Plank B, Lomov SV, Wevers M (2016) Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images open overlay panel. Compos A: Appl Sci Manuf 81:289–295

    Article  Google Scholar 

  • Tuy-Smith K (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43:546–552

    Article  MathSciNet  Google Scholar 

  • Ueda R, Kudo H, Dong J (2017) Applications of compressed sensing image reconstruction to sparse view phase tomography. In: Proceedings of SPIE 10391, developments in X-ray tomography XI, 103910H, 3 Oct 2017. https://doi.org/10.1117/12.2273691

  • Wiegert J (2007) Scattered radiation in cone-beam computed tomography: analysis, quantification and compensation. PhD Thesis, RWTH Aachen, Aachen

    Google Scholar 

  • Williams J, Yazzie KE, Padilla E, Chawla N, Xiao X, De Carlo F (2013) Understanding fatigue crack growth in aluminum alloys by in-situ X-ray synchrotron tomography. Int J Fatigue 57:79–85

    Article  Google Scholar 

  • Yashiro W, Terui Y, Kawabata K, Momose A (2010) On the origin of visibility contrast in x-ray Talbot interferometry. Opt Express 18:16890–16901

    Article  Google Scholar 

  • Zhigeng P, Jianfeng L (2007) A bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng 9:32–38

    Google Scholar 

  • Zhou S-A, Brahme A (2008) Development of phase-contrast X-ray imaging techniques and potential medical applications. Phys Med 24:129–148

    Article  Google Scholar 

  • Zhou J, Maisl M, Reiter H, Arnold W (1996) Computed laminography for materials testing. Appl Phys Lett 68:3500–3502

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “Multimodal and in-situ characterization of inhomogeneous materials” (MiCi) of the federal government of Upper Austria and the European Regional Development Fund (EFRE) in the framework of the EU program IWB2020. The research leading to these results has also received funding from the FFG Bridge Early Stage, project no. 851249 (“Advanced multimodal data analysis and visualization of composites based on grating interferometer micro-CT data (ADAM)”) as well as from the FWF-FWO 2016 Lead Agency Call for Joint Projects, project no. I3261-N36/S004217 N (“Quantitative X-ray tomography of advanced polymer composites”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Kastner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kastner, J., Heinzl, C. (2018). X-Ray Tomography. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    X-Ray Tomography
    Published:
    06 May 2021

    DOI: https://doi.org/10.1007/978-3-319-30050-4_5-2

  2. Original

    X-Ray Tomography
    Published:
    12 July 2018

    DOI: https://doi.org/10.1007/978-3-319-30050-4_5-1