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Abstract. LBlock-s is the kernel block cipher of the authentication
encryption algorithm LAC submitted to CAESAR competition. The
LBlock-s algorithm is almost the same as LBlock except that the former
adopts an improved key schedule algorithm with better diffusion prop-
erty. Using the shifting relation of certain subkeys derived by the new key
schedule algorithm, we present a multidimensional zero-correlation linear
cryptanalysis on 23-round LBlock-s. The time complexity of the attack
is about 275.4 23-round encryptions, where 262.3 known plaintexts are
used and 60 subkey bits are guessed, which is three bits less than that of
LBlock. Our research showed that the improved key schedule algorithm
did not enhance their ability to protect against zero-correlation linear
cryptanalysis, and it is better to use the irregular bit-shifting to disturb
the shifting relation between subkeys.

Keywords: LBlock · LBlock-s · Multidimensional zero-correlation lin-
ear cryptanalysis · Key schedule

1 Introduction

With the development of communication and electronic applications, the limited-
resource devices such as RFID tags and sensor nodes have been used in many
aspects of our life. Traditional block cipher is not suitable for this extremely con-
strained environment. Therefore, research on designing and analyzing lightweight
block ciphers has become a hot topic. LBlock [1] is such a kind of a lightweight
block cipher presented by Wu et al. in ACNS 2011. It employs a variant Feistel
structure and consists of 32 rounds. The round function is composed with S-
boxes, nibble-wise permutation and bit rotation, and the key schedule algorithm
is similar to that of PRESENT [2], one of the lightweight block cipher standards.

The LBlock algorithm has attracted a lot of attention because of its simplic-
ity, efficiency and low cost. In 2012, Liu and Karakoc et al. [3,4] presented an
impossible differential cryptanalysis on 21 and 22-round LBlock, Minier and Liu
et al. [5,6] presented a related impossible differential attack on 22-round LBlock,
and Sasaki et al. [7] presented an integral attack on 22-round LBlock. Later,
Wang et al. [8] studied the security of LBlock against biclique cryptanalysis and
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found the diffusion of the original key schedule algorithm was not enough. They
also presented an improved key schedule algorithm and used it in lightweight
block cipher LBlock-s, the kernel block cipher of the authentication encryption
algorithm LAC [9] submitted to CAESAR competition [10]. Up to now, little
research has been done on the cryptanalysis of LBlock-s or the property of the
improved key schedule algorithm.

Linear cryptanalysis [11,12] is one of the most prominent cryptanalysis meth-
ods against block ciphers. In 2011 and 2012, Bogdanov et al. [13–15] proposed the
method of zero-correlation linear cryptanalysis and used it in the cryptanalysis of
many block ciphers such as AES, CLEFIA, TEA and XTEA etc. Deferent with lin-
ear cryptanalysis which uses linear approximations with correlation far from zero,
the zero-correlation linear cryptanalysis used linear approximations with correla-
tion zero to reduce the key space.For block cipherwithFeistel-structure, Soleimany
and Nyberg proposed the matrix method [16] to automatic search for longest lin-
ear approximations with correlation zero, and found 64 classes of zero-correlation
linear approximations for 14-round LBlock. Based on this, they also proposed a
general zero-correlation linear cryptanalysis on 22-round LBlock-type block cipher
without using the property of the key schedule algorithm. Later in ACISP 2014,
Wang et al. [17] further presented an improved multidimensional zero-correlation
linear cryptanalysis on23-roundLBlockusing the special property of the key sched-
ule algorithm, the time complexity was about 276 23-round encryptions, 262 known
plaintexts were used, and totally 63 subkey bits were guessed.

In this paper, we will further evaluate the security of LBlock-s against zero-
correlation linear cryptanalysis. From a deeply research on the new improved key
schedule algorithm we find that there still exists some simple shifting relations
between some subkeys of neighboring rounds. Using these properties, by select-
ing proper zero-correlation linear approximations, we can also present a multidi-
mensional zero-correlation linear cryptanalysis on 23-round LBlock-s. The time
complexity of the attack is about 275.4 23-round encryptions, where 262.3 known
plaintexts are used, and 60 subkey bits are guessed, which is three bits less than
that of LBlock. The results showed that the improved key schedule algorithm did
not enhance their ability to protect against zero-correlation linear cryptanalysis,
and it was better to use the irregular bit-shifting to disturb the shifting relation
between subkeys.

The remainder of this paper is organized as follows. Section 2 presents a brief
description of LBlock-s. Section 3 introduces the definition of zero-correlation
linear approximation and presents the basic methods of multidimensional zero-
correlation linear cryptanalysis. Section 4 presents the multidimensional zero-
correlation linear cryptanalysis on 23-round LBlock-s. Finally, Sect. 5 concludes
this paper.

2 A Brief Description of LBlock-s

2.1 Notation

Throughout this paper we use the following notations:
- P,C : the 64-bit plaintext and the 64-bit ciphertext;
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- Kr : the r-th round subkey;
- Xr: the left half of the r-th round input;
- X0 : the right half of the first round input;
- Y |Z : the concatenation of Y and Z;
- Y j

i : the j-th 4-bit word of Yi (where 0 ≤ j ≤ 7, and the leftmost index is 7);
- Y ≪ i : left rotation of Y by i bits;
- [i]2 : binary form of an integer i.

2.2 Overview of LBlock-s

LBlock-s is the kernel block cipher of the authentication encryption algorithm
LAC submitted to CAESAR competition. Similar to LBlock, the general struc-
ture of LBlock-s is a variant of Feistel Network, which is depicted in Fig. 1. The
number of iterative rounds is 32.

Fig. 1. Round function of LBlock-s block cipher

The round function of LBlock-s includes three basic functions: round subkey
addition AK, confusion function S and diffusion function P . The nonlinear layer
S consists of 8 identical 4-bit S-boxes in parallel (8 different S-boxes are used in
LBlock, see reference [1]). The diffusion function P is defined as a permutation
of eight 4-bit nibbles.

Encryption Algorithm. Let P = (X1,X0) be a 64-bit plaintext. For i =
1, 2, . . . , 32, do

Xi+1 = P (S(Xi ⊕ Ki)) ⊕ (Xi−1 ≪ 8)

Then the 64-bit ciphertext C is (X32,X33).
The decryption process is the inverse of the encryption process, that is, input

64-bit ciphertext (X32,X33), and output 64-bit plaintext P = (X1,X0).

Key Schedule Algorithm. The 80-bit master key K is stored in a key register
and denoted as K = k79k78 . . . k0. Output the leftmost 32 bits of register K as
subkey K1.

For i = 1, 2, . . . , 31, update the key register K as follows:
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1. K ≪ 24
2. [k55k54k53k52] = S[k79k78k77k76] ⊕ [k55k54k53k52]

[k31k30k29k28] = S[k75k74k73k72] ⊕ [k31k30k29k28]
[k67k66k65k64] = [k71k70k69k68] ⊕ [k67k66k65k64]
[k51k50k49k48] = [k11k10k9k8] ⊕ [k51k50k49k48]

3. [k54k53k52k51k50] = [k54k53k52k51k50] ⊕ [i]2
4. Output the leftmost 32 bits of current content of register K as round subkey

Ki+1.

The original key schedule of LBlock used the shift K ≪ 29, and only two
nibbles are updated using two S-boxes (see reference [1] or appendix), so the
diffusion is not enough as shown by Wang et al. in [8]. Thus in the design of
LBlock-s, this improved key schedule was adopted.

3 Zero-Correlation Linear Approximation

Consider a function f : Fn
2 → Fm

2 , and let the input of the function be x ∈ Fn
2 .

A linear approximation with an input mask u and an output mask v is the
following function:

x → u · x ⊕ v · f(x).

The linear approximation has probability

p(u; v) = Prx∈F n
2
(u · x ⊕ v · f(x) = 0),

and its correlation is defined as follows:

cf (u; v) = 2p(u; v) − 1.

In linear cryptanalysis we are interested in the linear approximation with
correlation far from zero. The number of known plaintexts needed in the lin-
ear cryptanalysis is inversely proportional to the squared correlation. Zero-
correlation linear cryptanalysis uses linear approximations such that the cor-
relation is equal to zero for all keys. Particularly for multidimensional zero-
correlation linear cryptanalysis, if 2m − 1 zero-correlation approximations of
dimension m is used, then by reference [15] the number of required distinct
plaintexts is about 2n+2−m/2. Next we will review the process of multidimen-
sional zero-correlation linear cryptanalysis in more detail.

For most ciphers, a large number of zero-correlation approximations are avail-
able. To remove the statistical independence for multiple zero-correlation linear
approximations, the zero-correlation linear approximations available are treated
as a linear space spanned by m different zero-correlation linear approximations
such that all l = 2m − 1 non-zero linear combinations of them have zero cor-
relation [15]. Thus we can describe a cipher E as a cascade of three parts:
E = E2 ◦E1 ◦E0, and assume there exists m independent linear approximations
(ui, wi) for E1 such that all l = 2m − 1 nonzero linear combinations of them
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have correlation zero. The E0 and E2 are the encryption function added before
or after E1.

For each key candidate, the adversary encrypts the plaintexts for the begin-
ning rounds E0 and obtain some parts of data x, and decrypts the corresponding
ciphertexts for the final rounds E2 and obtain some parts of data y, then obtain
a m-tuple

z = (z1, . . . , zm),where zi = 〈ui, x〉 + 〈wi, y〉,
by evaluating the m linear approximations for a plaintext-ciphertext pair.

For each z ∈ Fn
2 , the attacker allocates a counter V [z] and initializes it to

value zero. Then for each distinct plaintext, the attacker computes the corre-
sponding data in Fm

2 and increments the counter V [z] of this data value by one.
Then the attacker computes the statistic T :

T =
2m−1∑

z=0

(V (z) − N2−m)2

N2−m(1 − 2−m)
=

N2m

1 − 2−m

2m−1∑

z=0

(
V (z)
N

− 1
2m

)2

The value T for right key guess follows a χ2-distribution with mean μ0 =
l · (2n −N)/(2n − 1) and variance σ2

0 = 2l( 2
n−N
2n−1 )2 while for the wrong key guess

the distribution is a χ2-distribution with mean μ1 = l, and variance σ2
1 = 2l.

Denote the type-I error probability (the probability to wrongfully discard the
right key, that is, the success probability) with α and the type-II error probability
(the probability to wrongfully accept a random key as the right key) with β. We
consider the decision threshold τ = μ0+σ0z1−α = μ1−σ1z1−β , then the number
of known plaintexts N should be about

N =
2n(z1−α + z1−β)√

l/2 + z1−α

where zp = Φ−1(p) for 0 < p < 1 and Φ is the cumulative function of the
standard normal distribution.

4 Multidimensional Zero-Correlation Linear
Cryptanalysis on 23-round LBlock-s

Using the miss-in-the-middle technique, Soleimany and Nyberg proposed the
matrix method [16] to automatic search for the longest linear approximations
with correlation zero, and found 64 classes of zero-correlation linear approxi-
mations with the form (Γa, 0) →14r (0, Γb) for 14-round LBlock, where Γa, Γb

contains exactly one nonzero nibble. Based on this, they also proposed a general
zero-correlation linear cryptanalysis on 22-round LBlock-type block cipher with-
out using the property of the key schedule algorithm. Recently, Wang et al. [17]
further presented an improved multidimensional zero-correlation linear crypt-
analysis on 23-round LBlock using the special property of the key schedule algo-
rithm, the time complexity was about 276 23-round encryptions, where 262 known
plaintexts were used, and totally 63 subkey bits were guessed.
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Since the general structure of LBlock-s is the same as LBlock, it also has
such 14-round zero-correlation linear approximations of the form (Γa, 0) →14r

(0, Γb) for 14-round LBlock, where Γa, Γb run through all l = 28 − 1 nonzero
values, they form a linear space spanned by 8 different zero-correlation linear
approximations such that all l = 28 − 1 non-zero linear combinations of them
have zero correlation. When used directly to present a multidimensional zero-
correlation linear cryptanalysis on 23-round LBlock-s, 76 bits of subkey will be
guessed and the total time complexity will be greater than exhaustive search.
So we must try to find some dependence between subkey bits and use them
to reduce the time complexity. Fortunately, by careful discussion we really find
some dependence between subkey bits, for example, we have

K0
i = K6

i+1,K
1
i = K7

i+1.

Using these relations, by selecting proper zero-correlation linear approxima-
tions, we can present a multidimensional zero-correlation linear cryptanalysis on
23-round LBlock-s.

Let E1 be the encryption function of 14-round LBlock-s with zero-correlation
linear approximations of the form (Γa, 0) →14r (0, Γb), we add rin rounds before
E1 and rout rounds after E1, then obtain a (rin + 14 + rout)-round encryption
function E = E2 ◦ E1 ◦ E0. Let Sitein and Siteout be the position of nonzero
nibbles of Γa and Γb, where 0 ≤ Sitein, Siteout ≤ 7.

In order to fully use the dependence of subkey bits to reduce the complex-
ity, we use the improved multidimensional zero-correlation linear cryptanalysis
method proposed by Wang et al. in [17] and search for linear approximations and
(rin, rout) with least number of guessed keys. The least number of guessed keys
is 60, where rin = 5, rout = 4, and the corresponding choices for (Sitein, Siteout)
are as follows:

(Sitein, Siteout) ∈ {(6, 6), (6, 4), (6, 2), (6, 0)}.

We select (Sitein, Siteout) = (6, 6) to give an attack on 23-round LBlock-s,
that is, we use the linear approximations of the form (0u000000, 00000000) →14r

(00000000, 0w000000). As rin = 5, and rout = 4, we put the 14-round zero-
correlation linear approximations in round 6 to 19 and attack LBlock-s from
round 1 to 23 (Fig. 2).

After collecting sufficient plaintext-ciphertext pairs, we guess corresponding
subkeys for the first five rounds and the last four rounds to evaluate the statistic
T . Using the dependence of subkeys bits and using the partial compression tech-
nique we can reduce the time complexity significantly and present an efficient
zero-correlation linear attack on 23-round LBlock-s.

As shown in Fig. 2, the nibble X6
6 is affected by 48 bits of plaintext (X1,X0)

and 48 bits of round keys and the expression can be shown as:

X6
6 =X0

0 ⊕ S(X0
1 ⊕ K0

1 ) ⊕ S(X3
1 ⊕ S(X5

0 ⊕ S(X6
1 ⊕ K6

1 ) ⊕ K7
2 ) ⊕ K5

3 )⊕
S(X0

1 ⊕ S(X6
0 ⊕ S(X1

1 ⊕ K1
1 ) ⊕ K0

2 ) ⊕ S(X1
0 ⊕ S(X2

1 ⊕ K2
1 )⊕

S(X5
1 ⊕ S(X4

0 ⊕ S(X4
1 ⊕ K4

1 ) ⊕ K6
2 ) ⊕ K7

3 ) ⊕ K5
4 ) ⊕ K4

5 )
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Fig. 2. Attack on 23-round LBlock-s

Similarly, the nibble X6
19 is affected by 32 bits of ciphertext (X23,X24) and

28 bits of round keys and the expression can be shown as:

X6
19 =X2

23 ⊕ S(X2
24 ⊕ S(X0

23 ⊕ K0
23) ⊕ K0

22) ⊕ S(X5
24 ⊕ S(X7

23 ⊕ K7
23)⊕

S(X4
23 ⊕ S(X7

24 ⊕ S(X6
23 ⊕ K6

23) ⊕ K5
22) ⊕ K2

21) ⊕ K1
20)

After analyzing the key schedule of LBlock-s, we find the following relations
in the round keys:

K7
2 = K1

1 ,K6
2 = K0

1 ,K4
5 = K0

1 ⊕ K1
1 ,K6

23 = K0
22.

Thus the number of bits need to be guessed can be reduced from 76 to 60.
Assuming that N known plaintexts are used, the partial encryption and

decryption using the partial-compression technique are proceeded as in Table 1.
The second column in Table 1 stands for the subkey nibbles that have to

be guessed in each step, and the third column denotes the time complexity of
corresponding step measured in S-box access. In each step, we save the values
of the Obtained States during the encryption and decryption process. For each
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Table 1. Partial encryption and decryption on 23-round LBlock-s

Steps Guessed
subkeys

Time
(S-box
accesses)

Obtained States Size

1 K1,4,6
1 ,K6

2 ,
K7

2 (K1
1 )

N · 216 · 5 x1 = X0
0 |X0

1 |X5
3 |X0

2 |X1
0 |X2

1 |X7
3 |

X2
23|X2

24|X0
23|X5

24|X7
23|X4

23|X7
24|X6

23

260

2 K0
2 ,K

0
1 (K6

2 ) 260 · 216+4 · 2 x2 = X2
2 |X5

3 |X2
3 |X1

0 |X2
1 |X7

3 |
X2

23|X2
24|X0

23|X5
24|X7

23|X4
23|X7

24|X6
23

256

3 K2
1 256 · 220+4 x3 = X2

2 |X5
3 |X2

3 |X3
2 |X7

3 |
X2

23|X2
24|X0

23|X5
24|X7

23|X4
23|X7

24|X6
23

252

4 K5
3 252 · 224+4 x4 = X4

4 |X2
3 |X3

2 |X7
3 |

X2
23|X2

24|X0
23|X5

24|X7
23|X4

23|X7
24|X6

23

248

5 K7
3 248 · 228+4 x5 = X4

4 |X2
3 |X5

4 |
X2

23|X2
24|X0

23|X5
24|X7

23|X4
23|X7

24|X6
23

244

6 K5
4 244 · 232+4 x6 = X4

4 |X4
5 |

X2
23|X2

24|X0
23|X5

24|X7
23|X4

23|X7
24|X6

23

240

7 K4
5 (K0

1 ⊕
K1

1 )
240 · 236+0 x7 = X6

6 |
X2

23|X2
24|X0

23|X5
24|X7

23|X4
23|X7

24|X6
23

236

8 K0
23 236 · 236+4 x8 =

X6
6 |X2

23|X0
22|X5

24|X7
23|X4

23|X7
24|X6

23

232

9 K0
22(K

6
23) 232 · 240+4 · 2 x9 = X6

6 |X0
21|X5

24|X7
23|X4

23|X5
22 224

10 K5
22 224 · 244+4 x10 = X6

6 |X0
21|X5

24|X7
23|X2

21 220

11 K7
23 220 · 248+4 x11 = X6

6 |X0
21|X3

22|X2
21 216

12 K2
21 216 · 252+4 x12 = X6

6 |X0
21|X1

20 212

13 K1
20 212 · 256+4 x13 = X6

6 |X6
19 28

possible value of xi(1 ≤ i ≤ 13), the counter Ni[xi] will record how many
plaintext-ciphertext pairs can produce the corresponding intermediate state xi.
The counter size for each xi is shown in the last column.

To be clear, we explain some steps in Table 1 in detail.

Step 1. We allocate the 60-bit counter N1[x1] and initialize it to zero. We
then guess 16-bit keys and partially encrypt N plaintexts to compute x1, and
increment the corresponding counter.

Since K7
2 = K1

1 , we only need to guess 16 bits of subkeys K1,4,6
1 ,K6

2 . As
shown in Fig. 2, the nibble X6

6 is affected by 42 bits of plaintext (X1,X0). They
are represented by

x0 =X0
0 |X0

1 |X3
1 |X5

0 |X6
1 |X6

0 |X1
1 |X1

0 |X2
1 |X5

1 |X4
0 |X4

1 |
X2

23|X2
24|X0

23|X5
24|X7

23|X4
23|X7

24|X6
23

Since the following three equations

X0
2 = X6

0 ⊕ S(X1
1 ⊕ K1

1 ),
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X5
3 = X3

1 ⊕ S(X5
0 ⊕ S(X6

1 ⊕ K6
1 ) ⊕ K7

2 ),

X7
3 = X5

1 ⊕ S(X4
0 ⊕ S(X4

1 ⊕ K4
1 ) ⊕ K6

2 )

are true for LBlock-s, then the 80-bit x0 can be reduced to 60-bit x1 :

x1 = X0
0 |X0

1 |X5
3 |X0

2 |X1
0 |X2

1 |X7
3 |X2

23|X2
24|X0

23|X5
24|X7

23|X4
23|X7

24|X6
23

after guessing 16 bits subkeys K1,4,6
1 ,K6

2 . Update the expressions of X6
6 as fol-

lows:

X6
6 =X0

0 ⊕ S(X0
1 ⊕ K0

1 ) ⊕ S(X5
3 ⊕ K5

3 ) ⊕ S(X0
1 ⊕ S(X0

2 ⊕ K0
2 )⊕

S(X1
0 ⊕ S(X2

1 ⊕ K2
1 ) ⊕ S(X7

3 ⊕ K7
3 ) ⊕ K5

4 ) ⊕ K4
5 )

Step 2. We allocate the 56-bit counter N2[x2] and initialize it to zero. We then
guess 4-bit subkeys K0

2 and partially encrypt x0 to compute x1 and add the
corresponding N1[x1] to N2[x2].

Since the subkey K0
1 = K6

2 is known, and the following two equations

X2
2 = X0

0 ⊕ S(X0
1 ⊕ K0

1 ),

X2
3 = X0

1 ⊕ S(X0
2 ⊕ K0

2 )

are true for LBlock-s, then the 60-bit x1 can be reduced to 56-bit x2 :

x2 = X2
2 |X5

3 |X2
3 |X1

0 |X2
1 |X7

3 |X2
23|X2

24|X0
23|X5

24|X7
23|X4

23|X7
24|X6

23

after guessing 4 bits subkeys. Update the expressions of X6
6 as follows:

X6
6 = X2

2 ⊕S(X5
3 ⊕K5

3 )⊕S(X2
3 ⊕S(X1

0 ⊕S(X2
1 ⊕K2

1 )⊕S(X7
3 ⊕K7

3 )⊕K5
4 )⊕K4

5 )

The following steps are similar to the above two steps, and we do not explain
in details. The cost of step 1 to step 13 in the process of partial computation is
about 283 S-box access, which is about 283 · 1/8 · 1/23 ≈ 275.4 23-round LBlock-s
encryptions.

Next we will discuss in detail the data complexity and total time complexity
of the attack.

As (0u000000, 00000000) →14r (00000000, 0w000000) is the selected zero-
correlation linear approximations, where u,w ∈ F 4

2 . When u,w run through
all l = 28 − 1 nonzero values, they form a linear space of dimension 8, so we
can choose 8 independent linear masks with (ui, wi) ∈ {(1, 0), (2, 0), (4, 0), (8, 0),
(0, 1), (0, 2), (0, 4), (0, 8)}, and calculate the 8-bit tuple

z = (z1, . . . , z8),where zi = 〈ui,X
6
6 〉 + 〈wi,X

6
19〉.

Then evaluate the statics Tk = N28

1−2−8

∑28−1
z=0 (V (z)

N − 1
28 )2 and make decision for

each guessing key k.
Similar as in [17], let the type-I error probability α = 2−2.7 ≈ 0.154 and the

type-II error probability β = 2−9 ≈ 0.002, then z1−α ≈ 1, z1−β ≈ 2.88. Since
n = 64 and l = 28 − 1 = 255, then from N = 2n(z1−α+z1−β)√

l/2+z1−α

we know the data

complexity N is about 262.3, and the decision threshold is τ = μ0 + σ0z1−α.
To recover the secret key, the following steps are performed:
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1. Allocate a counter V [z] for 8-bit z.
2. For 28 values of x13 :

(a) Evaluate all eight basis zero-correlation masks on x13 and get z.
(b) Update the counter V [z] by V [z] = V [z] + N13[x13].

3. For each guessing key k, compute Tk = N28

1−2−8

∑28−1
z=0 (V (z)

N − 1
28 )2.

4. If Tk < τ , then the guessed subkey values are possible right subkey candidates.
5. Do exhaustive search for all right candidates.

Complexity. The cost of step 1 to step 13 in the process of partial computation
is about 275.4 23-round LBlock-s encryptions. Since the type-II error probability
β = 2−9), the number of remaining key candidates is about 280 · β = 271. Thus
the total time complexity is 275.4 + 271 ≈ 275.4 23-round LBlock-s encryptions.
The data complexity is 262.3 known plaintexts, and the memory requirements
are about 260 bytes.

5 Conclusions

The security of LBlock-s against multidimensional zero-correlation linear crypt-
analysis is evaluated. By choosing proper zero-correlation linear approximations,
we present a multidimensional zero-correlation linear cryptanalysis on 23-round
LBlock-s using the shifting relation of certain subkeys derived by the new key
schedule algorithm. The complexity is almost as that of LBlock. Our research
showed that the improved key schedule algorithm did not enhance their ability
to protect against zero-correlation linear cryptanalysis, and it is better to use
the irregular bit-shifting to disturb the shifting relation between subkeys.
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and China Postdoctoral Science Foundation (No. 2014T70417).

Appendix. Key Schedule of LBlock

The 80-bit master key K is stored in a key register and denoted as K =
k79k78 . . . k0. Output the leftmost 32 bits of register K as subkey K1.

For i = 1, 2, . . . , 31, update the key register K as follows:

1. K ≪ 29
2. [k79k78k77k76] = S8[k79k78k77k76]

[k75k74k73k72] = S9[k75k74k73k72]
3. [k50k49k48k47k46] = [k50k49k48k47k46] ⊕ [i]2
4. Output the leftmost 32 bits of current content of register K as round subkey

Ki+1.
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