How to Vote Privately Using Bitcoin

Zhichao Zhao® and T.-H. Hubert Chan

The University of Hong Kong, Pokfulam, Hong Kong
zczhao@cs.hku.hk

Abstract. Bitcoin is the first decentralized crypto-currency that is cur-
rently by far the most popular one in use. The bitcoin transaction syntax
is expressive enough to setup digital contracts whose fund transfer can
be enforced automatically.

In this paper, we design protocols for the bitcoin voting problem, in
which there are n voters, each of which wishes to fund exactly one of two
candidates A and B. The winning candidate is determined by majority
voting, while the privacy of individual vote is preserved. Moreover, the
decision is irrevocable in the sense that once the outcome is revealed, the
winning candidate is guaranteed to have the funding from all n voters.
As in previous works, each voter is incentivized to follow the protocol
by being required to put a deposit in the system, which will be used as
compensation if he deviates from the protocol. Our solution is similar
to previous protocols used for lottery, but needs an additional phase to
distribute secret random numbers via zero-knowledge-proofs. Moreover,
we have resolved a security issue in previous protocols that could prevent
compensation from being paid.

1 Introduction

Private e-voting is a special case of secure multi-party (MPC) computation [9]
which allows a group of people to jointly make a decision such that individual
opinion can be kept private. However, the MPC framework only guarantees that
the outcome is received by everyone, whose privacy is also protected. When the
decision is financially related, it is not obvious how to ensure that the outcome is
respected. For instance, a dishonest party may simply run away with his money.

Bitcoin [15] provides new tools for tackling this problem. Although it was
originally intended for money transfer, surprisingly it can also be used to enforce
a contract such that money transfer is guaranteed once the outcome is known,
without the need of a trusted third party.

Our Problem. We study the bitcoin voting problem. There are n voters
Py, ..., P,, each of which wishes to fund exactly one of two candidates A and B
with 1B!. The winning candidate is determined by majority voting (assuming n
is odd) and receives the total prize nl3. The voting protocol should satisfy the
following basic properties:

This research is partially funded by a grant from Hong Kong RGC under the contract
HKUT19312E.

! We use the latex code from [3] to generate the bitcoin symbol B.

© Springer International Publishing Switzerland 2016

S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 82-96, 2016.
DOI: 10.1007/978-3-319-29814-6_8



How to Vote Privately Using Bitcoin 83

— Privacy and Verifiability. Only the number of votes received by each candidate
is known, while individual votes are kept private.

— Irrevocability. Once the final outcome of the voting is revealed, the winner is
guaranteed to receive the total sum nl3.

In order to incentivize voters to follow the protocol, each voter needs extra
bitcoins as deposit, which will be refunded if he follows the protocol, but will be
used as compensation if he deviates from the protocol. The candidates A and B
also need to participate in the protocol to collect the prize, however they do not
need to own bitcoins initially.

Our Approach. In voting, each voter P; has a private vote O; € {0,1} (0,1
stands for A, B respectively), and the sum ), O; reveals the winning candidate,
where the O;’s must be kept private. Our voting protocol consists of two parts:

— Vote Commitment. The n voters generate n random numbers R;’s summing
to 0 (mod N) using a distributed protocol, where R; is kept secret and com-
mitments to R; and the masked vote (31» = R;+ O; are public known, together
with a zero-knowledge proof which proves the values are generated correctly.
By using zero-knowledge proofs we enforce the voters to obey the protocol.

— Vote Casting. This part of the protocol utilizes the bitcoin system for the
voters to reveal their O;’s, which also guarantees that the winner can receive
the prize and any voter that does not reveal his masked vote is penalized. In
Sect. 3.2, we use the claim-or-refund technique as in [8] to design a protocol in
which the voters reveal their masked votes sequentially. As a result, this pro-
tocol takes ©(n) rounds and ©(n?) bytes in the bitcoin network. In Sect. 3.3,
improved upon the previous section, we use the idea of a joint transaction as
in [4,13] to reveal the masked votes, where only constant number of rounds
and O(n) bytes in the bitcoin network are used.

Previous Security Issue and Our Fix. In vote casting, we use a similar idea
as that of [4]. As pointed out in [4], the way timed-commitment is used presents
a serious security flaw because the compensation is paid with a transaction
depending on the hash of a (unconfirmed) joint transaction. In the protocol
described in [4], an adversarial party could create an alternate joint transaction
with a different hash by resigning it. The details are discussed in Sect. 3.3 of
our full paper [16]. The cause of this issue is that the joint transaction is signed
by each voter individually, who has the ability to produce a different signature.
We resolve this issue by using a threshold signature scheme [10] in which a
valid signature can only be produced by all voters together, which prevents the
previous attack.

Our Constribution. In this paper, we propose a protocol that solves the bitcoin
voting problem.

— We design a vote commitment scheme that hides individual votes in ran-
dom numbers, where verifiability and privacy are guaranteed by using zero-
knowledge proofs. This part can be used independent of the bitcoin network.



84 7. Zhao and T.-H.H. Chan

— We design vote casting schemes that place transactions in the bitcoin network
in a carefully designed way. Such that any adversaries deviating from the
protocol will be punished.

— We point out a security issue from previous protocol, which we fix by using
threshold signature schemes.

The rest of the paper is organized as follows: In Sect. 2, we define Bitcoin and
related cryptographic primitives. In Sect. 3, we present our protocol, which con-
tains vote commitment and vote casting. In Sect. 4, we discuss implementation
details and the performance of our protocols.

1.1 Other Related Work

The bitcoin protocol [15] has inspired many lines of research since its introduction
in 2008. Some researchers have worked on identifying the protocol’s weakness [5].
Other researchers have designed new crypto-currency with more features. For
instance, zero-knowledge proofs and accumulators have been used to improve
the currency’s anonymity [6,14]. In [6], a new system is designed such that the
proof-of-work to mine new coins is achieved by storage consumption, as opposed
to computation power in bitcoin.

Another line of research, including this paper, is to design protocols that are
compatible with the existing bitcoin system. Since bitcoin is still by far the most
popular crypto-currency, protocols that can be deployed in the current bitcoin
system have the most practical impact. For instance, a lottery protocol [4] was
proposed, in which a group of gamblers transfer all their money to a randomly
selected winner. General secure multi-party computation protocols [8,13] were
also considered, in which bitcoin provides a way to penalize dishonest users.

Basic functionalities has been implemented in the bitcoin system that can
serve as building blocks for more complicated protocols. In [8], the claim-or-
refund mechanism is designed to enforce the promise made by party P that he
will pay party @ a certain amount, provided that @ (publicly) reveals a certain
secret before a certain time. As utilized in this paper, this mechanism allows
a protocol in which parties reveal their secrets sequentially such that the first
party that deviates from the protocol has to compensate the parties that have
already revealed their secrets.

In [4], the timed-commitment mechanism is designed to enforce the promise
made by party P that he will pay party @ a certain amount, unless he (publicly)
reveals a certain secret before a certain time. In [13], the timed-commitment
mechanism is extended for multiple-parties to reveal their secrets together. How-
ever, as mentioned in [4], their implementation of the timed-commitment mecha-
nism has a security issue such that an adversary could prevent the compensation
from being paid even when a party does not reveal his secret before the deadline.

2 Preliminaries

Bitcoin. We use the same terminology for Bitcoin [15] as in [4]. Bitcoin consists
of a block of transactions known as the blockchain, which is maintained and



How to Vote Privately Using Bitcoin 85

synchronized at each peer. New transactions are packed into block and linked
at the end of the blockchain at a fixed time interval. Each transaction contains
multiple inputs, outputs and an optional locktime, and is indexed by its hash
called txid.

Validation of Transactions. An output of a transaction specify a program indi-
cating how the coin (unspent output) can be redeemed. Each input must refer to
an unspent output which is specified by its txid and the output index. The input
contains an input-script which servers as parameters of the referred output (as
a program). For the transaction to validate, the referred output (as a program)
must evaluates to true on all the inputs, all referred outputs must be unspent,
and the current time must be no earlier than the locktime.

For a detailed description of the Bitcoin network, please see our full
paper [16].

Zero-Knowledge Proof. We utilize the zero-knowledge Succinct Non-
interactive ARgument of Knowledge (zk-SNARKSs) [7]. Zero-knowledge proof
allows a party to convince others that he knows a secret witness w such that
C(xz,w) = 1, where x is known by all parties. E.g., “I know an w such that
sha256(w) = z”. The use of zk-SNARKSs is to guarantee that the voters cannot
deviate from the protocol. We use the definition for zk-SNARKSs from [7]. Infor-
mally, zk-SNARKs is a triple of (randomized) algorithms (G, P, V'), where G is
the key generator which runs only once universally and outputs the key-pairs
(pk,vk), P(pk,x,w) is the prover and V (vk, z, ) is the verifier.
We informally summarize the properties satisfied by zk-SNARKSs.

— Completeness. Prover P can produce a proof that is accepted by V.

— Soundness and Proof of Knowledge. No polynomial-time adversary can fake
a proof for x, without knowing its witness w.

— Efficiency. The algorithms runs in time polynomial in the sizes of their inputs
and the given security parameter.

— Zero-knowledge. The proof leaks no information other than the statement
itself.

Commitment Schemes. Commitment schemes allow one party to hide to a
secret value which is opened in a later phase to another party, where the other
party is convinced that the opened value is the original one. As it turns out, the
Bitcoin protocol is restricted to certain operations, which limits the choice of com-
mitment schemes. In Sect. 2.3 of our full paper [16], we give the formal definition
and discuss commitment schemes that is compatible with the Bitcoin protocol.

Security Model. In this paper, we assume that the blockchain is unique (no
branching) and one block is grown at a fixed time interval known as round.
The only ways to interact with the blockchain are submitting transactions and
reading transaction histories. No one can affect the blockchain by other “non-
standard” ways. We assume that the blockchain is always publicly accessible.
However, we do not assume such access is private. At the time a transaction is
submitted, it is publicly known. A submitted transaction may or may not appear



86 7. Zhao and T.-H.H. Chan

on the blockchain, depending on its validity. If a transaction is valid, it will be
confirmed one round later, otherwise it will be rejected. If conflicting transactions
are submitted in the same round, only one of them will be confirmed. Hence, if
an adversary is able to create a different input-script for a (newly submitted)
unconfirmed transaction. He could submit another transaction with the modi-
fied input-script within the same round. In such case, either transaction could
appear in the final blockchain.

A type of attack called signature malleability needs to be considered. Briefly,
it means creating a valid signature from an existing one, without the correspond-
ing plain text. Many protocols [4,13] suffers from this attack especially when a
joint transaction is concerned. For a detailed discussion of malleability attack,
please see our full paper [16]. We tackle this issue by using a threshold signature
scheme, which we describe in details through the protocols.

Peers (voters and candidates) need to communicate in the protocol. We
assume there exists a secure private channel between any pair of participants.
We also assume there exists a public broadcast channel among all participants.

3 Our Protocols

We present our protocol for bitcoin voting. Apart from a (universal) one-time

setup using zk-SNARKSs [7], our protocol works in a peer-to-peer fashion without

a centralized server. Suppose IV is the least power of 2 that is greater than the

number n of voters. We use Zy to denote the group of integers modulo N. We

choose N to be a power of 2 to simplify the implementation of modulo arithmetic.
On a high level, our protocol consists of two components.

— Vote Commitment. In this phase, each voter P; has a private vote O; €
{0,1}, where 0 indicates candidate A and 1 indicates candidate B. Each voter
P; receives a secret random number R;, which is constructed in a distributed
fashion such that 3, R; = 0.

At the end of this phase each voter P; makes commitment C; to R;, and
commitment C; to his masked vote O; := O; + R;. The commitments C;
and C’l are broadcast publicly, while the underlying values and opening keys
remain secret.

Every participant convinces others that he follows the protocol using zero-
knowledge proofs. In particular, everyone is convinced that ), R; = 0 and
O; — 0; € {0,1} with respect to the commitments. This part is described in
Sect. 3.1.

— Vote Casting. In this phase, the votes are cast using transactions in the
bitcoin protocol, which are responsible for revealing the outcome and guar-
anteeing money transfer to the winning candidate. After each voter P; reveals
his masked vote O;, the outcome ), O; (the number of votes supporting B)
is known, and the winning candidate is guaranteed to receive nl3.

Moreover, parties that deviate from the protocol are penalized. We have two
versions for vote casting, which have different consequences for the penalty and
the funding outcome for the candidates when a voter deviates from the protocol.



How to Vote Privately Using Bitcoin 87

(a) The first version is based on the lottery protocol in [8] using a claim-or-
refund functionality. The voters reveal their masked votes in the order:
P, P, ..., P,. If voter P; is the first to deviate from the protocol, he
pays a penalty to each voter that has already revealed his masked vote.
Everyone else gets his deposit back, and the protocol terminates while
neither candidate A nor B gets any money.

(b) The second version is an improvement over other protocols [4,13] using
joint transaction to incentivize fair computation via the bitcoin system.
Each voter P; places (1 + d)I3 into the bitcoin system, where 113 is for
paying the winning candidate and dB is for deposit. If a voter reveals his
masked vote O;, he can get back the deposit dI3. For each voter that does
not reveal his masked vote within some time period, his deposit di3 will
be used as compensation. For instance, with d = 2n, the deposit can be
shared between the candidates A and B.

The two versions are described in Sects. 3.2 and 3.3, respectively.

3.1 Vote Commitment

Recall that we wish to uniformly generate random numbers R;’s that sum to 0
such that for each 4, only voter P; receives R;. Moreover, the commitments to
R; and O; = (R; + O;) are public.

We first give a high level idea of the procedure. Imagine that there is an
n X n matrix [r;;] whose entries contain elements from Zy. The protocol can be
described in terms of the matrix as follows.

1. For each i, voter P; generates the i-th row whose sum ; Tij 1s zero. This is
done by generating n — 1 random numbers and derive the last.

2. For each ¢ and j, voter P; sends r;; to P; via the secret channel.

3. For each i, voter P; knows the i-th column. Hence, he computes and commits
to both R; := Zj rj; and the masked vote O; := O, + R;.

The trick here is that commitment schemes and zero-knowledge proofs are
used to ensure that every party follows the protocol, while maintaining the
secrecy of the random numbers. For a step-by-step description of the algorithm
please see Fig. 2.

Security Analysis. The security of the vote commitment protocol follows read-
ily from the security of commitment schemes [11] and zero-knowledge proofs from
zk-SNARKSs [7]. Observe that as long as at least one party generate his random
numbers uniformly at random, the resulting R;’s will still be uniform. Hence no pri-
vate information is leaked by revealing O;’s. Using commitment schemes and zero-
knowledge-proofs, each P; commits to both R; and the masked vote O; := R; + O,
and convinces everyone that O; — R; € {0, 1}, while keeping them secret.

3.2 Vote Casting via Claim-or-Refund

This version of the vote casting protocol is based on the lottery protocol in [8]
that makes use of bitcoin transactions to guarantee money transfer. The protocol



88 7. Zhao and T.-H.H. Chan

is not symmetric among the voters, and the voters are supposed to reveal their
masked votes in the order: Py, Ps, ..., P,. In order to participate in the protocol,
for i € [n — 1], voter P; needs to place (i + 1)I3 into the system, and voter P,
needs to place (3n— 1)B into the system. This protocol requires a linear number
of bitcoin rounds, as opposed to constant number of rounds in the protocol that
is given in Sect. 3.3. The protocol in this section guarantees the following:

— If every voter reveals his masked vote, the net effect is that each voter pays
1B to the winning candidate.

— If voter P; is the first that does not reveal his masked vote, the net effect
is that he pays 1B to each voter that has already revealed his masked vote.
Neither candidate receives any money in this case.

We make use of the claim-or-refund (COR) functionality which is first introduced
in [8]. It can be used for “conditionally transfer of coins”. Briefly, COR protocol
between two parties X and Y guarantees that, after a deposit phase, either X
reveals some secret (predetermined by X and Y) to Y, or Y is compensated
after some time interval. We assume the readers are familiar with it and the
description is omitted from here.

Vote Casting via COR. We show how the vote casting protocol can be imple-
mented with a sequence of COR instances in Figs. 5 and 6. The idea is similar to
that in [13]. For n voters, there are 2n COR instances. The deposit transactions
of the COR instances are placed in the reversed order as the claim transactions
are broadcast to reveal the masked votes.

Correctness. The correctness of the protocol is analyzed in the same way as [13].
The voters are supposed to reveal their masked votes in the order: Py, Ps, ..., P,.
At the moment just after voters Py, Ps, ..., P; have revealed their masked votes in
the corresponding claim transactions, the net effect is that P, has paid each of
the previous voters 113. Hence, if P;| 1 does not reveal his masked vote, eventually
all outstanding COR instances will expire and the protocol terminates.

On the other hand, if everyone follows the protocol, then at the end all the
masked votes can be summed up to determine the winner, who can collect n3
from P,.

3.3 Vote Casting via Joint Transaction

The protocol in Sect. 3.2 requires a linear number of bitcoin rounds. In this
section, we give an alternative protocol that only needs constant number of
bitcoin rounds. Also, our protocol has the advantage of small total transaction
size. The total size of the transactions in the protocol is ©(n) bytes, instead of
©(n?) from previous protocol.

Loosely speaking, we achieve this by locking all bitcoins involved in a trans-
action that is jointly signed by all voters. The protocol is symmetric among the
n voters. In the protocol, each voter P; needs (1+d)13, of which 13 is to be paid
to the winning candidate if everyone reveals his masked vote and the remaining



How to Vote Privately Using Bitcoin 89

dB is for deposit that will be used for compensation if P; does not reveal his
masked vote. The timed-commitment technique in [4] can be used to handle the
deposit and compensation.

The protocol guarantees the following:

— If a voter reveals his masked vote, he can get back the deposit dB.

— If every voter reveals his masked vote, the sum ), O; determines the winner
who receives nB.

— If at least one voter does not reveal his masked vote, the nl3 originally
intended for the winner will be locked. For each voter that does not reveal
his masked vote, his deposit will be used for compensation. Here are several
options:

(a) For d = 2n, the deposit can be shared between candidates A and B. We
shall concentrate on this option in this section.

(b) For d = n, the deposit can be distributed among all voters in a similar
way.

There is a potential problem in the “joint transactions” described in [4,13]. We
fix this problem by using threshold signature schemes. The detail of the problem
is discussed in our full paper [16].

Description of Vote Casting Protocol.

Key Setup. We use the threshold signature scheme [10] for ECDSA. The n
voters J01nt1y generate a group address such that voter P; learns the group public
key pk and his share sk of the private key. No party knows the underlying secret
key sk which could be reconstructed from all parties’ secret shares. Each party
also has his own bitcoin address, whose key pairs are denoted by (pk;, sk;).

Coin Lock. Eventually, the n voters will sign some transaction JOIN together,
whose inputs are contributed by the n voters. We introduce a protocol that
locks the contribution from each voter in a state such that only with all voters’
permission can it be redeemed. This ensures that only one version of the JOIN
transaction can use these coins later. On the other hand, if the protocol ends
prematurely and the JOIN transaction is not created successfully, we wish to let
each voter P; get back his contribution with the transaction BACK;. The coin
lock protocol is described in Fig. 3.

Joint Transaction. In the next step, the n voters shall jointly sign a transaction
JOIN using the threshold signature scheme, each with his private key share sk;.
The JOIN transaction has n inputs referring to the LOCK;’s, each of which
contributes (1+d)[3. It has (n+ 1) outputs, of which out-prize delivers nI3 to the
winning candidate, while each out-deposit; of the remaining n outputs handles
the deposit dB3 of each voter.

Using the timed-commitment technique as in [4], the output out-deposit; can
be redeemed by a transaction that either (1) reveals the masked vote O; and is
signed with the key associated with P;, or (2) is signed with the group key. Hence,
before JOIN takes effect (by appearing in the blockchain), a transaction PAY;



90 7. Zhao and T.-H.H. Chan

with some timelock that can redeem out-deposit; needs to be created and signed
using the threshold signature scheme, in case P; does not reveal his masked vote
and his deposit is used for compensation. The details are in Fig. 4.

Outcome Revealing Phase. After JOIN appears on the blockchain, each voter
P; can collect his deposit d3 (from the output out-deposit;) by submitting a
CLAIM; transaction that provides the opening key IA(Z- to reveal his masked vote
O;. If all voters have submitted their transactions CLAIM;’s, the winning candi-
date is determined and can redeem n3 from out-prize with his signature.

On the other hand, if some voter i does not reveal his masked vote, then the
nl3 from out-prize cannot be accessed anymore. However, since PAY; is publicly
known, after time ¢y, the dI3 from out-deposit; can be redeemed by PAY; as
compensation.

Correctness. After the coin lock protocol, all the transactions LOCK;’s remain
secret, while their hashes and the BACK;’s are publicly known. Observe that
before the transaction JOIN appears on the blockchain, any voter can terminate
the whole protocol without losing any money by submitting BACK; to the bitcoin
system. On the other hand, once JOIN has appeared on the block chain, no voter
can terminate the protocol without either revealing his masked vote or losing
his deposit dB.

4 Experiment

We describe our implementation of the proposed protocols below.

Vote Commitment. We have implemented vote commitment protocol
Sect. 3.1. For zk-SNAKRs [7], we choose snarkfront [12]. We translated the
required relation into circuits. We run the program using a computer with 4G
RAM and Intel Core i5-3570 CPU. The key generator typically takes 5 times
longer than the time to generate proofs. However, since it only needs to be run
once universally, we omit its running time here as it is not a performance con-
cern. In Fig. 1, we report the time to generate proofs for different number of
users. We consider three kinds of proofs: (1) to prove n numbers sum to 0, (2) to
prove n numbers sum to the (n + 1)-st number, (3) to prove the subtraction of
a number from another is either 0 or 1.

In zk-SNARKS, the time for verification is only linear in the size of the input
(and the security parameter). Typically, it takes less than 0.1s.

Vote Casting. As a proof of concept, we have executed the protocols in bit-
coin (testnet) network [2]. We use bitcoinj Java library to create and send the
transactions.

Below we present txid of the transactions. There are 9 voters in our protocol.
One may read the full transaction data on chain.so website.

For the protocol using claim-or-refund in Sect. 3.2, we first create a trans-
action with multiple outputs, each of which acts as the source address of each
claim-or-refund transaction. The source of each claim-or-refund transaction can
be found with index 0 — 17 at:



How to Vote Privately Using Bitcoin 91

300
—— > Open(@-,fﬂ-) =0
-e- T Open(@, I?L) = Open(énH, IA(,LH)
—A- Open(é’l,f(l) — Open(ag,f?z) € {O, 1}
o2}
< 200
&
o
Q
%
B
[}
g
2 100
0

Number n of voters

Fig. 1. Performance of zk-SNARKSs

https://chain.so/tx/BTCTEST/d3{62d6dfd9722699938a3d7457e23ba786a3e
8d14615d128847ad7ca56b7a1a d3f62d6dfd9722699938a3d7457e23ba786a3e¢8d14615d12884TadTca56b7ala.

All following transactions can be found following the outputs. Another exe-
cution in which an adversary terminated the protocol and was punished is here:

https://chain.so/tx/BTCTEST/8d4031dfa71bf9b1a296b6{67c3cb1d801e899
d4ff7d1ee6dd6751622032b60f 8d4031dfa71bfIb1a296b667c3ch1d801e899d4fF1d1ec6dd6751622032b60f «

For the protocol using joint transaction in Sect. 3.3, the JOIN transaction of
a successful execution is here:

https://chain.so/tx/BTCTEST/ca42{58d2a7eadc4360029¢a31e6£2224c¢9b 74
7C18ef985a9b477ac869822c7 ca42f58d2aTeadcl 360029ea31e6f2224c9b7f}Tc18efI85a9b477ac869822¢ .

All claim transactions can be found by following the outputs.

A JOIN transaction of an unsuccessful (terminated by adversary) execution
is here:

https://chain.so/tx/BTCTEST/6506857a75b1{25b930a923e6bd8274cbcch42
339425e21{29cf5ba2ce389738

6506857a75b1f25b9300923e¢6bd827cbecbs2839425e21f29¢f5ba2ce389738 .

All CLAIM; and PAY; transactions can be found by following the outputs.

5 Conclusion

We present protocols that solve the bitcoin voting problem and run directly
on the current bitcoin network. Our protocols consist of two phases. The first
phase generates a masked vote for each voter. We guarantee that the generated
masks are publicly verifiable by the use of zero-knowledge proofs. The second
phase takes the masked votes and put transactions on the blockchain, so that


https://chain.so/tx/BTCTEST/d3f62d6dfd9722699938a3d7457e23ba786a3e8d14615d128847ad7ca56b7a1a
https://chain.so/tx/BTCTEST/d3f62d6dfd9722699938a3d7457e23ba786a3e8d14615d128847ad7ca56b7a1a
https://chain.so/tx/BTCTEST/8d4031dfa71bf9b1a296b6f67c3cb1d801e899d4ff7d1ee6dd6751622032b60f
https://chain.so/tx/BTCTEST/8d4031dfa71bf9b1a296b6f67c3cb1d801e899d4ff7d1ee6dd6751622032b60f
https://chain.so/tx/BTCTEST/ca42f58d2a7eadc4360029ea31e6f2224c9b7f47c18ef985a9b477ac869822c7
https://chain.so/tx/BTCTEST/ca42f58d2a7eadc4360029ea31e6f2224c9b7f47c18ef985a9b477ac869822c7
https://chain.so/tx/BTCTEST/6506857a75b1f25b930a923e6bd8274cbccb42339425e21f29cf5ba2ce389738
https://chain.so/tx/BTCTEST/6506857a75b1f25b930a923e6bd8274cbccb42339425e21f29cf5ba2ce389738

92 7. Zhao and T.-H.H. Chan

the winner is guaranteed to receive the prize digitally. The protocols of the
two phases are of independent interest and we hope our work will inspire other
applications of bitcoin.

Appendix

A Figures

Vote Commitment Protocol

This protocol runs among n voters, where for 7 € [n], party P; has secret vote
0; € {0,1}. We assume the proving and verification keys for zk-SNARKs are
already generated and distributed to all voters. For each i € [n], the procedure
for P; is as follows.

1. Generate n secret random numbers r;; € Zn, for j € [n], such that they sum
to 0.

For j € [n], commit (cij;, kij) < Commit(r;;), where k;; is the opening key to

the commitment c;;.

2. Generate zero-knowledge proofs that shows > ;Tij = 0. Specifically, the
circuit C takes two components. The input component is the n commitments,
while the witness component is the n corresponding opening keys. The circuit
C' evaluates to 1 if the opened values sum to 0.

Broadcast the commitments and zero-knowledge proofs to all voters.

3. Receive commitments and verify the zero-knowledge proofs from all other
parties generated in Step 2.

4. For all j € [n]\ {4}, send to P; the opening key ki;.

For j € [n] \ {¢}, wait for the opening key kj;; from P;, and check that

Tji = Open(cji, k]L) ;ﬁ 1. R

5. Compute R; « Zj ry; and O; «— R; + O;, and commit (C;, K;) «
Commit(R;) and (C;, K;) <« Commit(O;), where K;,K; are the opening keys.
Broadcast the commitment C; and d publicly.

6. Generate and broadcast publicly the zero-knowledge proofs for the following:
(a) “R; =3, r;;”. This is similar to Step 2.

(b) “The committed value in 51 minus that in C; is either 0 or 1.” The input
part of the circuit is the two commitments C; and 51-, and the witness
part is their opening keys. The circuit evaluates to 1 if the opened values
differ by 0 or 1 as required.

7. Receive and verify all proofs from other parties generated in Step 6. The
protocol terminates.

Fig. 2. Vote commitment protocol



How to Vote Privately Using Bitcoin 93

Coin Lock Protocol

Each voter locks (1 + d)B into the system, where 113 is to fund the winner, and
dB is for deposit; here, we set d := 2n. Each voter P; does the following:

1. P; creates a (secret) transaction LOCK;. Its input is (1 + d)B owned by P;,
and its output is the address of the group public key EE
P; also creates a simplified transaction BACK; that transfers the money from
LOCK; back to an address pk; owned by P;. Note that hash(LOCK;) is em-
bedded in BACK;, but LOCK; remains secret.

P; broadcasts (simplified) BACK; to all other voters.

2. On receiving BACK; for j € [n] \ {i}, P; checks that the hash value referred
to by its input is not hash(LOCK;). At this point, P; has only contributed
coins to EEAthrough the transaction LOCK;, and hence, he can sign anything
else using sk; without losing money.

3. For each j € [n], P; participates in the threshold signature scheme to sign
BACK; using his secret key share sAkZ

4. On receiving the correct signature for BACK;, P; is ready to submit LOCK;
to the bitcoin network later.

Fig. 3. Coin lock protocol



94

7. Zhao and T.-H.H. Chan

Joint Transaction Protocol

Assume that the Coin Lock Protocol has been run, and each P; has created the
(secret) transaction LOCK;, whose hash is publicly known. Suppose t1 < t2 are
times far enough in the future. Each voter runs the following protocol.

1. Each voter generates the same simplified transaction JOIN as follows.

— It has n inputs, each of which refers to LOCK; that contributes (1+d)B.

— It has n + 1 outputs:
out-deposit;, i € [n]: each has value dI3, and requires either (1) the open-
ing key K (revealing 51) and a signature verifiable with P;’s public key
pk;, or (2) a valid signature verifiable with the group’s public key BR
out-prize: has value nI3, and requires all opening keys Ki’s (revealing the
masked votes 6/5) and a signature from the winning candidate (which
can be determined from the sum ), 0,).

. The voters jointly sign JOIN using the threshold signature scheme, each with

his private key share sk;. Observe that JOIN has n inputs, each of which
requires its own group signature. (See [1] for details.) The signed JOIN is
ready to be submitted.

. Each voter generates, for each i € [n], the same simplified transaction PAY;

with timelock t2 whose input refers to out-deposit;. The output handles the
compensation dB if voter P; does not reveal his masked vote by time to. For
instance, with d = 2n, the compensation can be shared between candidates A
and B. The n voters jointly sign PAY; using the threshold signature scheme.

. Each voter P; verifies that the above steps have been completed, and submit

LOCK; to the bitcoin system.

. After all LOCK;’s have appeared on the blockchain, JOIN is submitted to the

blockchain.

. As long as JOIN has not appeared on the blockchain, say by time t;, any

voter P; can terminate the whole protocol by submitting BACK; to get back

(1+a)B.

Fig. 4. Joint transaction




How to Vote Privately Using Bitcoin

95

Vote Casting: Deposit Phase

Assume that the commitments C;’s to the masked votes O;’s are publicly known,
and each P; knows the opening key K; for C;. Assuming that n is odd, the winner
is Bif ) ,0: > 3.

Assume that the times 71 < 72 < ... < T, < Tp41 are spaced sufficiently wide
apart, for they will be used as locktimes.

The protocol runs as follows.

1. P, submits the deposit transactions of the following COR instances to the

bitcoin network:

O1,...,0p:A wins
oo PR

P, A

My Tp+41

01,...,0pn:B wins
e TR

P, B

T 41
2. Simultaneously for each i # n, P; verifies that the deposit transactions broad-
cast in the previous step are on the block chain, and broadcasts the deposit
transaction of the following COR instance to the bitcoin system:

O1,...,0n
_

Pi Pn

2,Tn
3. Sequentially for i from n down to 2:
P; verifies that all deposit transactions broadcast previously have appeared
in the blockchain, and broadcasts the deposit transaction of the following
COR instance to the bitcoin system:

Fig. 5. Deposit phase of vote casting

Vote Casting: Claim/Refund Phase

— For i # n, if before time 7;, all previous secrets 51, .. .,62;1 are revealed,
then P; reveals his secret 52 and use the claim transaction to receive iB from
P’L+1- N

— IAf before time 7, all secrets O; for i # n are revealed, P, reveals his secret
O,, and use the claim transactions to receive 213 from each P; for i # n.

— If before time 7,41 all secrets are revealed, the winner is determined and he
can use the corresponding claim transaction to receive nI3 from P,.

— At any time when the locktime of a COR instance has passed, the sender
can immediately use the corresponding refund transaction to get his amount
back.

Fig. 6. Vote casting: claim/refund Phase



96 Z. Zhao and T.-H.H. Chan
References
1. Checksig - bitcoin wiki. https://en.bitcoin.it/wiki/OP_CHECKSIG (2015).

10.

11.

12.

13.

14.

15.

16.

Accessed 10 May 2015

. Testnet - bitcoin wiki. https://en.bitcoin.it /wiki/Testnet (2015). Accessed 10 May

2015
Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: How to deal
with malleability of bitcoin transactions (2013). CoRR, abs/1312.3230

. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-

party computations on bitcoin. In: IEEE Symposium on Security and Privacy, SP,
pp. 443-458. Berkeley, 18-21 May 2014

Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399-414.
Springer, Heidelberg (2012)

Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: IEEE Sympo-
sium on Security and Privacy, SP, pp. 459-474. Berkeley, 18-21 May 2014

. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:

verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90-108. Springer,
Heidelberg (2013)

Bentov, 1., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421-439.
Springer, Heidelberg (2014)

. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols

(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pp. 11-19. Chicago, 2—4 May 1988

Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J.A., Felten, E.-W.,
Narayanan, A.: Securing bitcoin wallets via a new DSA/ECDSA threshold signa-
ture scheme (2015). http://www.cs.princeton.edu/stevenag/threshold_sigs.pdf
Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press,
New York (2006)

Carlsson, J.: Snarkfront: a c++ embedded domain specific language for zero knowl-
edge proofs. https://github.com/jancarlsson/snarkfront

Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations.
In: Proceedings of the ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 30—41. Scottsdale, 3—7 Nov 2014

Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-
cash from bitcoin. In: IEEE Symposium on Security and Privacy, SP, pp. 397—411.
Berkeley, 19-22 May 2013

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

Zhao, Z., Hubert Chan, T-H.: How to vote privately using bitcoin. Cryptology
ePrint Archive, Report 2015/1007 (2015). http://eprint.iacr.org/


https://en.bitcoin.it/wiki/OP_CHECKSIG
https://en.bitcoin.it/wiki/Testnet
http://www.cs.princeton.edu/stevenag/threshold_sigs.pdf
https://github.com/jancarlsson/snarkfront
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/

	How to Vote Privately Using Bitcoin
	1 Introduction
	1.1 Other Related Work

	2 Preliminaries
	3 Our Protocols
	3.1 Vote Commitment
	3.2 Vote Casting via Claim-or-Refund
	3.3 Vote Casting via Joint Transaction

	4 Experiment
	5 Conclusion
	A Figures
	References



