Eavesdropper: A Framework for Detecting
the Location of the Processed Result in Hadoop

Chuntao Dong'?, Qingni Shen'2®9, Wenting Li'?, Yahui Yang'?,
Zhonghai Wu'*, and Xiang Wan'

! School of Software and Microelectronics, Peking University, Beijing, China
{chuntaodong, wenlingli}@pku. edu. cn,
cowforkl990@hotmail. com,

{qingnishen, yhyang, wuzh}@ss. pku. edu. cn
2 MOoE Key Lab of Network and Software Assurance,

Peking University, Beijing, China

Abstract. Hadoop has become increasingly popular as it rapidly processes big
data in parallel, while security mechanisms have been introduced or studied for
Hadoop. In addition, other security issues that should not be neglected still exist.
Data leakage is one of the major security challenges. This paper studies the
vulnerability of authorization mechanism of services in Hadoop and the threat of
information leakage. Some authorization mechanism allow all users to access
services by default, an adversary can utilize these services to collect information
of other users. We design and implement Eavesdropper, a framework which
utilizes k-means clustering to address the nodes that store the processed results.
We conduct a comprehensive of experiments, which clearly demonstrate that
our detection framework is capable of detecting the nodes that store the results.

Keywords: Hadoop - MapReduce - YARN - Security - Data leakage -
k-means

1 Introduction

Hadoop has become a major platform for big data. However, the research on Hadoop
has mainly focused on the performance, and the security issues have not received
sufficient attention. For Hadoop’s initial purpose, it was always assumed that clusters in
a trusted environment [9]. Therefore, since there were few security controls within
Hadoop, many accidents and security incidents happened in such environments [8]. To
enhance Hadoop system security, authentication and authorization are definitely nec-
essary [2]. To our knowledge, insider attack can use the vulnerability of the security
mechanisms configured by default to steal key value. We propose a framework for
detecting the nodes that store the key value to prove the threat. Because the distributed
characteristics of Hadoop, it is hard for insider attacker to locate the key value. To
address these concerns, we propose Eavesdropper which is a novel, modular detection
framework that can locate the key value.

© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 458-466, 2016.
DOI: 10.1007/978-3-319-29814-6_39

Eavesdropper: A Framework for Detecting the Location 459

Our Contribution. In summary, our work makes three key contributions:

o The vulnerability analysis of the authorization mechanism in Hadoop: If some
authorization of services are configured by default is unsafe. We have highlighted
the importance of ensuring the authorization of Hadoop is not configured by default.

e A framework for detecting the nodes that store results: If existing security mech-
anisms is not configured correctly, the adversary can get sensitive information of
other users, but adversary cannot verify these nodes artificially. We propose a
framework for detecting the DataNodes that store results.

e Combination of vulnerability and detection framework: Based on our detecting
framework, we utilize the vulnerability of security mechanism that allows users to
check information of applications in cluster and containers in a node to implement a
detection scheme.

Paper Organization. We introduce the background in Sect. 2, and analyze threat and
propose the detection framework in Sect. 3. The proposed detection scheme is elab-
orated in Sect. 4. Section 5 presents the implements and experimental results. We
conclude the paper in Sect. 6.

2 Background

This section provides the background information on YARN and security mechanism
of Hadoop [3-5].

YARN. In Hadoop 2.0 the classic MapReduce [7] module is upgraded into a new
computing platform, called YARN [12]. YARN provides the ability to execute user
code across machines in a cluster. This user code is executed in the container. Each
container has an identity (Container ID). An application instance also has an identity
(Application ID). There is a relation between them. Container ID is achieved by using
the application ID along with a monotonically increasing counter for the container.
This paper aims to address the vulnerability of unconstrained web port in Hadoop and
the attacks of stealing high-value information to a Hadoop cluster with multi-tenancy.
YARN provides system management interface for user to browse information of
applications running in the cluster and containers running in the nodes. The default
HTTP port is 8088, it is deployed on RM showing the Applications’ information, such
as the current queue backlog, resource utilization, application execution and so on, as
illustrated in Fig. 1. This web UI opens up result in a number of potential issues [1].

The Security Mechanism of Hadoop. System security mechanism usually consists of
two parts: authentication and authorization. Hadoop security relies on Kerberos and
Tokens for authentication and relies on access control list (ACL) for authorization [10].
In Hadoop, Kerberos is used for client authentication at the “entry points” only. These
entry points are master services like the NameNode, RM and HistoryServer. By
default, the Kerberos authentication is disabled for Hadoop, which default is “simple”.

460 C. Dong et al.

Resource
Manager |,

6Startjob -~ .
——— -

Fig. 1. The architecture of YARN

Hadoop relies on access control list (ACL) for authorization. According to the
authorized entity, it can be divided into Map Reduce job Queue ACLs, Map Reduce
Job ACLs, Service Endpoint ACLs [8]. Service Endpoint ACLs: All RPC endpoints
can have ACLs applied at the protocol layer. These ACLs can control the users and
groups that can access a given service protocol.

3 Vulnerability and Threat

In this section, we analyze the vulnerability of security mechanism in Hadoop and
present a framework for detecting the DataNodes that store key value.

Vulnerability Analysis. As discussed in Sect. 2, Hadoop employ authentication and
authorization to enhance system security. Hadoop relies on access control list
(ACL) for authorization. These ACLs can control the users and groups that can access a
given service protocol. By default, some protocols open to all users and groups. We
believe that any shared web port left unconstrained will be a vulnerability. This vul-
nerability may be utilized by malicious to threaten system security and steal data of
other users in the cluster. In the next part of this section, we propose a detection
framework for detecting the DataNodes that store results to prove the threat of leaking
key value pairs.

Threat Model. We assume adversary is regarded as trusted but have malicious
intentions. He tries to steal sensitive results from other user that he is not allowed to
access. The model of the detecting the nodes that store the results is depicted in Fig. 2.
There are three types of entities:

User: These entities have data to be stored in the cluster and interact with the
Hadoop Cluster to manage their data and submit applications on the cluster.

Adversary: The adversary intends to steal the processed results of other users in the
cluster. He collects information by utilizing the service of cluster and analyzes the
nodes that store results.

Hadoop Cluster: The Hadoop cluster provides resources and services for users.

Eavesdropper: A Framework for Detecting the Location 461

Management node

Submit @ Collect
application < information
,,,,,,,,,,,,,,,,,,,,,,,,,, >

User Assigning tasks Adversary

Slave nodes

(Analyze the nodes
that store data

(3)Steal sensitive data
Fig. 2. The model of detecting the node storing the results

In the following section, we proposed a detection framework based on the threat
model.

4 Detection Framework

We start with a sample scenario where the cluster is only shared between two parties,
i.e., the adversary and the victim. Based on the threat model, we proposed Eaves-
dropper to locate the nodes that store results. Figure 3 demonstrates a sample archi-
tecture of Eavesdropper. The location detection mainly consists of two stages: Probing

and Analysis. In our analysis for above identified threat, we have the following
assumption.

Client Client

Request (User) LT The DataNode

storing results

'
Request | T Result
v

Information

Information of cluster

(V

. 1

] I - Probing Module £ Analysis Module
$ Probing Module Analysis Modul ! s 'ask‘;

! Information ! |probing Policy PP

1 [Probing) Analysis | i |7 wederi | e | ——

. 3 Recorder | €———— | Filter ' ! [: e

I [Policy Analysis Result Policy | 1\ | Address __i|[1tasks || ApplicationID | I

Fig. 3. A sample architecture of Eavesdropper. Fig. 4. A detailed architecture of Eavesdropper.

Assumption: The security mechanism is configured by default, users can easily
access the services and get information of tasks in the cluster.

Probing. If an adversary and a victim are running synchronously, the adversary can
trace the running process of victim’s application and collect information about the
application. For example, the adversary can utilize open service port to get information
of the application. We should implement the probing policy according to practical
scene. After capturing the information, we use the recorder to record the information.

462 C. Dong et al.

Analysis. An adversary can utilize the information about the target application to
analyze the location of results. Before analyzing the information, we need to use the
filter to screen the information that is related to the target application. Such as, we can
use the runtime and the finish time of a task to analyze the type of the task.

4.1 Detailed Eavesdropper

In the previous analysis, we describe our main ideas for addressing the two stages
respectively. Note that we focus on the probing and analysis, and discuss the detailed
design of the detection scheme in the next two part of the Section. We extend
Eavesdropper by utilizing the open service port and related mechanism of YARN.
Figure 4 demonstrates a detailed architecture of Eavesdropper. We realize Eaves-
dropper by utilizing the open service port and the relation between Application ID and
Container ID. In the following of this section, we will describe our scheme in detail.
We examine Eavesdropper in Sect. 5.

4.2 The Design of Probing Module

In this part, we will introduce the implement of probing module. The main function of
probing module is that collect information of applications and tasks. The adversary
intends to steal processed result of target user. He needs to collect and analyze
information to confirm which application is submitted by the target user firstly. The
adversary can achieve this by scanning the management interface of all applications.
The interface including the information of applications, such as Application ID, user
name and progress etc. The recorder record the related information of target user and
send information to the analysis module. Using these information, the analysis module
can get the Application ID of the application submitted by target user.

After receiving the application ID, the probing module will collect information of
the application. An application needs to apply for a mass of containers for computing.
Each node has a mass of containers, we must identify which container belongs to the
target application. In the Sect. 2, we have known the relation between Container ID and
Application ID. We will use this relation to collect information of target application.
The process of collecting and recording information of the target application is cyclic
until the application finish running. The steps are detailed below:

(1) Scan nodes management interface of the cluster to get the NodeHTTPAddress of
all the nodes in the cluster. The address is the address to access each node of the
cluster.

(2) Access the NodeHTTPAddress of each node to collect and record the information
of containers that belong to the target application on the node.

(3) Using the relation between Container ID and Application ID to screen out the
containers that belong to the target application.

(4) Using the recorder to record the container IDs, running node, start time and finish
time of each container. We will use the record of containers to analyze the type of
the task running in the container in the subsequent section.

Eavesdropper: A Framework for Detecting the Location 463

4.3 The Design of Analysis Module

The analysis module is the critical module in proposed detection scheme and its main
function is to analyze the node that store result of the target application. In the last part,
we have recorded the information of containers. We need to analyze which container
was used for a reduce task. Because we know that the result of a mapreduce job is
generated by reduce task. Compared to map task, the reduce task finish later because
the reduce task need to wait the relevant map task finish running. When the reduce task
finish running, the node that the reduce task running on will upload the result to the
HDFS at once [11]. HDFS’s placement policy is to put one replication on the local
node firstly, we can confirm that one replication of the result is on the local node.

The Analysis Policy. Our goal is to find out all the reduce task(s) of the target job. We
provide a solution that utilizes k-means clustering [6]. In our solution, we utilize the
runtime and the finish time of tasks to analyze the type of tasks. The runtime of reduce
tasks is longer than that of map tasks and the reduce tasks finish later than map tasks.
Our solution aims to partition the n observations into 2 sets S = {Spap, Sreduce}, Where
each observation is a 2-dimensional real vector that consists of the runtime R, and
finish time T, of each tasks. The computing task that firstly start to run must be a map
task, and the computing task that finish running last must be a reduce task. We initial
(T1, R1) to p; and (T, R,) to u,. The algorithm proceeds by alternating between two
steps:

Assignment step: Assign each observation to the cluster whose mean yields the least
within-cluster sum of squares. Our goal is make the value of J that in the formula (1) as
small as possible, if data point n is categorized into cluster k, r equals 1, otherwise 1,
equals 0.

N K 2
T= s Dy il = g (1)

1
My = ﬁk Zjealusterk % (2)

Update step: Calculate the new means to be the centroids of the observations in the
new clusters. The value of i is the average value of all the data points of cluster k. We
use the formula (2) to calculate the new center point of each cluster.

After we have detected these DataNodes that store result, we need to find the result
in the DataNode. We assume that we have invaded in these DataNodes. It is difficult to
pick out the datablock of the target application in a DataNode. We utilize a relation
between the finish time of reduce task and the modified time of data block to search the
result. The modified time approximatively equals the finish time of reduce task plus the
time that upload data. We can seek out the data block based on the relation.

The problem of the solution is that the failed tasks may be clustered by mistake. For
example, when a map task may be delayed, the map task will run longer and finish later
that may make it looks like a reduce job. The data that we aim to steal may be
encrypted after computed, but encrypt do not mean safe completely. Our main focus is

464 C. Dong et al.

the process of computing data, data is unencrypted in the computing process, we can
steal data before data encrypted and uploaded to HDFS.

5 Implementation and Experimental Results

5.1 Implementation

We have implemented a detection software in JAVA language. We conducted several
experiments using the local 64-bit Centos operation system with an Intel Core i7
processor running at 3.4 GHz, 4096 MB of RAM, and run Hadoop 2.6.0. The con-
figuration of our Hadoop cluster is of one NameNode, one RM, ten NodeManagers, ten
NataNodes.

5.2 Experiment Results

In this section, we select a standard benchmark for evaluating our detection solution.
The 7 benchmark applications cover a wide range of data-intensive tasks: compute
intensive, shuffle intensive, database queries, and iterative. The size of the input data is
between 1 GB and 1.5 GB in these case studies. We run 20 experiments of each
benchmark applications to verify if our scheme can detect the reduce tasks accurately
and efficiently.

In the first experiment, we run a wordcount job that consists 6 map tasks and 2
reduce tasks to verify the availability of our solution. We record the finish time and
runtime of all the tasks and analyze the record. According to the analysis policy, we
choose two initial means Container_03(C_03), Container_08 as u;, u,. Then, we use
the k-means clustering to partition the n computing tasks into 2 sets S = {S,,p, Sreduce } -
The partition result is Sp,, = {C_02, C_03, C_04, C_05, C_06, C_07}
and Siequce = {C_08, C_09}. We run several jobs including target job and several other
jobs in the other runs simultaneously. Our solution also detected the reduce tasks
successfully and efficiently (Table 1).

Table 1. A wordcount job that consists of 6 map tasks and 2 reduce tasks.

Container ID | Start time | Finish time | Runtime(s) | Task type Analysis result
Container_01 | 17:10:20 | 17:11:01 |41 AplicationMaster

Container_02 | 17:10:28 | 17:10:44 16 Map task

Container_03 | 17:10:26 |17:10:43 17 Map task

Container_04 | 17:10:28 | 17:10:45 17 Map task

Container_05 | 17:10:27 |17:10:43 16 Map task

Container_06 | 17:10:28 | 17:10:46 18 Map task

Container_07 | 17:10:30 | 17:10:45 15 Map task

Container_08 | 17:10:47 |17:10:56 9 Reduce task Rack1Node5
Container_09 | 17:10:48 | 17:10:55 7 Reduce task Rack1Node3

Eavesdropper: A Framework for Detecting the Location 465

We use other 6 benchmark applications to evaluate the accuracy of our solution.
We summarize and analyze the accuracy of 7 benchmark applications, as shown in
Table 2. We find that the analysis accuracy of some benchmark application is not
100 %. By analyzing the feature of each type of benchmark applications, we find out
the applications which the runtime of map and reduce tasks is similar are easily
interferential. We will improve our solution in the future work and make our detection
software more reliable.

Table 2. Summary of the runtime of tasks and the analysis accuracy of 7 benchmark
applications.

Job type Num. of Num. |Num. of |Runtime |Runtime |Num. of Analysis
experiments | of map |reduce |of map |of reduce |analysis accuracy
tasks tasks tasks tasks successfully
Wordcount | 20 6 2 17.2 7.8 20 100 %
Index 20 8 5 50.5 15.7 19 100 %
Grep 20 8 5 18.9 15.4 16 80 %
Aggregate |20 16 8 4.7 10.1 18 90 %
Join 20 16 8 7.8 22.8 19 95 %
Pagerank |20 24 10 10.8 24.6 19 95 %
Kmeans 20 24 10 18.2 37.5 18 90 %

6 Conclusion

In this paper, we proposed a framework for detecting the node that stores key value and
analyzed the vulnerability of the authorization mechanism of services in
Hadoop. Combining these two aspects, we implemented a new detection scheme to
detect the nodes that store the processed result in MapReduce successfully. Our
experiment results demonstrated the effectiveness of our detecting framework of three
cases in real-world systems, we had confirmed that the proposed detection program
based on detection framework can detect the nodes that store the processed result.

Although our framework and detection scheme is implemented in experimental
environment, we can improve and use it in the cloud with multiple users. In the future
work, we aim at extending the approach to a larger set of application level vulnera-
bilities and propose a learning algorithm to classify type of tasks, as well as defining a
sophisticated method able to detect Information Eavesdropping attacks in the cloud
computing environment.

Acknowledgment. This work is supported by the National High Technology Research and
Development Program (“863” Program) of China under Grant No. 2015AA016009, the National
Natural Science Foundation of China under Grant No. 61232005, and the Science and Tech-
nology Program of Shen Zhen, China under Grant No. JSGG2014051 6162852628.

466

C. Dong et al.

References

10.
11.

12.

Apache hadoop. http://hadoop.apache.org

. Sharma, A., Kalbarczyk, Z., Barlow, J.: Analysis of security data from a large computing

organization. In: IEEE 41st International Conference on Dependable Systems Networks,
pp. 506-517. IEEE (2011)

. Hadoop in Secure Mode. http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

common/SecureMode.html
Ulusoy, H., Colombo, P., Ferrari, E.: GuardMR: fine-grained security policy enforcement for
mapreduce system. In: ASIACCS 2015, pp. 285-296. ACM (2015)

. Lahmer, 1., Zhang, N.: MapReduce: MR model abstraction for future security study. In:

International Conference on Security of Information and Networks, pp. 392-398. ACM
(2014)

Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Roy.
Stat. Soc. Ser. C 28(1), 100-108 (1979). Wiley for the Royal Statistical Society

. Dean, J., Ghenmawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI

2004, pp.137-150. ACM (2004)
Huang, J., Nicol, D.M., Campbell, R.H.: Denial-of-Service threat to hadoop/YARN clusters
with multi-tenancy. In: IEEE International Congress on Big Data (2014)

. Smith, K.T.: Big Data Security: The Evolution of Hadoop’s Security Model (2013)

O’Malley, O., Zhang, K., Radia, S.: Hadoop security design. In: Yahoo! Tech Rep (2009)
White, T.: Hadoop: The Definitve Guide, 3rd Edition, pp. 43-79. O’Reilly, Sebastopol
(2012)

Vavilapalli, V.K., Murthy, A.C., Douglas, C.: Apache hadoop YARN: yet another resource
negotiator. In: Proceedings of the 4th Annual Symposium on Cloud Computing, vol. 5.
ACM (2013)

http://hadoop.apache.org
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SecureMode.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SecureMode.html

	Eavesdropper: A Framework for Detecting the Location of the Processed Result in Hadoop
	Abstract
	1 Introduction
	2 Background
	3 Vulnerability and Threat
	4 Detection Framework
	4.1 Detailed Eavesdropper
	4.2 The Design of Probing Module
	4.3 The Design of Analysis Module

	5 Implementation and Experimental Results
	5.1 Implementation
	5.2 Experiment Results

	6 Conclusion
	Acknowledgment
	References

