
Suffix Type String Matching Algorithms Based
on Multi-windows and Integer Comparison

Hongbo Fan1,2, Shupeng Shi1,2, Jing Zhang1,2(&), and Li Dong1,2

1 Department of Computer Science,
Kunming University of Science and Technology, Kunming 650500, China

2 Computer Technology Application Key Laboratory of Yunnan,
Kunming 650500, Yunnan, China

{hongbofan,shupengshi,jingzhang,lidong,

270677673}@qq.com

Abstract. In this paper, 3 classic suffix type algorithms: QS, Tuned BM and
BMHq were improved by reducing the average cost of basic operations. Firstly,
the multi-windows method was used to let the calculations of the jump distance
run in parallel and pipelining. Secondly, the comparison unit was increased to
integer to reduce the total number and the average cost of comparisons. Espe-
cially for BMHq, the jump distance was increased by good prefix rule and the
operations to get the jump distance were simplified by unaligned integer read.
Thus, 3 algorithms named QSMI, TBMMI and BMHqMI were presented. These
algorithms are faster than other known algorithms in many cases.

Keywords: String matching � Single pattern � Multi-windows � Integer com-
parison algorithm

1 Introduction

String matching is the performance bottleneck and key issue in many important fields.
The design of exact single pattern matching algorithm owns very important signifi-
cance. Especially in our focus real-time information processing and security field, high
performance matching is strongly demanded.

In the string S ¼ s0s1. . .sm�1, for 0\k�m, we denote the prefix, suffix and factor
of S of length k as pref ðS; kÞ/suff ðS; kÞ/facðS; kÞ. SCW is used to denote the text in the
slide window. All algorithms in this paper are belonging to exact single pattern
matching algorithm, which means that for given alphabet Σ (|Σ=σ|, Σ* is closure of Σ),
and for given text T = t0t1. . .tn�1 of length n/patten P ¼ p0p1. . .pm�1 of length m, P,
T 2 Σ*, seeking the window that P½i� ¼ SCW ½i� for 8i 2 ½0. . .m� 1� in all possible
sliding window. Algorithms are described in C/C++.

This paper improved three classical suffix matching algorithms: Quick Search [1],
Tuned BM [2] and BMHq [3]. We added Multi-window [4] and presented an integer
comparison method in them. Thus the three series of algorithm named QSMI, TBMMI
and BMHqMI were presented, and they are very fast for short patterns.

© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 414–420, 2016.
DOI: 10.1007/978-3-319-29814-6_35

2 Accelerating Method: Multi-window and Integer
Comparison

Multi-window [4] (shown in Fig. 1) let the text be equally divided as k/2 areas in
k window mechanism (k is even). Each area has two windows and respectively matches
from both ends toward the middle region until they are overlapped and each window
matching procedure by tunes. It is a general accelerate method for string matching.

There are many compares in suffix marching. Let the delay of branch prediction
failure be signed punishment. The average character compare branch cost is about
1� r�1 þ r�1 � punishment, e.g., 10.5 ticks on DNA sequence on Prescott. If una-
ligned read pref ðSCW ;wÞ into an integer, compare with the integer of pref ðP;wÞ. Only
when they are equal, other compares are needed. One integer comparison is equivalent
to w times of character comparison and the average cost of branch is reduced to
1� r�w þ r�w � punishment. To compare uint16_t/uint32_t on Prescott and DNA
sequence, the average branch cost will obviously reduce to 3.27/1.15 ticks.

3 Improved Algorithms Based on QS, Tuned BM and BMHq

By introducing above method into QS [1], a new algorithm called QSMI_wkXc was
presented, which k is the number of windows and X is the integer type for comparison:
S:short/uint16_t, I:int/uint32_t, L:long long/uint64_t. The code of QSMI_w4Ic is listed
as Algorithm 1.

Fig. 1. Mechanism of two windows and multiple windows

Suffix Type String Matching Algorithms 415

By introducing continuous jump method of Tuned BM into QSMI, TBMMI was
proposed. Firstly, determine whether the window match occurs by integer comparison
in the each window. And then, bad character jumping of Quick Search continuous
jump once and bad character jumping of Horspool jump several times. We use once QS
jump and twice Horspool jump twice in the TBMMI. TBMMI_w4Ic that is obtained
only by the bad character jump table of QS are shown as Algorithm 2.

We improved BMHq [3], by using good-prefix rule to increase the jump distance,
unaligned read to reduce read operation and add the method in Sect. 3, an algorithm
named BMHqMI was proposed. BMH2MI_w4Ic is shown in Algorithm 3.

416 H. Fan et al.

When suff ðSCW ; q� 1Þ 62 facðPÞ, BMHq make the window slide from the win0 to
the win1 show as Fig. 2. If suff ðSCW ; q� 1Þ 6¼ pref ðP; q� 1Þ and win1 can not
matching. So the window should keep sliding until find the first k satisfy
suff ðSCW ; kÞ ¼ pref ðP; kÞ (the window get extra jump to the win2).

Fig. 2. Increase jump distance by good-prefix method.

Suffix Type String Matching Algorithms 417

To store the jump distance for q-grams needs q-Dimension table, which a table
lookup need q times read. Unaligned read can simulate original q-Dimensional table
lookup by once read and table lookup. Since on little-endian processor, *(uint16_t*)
(T + i + m − 2) = T ½iþm� 2� + b ¼ T½iþm� 1� * 256. If the 2-Dimensional jump
distance table is shift, build a 1-Dimensional table shift1D and for 8a; b 2 R,
shift1D½aþ b � 256� ¼ shift½a�½b�. So, shift1D½�ðuint 16�ÞðT þ iþm� 2Þ� ¼ shift
½a�½b�. If the read string is T[i + m – 2 … i + m] for q = 3, * (uint32_t*)(T + i+m-2)
&0x00ffffffu = T[i + m − 2] + (int)T[i + m − 1] * 256 + (int)T[i + m] * 65536 can be
used.

418 H. Fan et al.

4 Experiment and Results

We did the following experiment based on SMART 13.02 [6], it gave the implements
of most known algorithms (in EI or SCI paper) as of Feb. 2013. The platform of this
experiment is Intel Core2 E3400 @ 3.0 GHz/Ubuntu 12.10 64 bit desktop/g++4.6/-O3
optimization. The tested texts include three samples of text [8] listed as follow: DNA
sequence (E.coil), pure English text (Bible.txt) and the sample of English nature lan-
guage (world192.txt). This experiment compared all algorithms in SMART 13.02 and
added some newer algorithms not be included in SMART, such as SBNDMqb [9],
GSB2b [9], FSO [10], HGQSkip [11], kSWxC [12], SufOM [13], Greedy-QF [14], etc.
If an algorithm with different parameters are called different algorithms, there were
more than 1000 algorithms are compared, which covered most of known algorithms.
The experiment data (dozens of thousands of records) can not be listed all. In this paper
only list the highest performance of three algorithms under each match condition. The
data of experiment show as Table 1 and the unit is MB/s.

5 Conclusion

In this paper, three classical suffix match algorithms QS/TBM/BMHq are improved by
introduce the method of Multi-window and unaligned read integer comparison, and
three suffix match algorithms named QSMI/TBMMI/BMHqMI were proposed. It is
shown in experiment results that these algorithms are faster than other known algorithm
under multiple match conditions for matching short patterns.

Table 1. Matching speed of the fastest 3 algorithms and their optimal parameters

m=4 m=8 m=16

W
orld192

TBMMI_w4Ic 3766.3 TBMMI_w4Ic 5254.2 QSMI_w4Lc 5736.2

QSMI_w4Ic 3503.1 QSMI_w4Lc 5034.3 TBMMI_w4Lc 5602.4

SBNDM2_2_sbi32 3007.7 SBNDM2_2_sbi32[16] 4610.4 SBNDM4_sbi32[9] 5556.2

B
ible.txt

TBMMI_w4Ic 3531.8 TBMMI_w4Ic 5005.9 TBMMI_w4Lc 5604.5

QSMI_w4Ic 3394.2 QSMI_w4Lc 4747.5 SBNDM4_4_sbi32 5600.4

kSWxC_k6xI[12] 2945.6 SBNDM2_2_sbi32 4162.7 QSMI_w4Lc 5516.6
E

.coli

BMH2MI_w4Ic 2799.6 BMH2MI_w4Lc 4570.8 BMH2MI_w4Lc 5310.5

kSWxC_k4xI 2398.6 kSWxC_k4xL 3520.2 SBNDM4_3_sbi32 5252.3

UFNDM4b_a64[9] 1187.9 SBNDM4_2_sbi32 3138.4 FSBNDMqb_q6f2i32[9] 4926.3

Suffix Type String Matching Algorithms 419

6 Acknowledgements

This paper is supported by National Natural Science Foundation of Yunnan, China
under Grant 2012FB131 and 2012FB137, Key Project of National Natural Science
Foundation of Yunnan, China under Grant 2014FA029, and National Natural Science
Foundation of China under Grant 61562051.

References

1. Daniel, M.S.: A very fast substring search algorithm. Commun. ACM 33(8), 132–142
(1990)

2. Andrew, H.: Fast string searching. Softw. Pract. Exp. 21(11), 1221–1248 (1991)
3. Kalsi, P., Hannu, P., Jorma, T.: Comparison of exact string matching algorithms for

biological sequences. BIRD 2008, pp. 417–426. Springer, Berlin (2008)
4. Faro, S., Lecroq, T.: A multiple sliding windows approach to speed up string matching

algorithms. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 172–183. Springer,
Heidelberg (2012)

5. Horspool, R.N.: Practical fast searching in strings. Softw. Pract. Exp. 10(6), 501–506 (1980)
6. SMART: string matching research tools. http://www.dmi.unict.it/*faro/smart/
7. Simone, F., Simone, F., Thierry, L.: The exact online string matching problem: a review of

the most recent results. ACM Comput. Surv. 45(2), 13:1–13:42 (2013)
8. The large canterbury corpus. http://corpus.canterbury.ac.nz/descriptions/
9. Hannu, P., Jorma, T.: Variations of forward-SBNDM. In: PSC2011, pp. 3–14. Czech

Technical University, Prague (2011)
10. Fredriksson, K., Grabowski, S.: Practical and optimal string matching. In: Consens, M.P.,

Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 376–387. Springer, Heidelberg (2005)
11. Wu, W., Fan, H., Liu, L., Huang, Q.: Fast string matching algorithm based on the skip

algorithm. ICM 2012. LNEE, vol. 236, pp. 247–257. Springer, New York (2013)
12. Lv, Z., Fan, H., Liu, L., Huang, Q., et al.: Fast single pattern string matching algorithms

based on multi-windows and integer comparison. In: IET International Conference on
ICISCE 2012, pp. 1–5 (2012). doi:10.1049/cp.2012.2326)

13. Fan, H., Yao, N.: Tuning the EBOM algorithm with suffix jump. ICITSE 2012. LNEE, vol.
211, pp. 965–973 (2013)

14. Chen, Z., Liu, L., Fan, H., Huang, Q., et al..: A fast exact string matching algorithms based
on greedy jump and QF. ICISCE 2012. In: IET International Conference (2012).
doi:10.1049/cp.2012.2320

15. Fan, H., Yao, N.: Q-gram variation for EBOM. In: Proceedings of the 2012 International
Conference on Information Technology and Software Engineering. LNEE, vol. 211,
pp. 453–460 (2013)

16. Branislav, D., Jan, H., Hannu, P., Jorna T.: Tuning BNDM with q-grams. In: ALENEX
2009, pp. 29–37. SIAM, New York (2009)

420 H. Fan et al.

http://www.dmi.unict.it/%7efaro/smart/
http://corpus.canterbury.ac.nz/descriptions/
http://dx.doi.org/10.1049/cp.2012.2326
http://dx.doi.org/10.1049/cp.2012.2320

	Suffix Type String Matching Algorithms Based on Multi-windows and Integer Comparison
	Abstract
	1 Introduction
	2 Accelerating Method: Multi-window and Integer Comparison
	3 Improved Algorithms Based on QS, Tuned BM and BMHq
	4 Experiment and Results
	5 Conclusion
	6 Acknowledgements
	References

