
An ORAM Scheme with Improved Worst-Case
Computational Overhead

Nairen Cao1, Xiaoqi Yu1, Yufang Yang2, Linru Zhang3, and SiuMing Yiu1(B)

1 The University of Hong Kong, Hong Kong, China
caonr@pku.edu.cn, {xqyu,smyiu}@cs.hku.hk

2 Tsinghua University, Beijing, China
yfyang12@mails.tsinghua.edu.cn

3 Sun Yat-sen University, Guangzhou, China
zhanglr3@mail2.sysu.edu.cn

Abstract. We construct a statistically secure ORAM with compu-
tational overhead of O(log2 N log logN). Moreover, when accessing
continuous blocks, our scheme can achieve an amortized complexity
O(logN log logN), which almost matches the theoretical lower bound
of the ORAM problem. Our construction is based on a tree-based con-
struction [16]. The technical novelty comes from the idea of combining
O(logN) blocks into a big block together with a more aggressive and
efficient “flush” operation, which is the bottleneck of existing ORAM
schemes. All in all, we can achieve better amortized overhead in our new
scheme.

1 Introduction

ORAM (oblivious random access memory) was first studied in [4,11,14] by
Goldreich and Ostrovsky et al. aiming at protecting software privacy against
reverse-engineering by hiding the memory access pattern. Recently, researchers
(e.g. [12]) also gave examples on the possibility of revealing trading transactions
if data access pattern is not protected. Due to advancement of cloud technologies,
more and more users host their data in a third-party cloud system (out-sourcing).
The privacy problem of access pattern becomes one of the key concerns in these
applications.

It is obvious that hiding the access pattern would increase the computational
overhead for accessing the data. Many schemes evolve in recent years aiming at
achieving better results in efficiency (e.g. [5–8,12,18]). Improvements involving
techniques such as using Cuckoo hash functions [1] and randomised Shell sort have
also been proposed. However, the complexity of these techniques hingers the prac-
ticality of the schemes in real applications. Luckily a breakthrough, which signifi-
cantly simplifies the ORAM structure, was proposed in [16] by using a binary tree
layout. Our scheme also follows its structure of storage. In fact, this tree-based
structure triggers several important results in this area (e.g. [3,10,15,17]).

Roughly speaking, in a tree-based ORAM structure, we rely on a linear struc-
ture called position map which maps the indexes of data items to the indexes of
c© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 393–405, 2016.
DOI: 10.1007/978-3-319-29814-6 33

394 N. Cao et al.

tree leaves [16] so that the corresponding path (from root to a particular leaf)
can be retrieved to obtain the data item. The security of the approach lies on two
facts. First, the server has no idea which node contains the data item as all nodes
will be retrieved and some contain dummy values which are not distinguishable
from the server point of view. Also, which path corresponds to which data item
is also unknown to the server. Second, after each access of a path, the retrieved
data items will be randomly assigned to another path of the tree to increase
the difficulty of the server to identify the data item. This operation is usually
referred as the “flush” operation. This flush operation is usually the bottleneck
of the schemes. Moreover, since the position map is important, some schemes
assume that this map is stored in the client side. However, this extra space for
storing the map would mean a storage requirement of N log N bits which would
be a big burden to the client. The situation will be worse if N , the number of
data block (the basic item for operations) is huge (e.g. in a big data application)
and the size of the index log(N) may not be considered as a constant. On the
other hand, the position map cannot be stored in plaintext in the server side,
otherwise the access pattern privacy may be comprised since server can learn
some information of the logical and physical positions such as which path a par-
ticular data item is stored. Existing solutions try to make use of the technique of
recursive ORAM to store the position map also in the server side, i.e., the posi-
tion map is also stored in smaller ORAM structures layer by layer in the server
side. This, however, affects the block size, for example, a block size of ωlog(N) is
required in [16]. Consequently, the large block size will lead to large overhead of
O(log3 N), which is one element to bring up the complexity of this problem. To
explore a solution that can achieve better efficiency without comprising security
requirements is of great significance to apply ORAM to practical situations and
better utilise the tree structures in this problem.To our knowledge, it seems that
the best results of existing solutions sore both the data items and the position
map in the server side to provide a scheme with worst-case overhead complexity
of ∅(log3N). In our work, we propose an improved structure and a more aggres-
sive and efficient flush algorithm, which is the key step in PathORAM related
structures [16], that can achieve better performance.

ORAM Recursive and Problems. The recursive ORAM idea in PathO-
ram [16] is to outsource the position map to a smaller ORAM. We have
ORAM0, ORAM1, ... to represent the ORAM structures. The size of latter
ORAM is smaller than the previous one which is the trick for the success of the
recursive ORAM idea. Intuitively, the “smaller” idea comes from larger block
size. Particularly, they set block size as O(log N) with constant ≥ 2. Obviously,
this setting will result in heavy overhead and bandwidth of the scheme.

While in work [2], Chung et al. claim that the number of recursion rounds is
O(log N) in order to reduce the position map to constant, involving the process of
a Markov chain-like procedure [9]. However, due to their constant block settings,
their scheme may cause recursion failure because they can not reduced the size
of position map in the following layers [2].

An ORAM Scheme with Improved Worst-Case Computational Overhead 395

In our scheme, we resolve this by combining several blocks into one in the
position map and hence reducing its size instead of relying on large block size, and
show that O(logα N) rounds of recursion is sufficient, where α is the compress
factor in each recursion layer.

Idea of Our Scheme. While we follow the basic concepts in [16], our construc-
tion has some special properties, resulting in higher efficiency of our construction.
Roughly speaking, we conceptually combine Q (to be decided later) consecutive
blocks into a big block, called trunk in this paper, and always assign consecu-
tive Q blocks in a trunk to consecutive S leaf nodes. Therefore we only store
N/Q position in range (1, N) each. This idea comes with a more aggressive (will
be explained in details in the following sections) and efficient flush operation.1

Thus, we improve the overhead to O(log2 N log log N) instead of log3N . Also,
our scheme achieves better performance than [16] when consecutive blocks are
accessed which will be introduced in details in Sect. 3.6.

1.1 Our Contribution

Our scheme makes the following contributions.

Lower Computation Overheads. In Path Oram [16], they provide the scheme
with O(log2 N) overhead with O(log N) block size, and O(log N) overhead of
O(log2 N) block size. Therefore, it is indeed summed up to O(log3 N) over-
head. However, Our scheme can decrease the time overhead from O(log3 N) to
O(log2 N log log N) mainly from by replacing the linear storage with searchable
tree structure for the stash and to avoid O(log N) block size.

Better Performance in Continuous Access. Our scheme achieves better
performance when continuous data blocks are read. In the construction of [16],
if we read log N blocks once, the time overhead will be O(log3 N) · log N .
In contrast, in our construction, we can reduce the overhead to as small as
O(log2 N log log N) when they are in the same trunk and we only have to read
one path interval. In this case, we can reach amortizing O(log N log log N) over-
head in average, which is nearly the asymptotic lower bound according to [4].

2 Preliminaries

Notations. We use N to denote the total number of blocks that can be stored
in our ORAM. The block size is denoted by C = O(log N), and the capacity of

1 Moreover, in our experiments, we found a problem in our experiments about an
assertion (Lemma 3) made by [16]. When Lemma 3 claims that a N times, no dupli-
cated block access can maximize the probability of stash size exceeding R (R can
be any number). In other words, Lemma 3 claims that maximum number of stash
will appear with one round after accessing all indexes. However, we find that the
stash size is probably not maximal when each index is visited once, but will continue
increasing until O(logN) number of rounds to converge.

396 N. Cao et al.

buckets is denoted by Z, which is a constant. The height of the binary tree on
the server’s side, is denoted by h which is of size O(log N) (and the total number
of leaves is L = O(N)). T, root, stash and PM denote the binary tree, the root
of the tree, the stash and the position map respectively. The number of blocks
and number of big blocks are denoted by N(b) and N(B) respectively. For any
node n, the Z-sized bucket associated to it is denoted by n.bucket.

Trunk: For Q consecutive blocks whose position is stored in the same slot in
position map, we call the big block formed by this consecutive blocks a Trunk.

Paths: For any leaf node li where i ∈ {0, 1, . . . , 2h − 1}, define the i-th path
P (i) to be the path from node li to the root. It is trivial that in a binary tree,
this path is well-defined and unique, and contains h + 1 = O(log N) nodes. We
call two paths to be consecutive, if and only if their corresponding leaf nodes are
consecutive (i.e. their number differ by 1 modulo 2h).

Path Intervals: Given the interval length S = O(log N) and interval start
position x ∈ {0, 1, . . . , 2h − 1}, a path interval PI(x, s) is defined to be the
union of the S consecutive paths P (x), P ((x + 1) mod 2h), . . . , P ((x + s − 1)
mod 2h). We further define the path interval on the i-th level, PI(x, s, i), to be
the intersection set of nodes of the i-th level and PI(x, s).

We consider a client storing data at a remote untrusted server while preserv-
ing its privacy. While traditional encryption methods protect the content of the
data, they fail to hide the data access pattern, which may reveal information to
untrusted servers. We assume that the server is curious but honest (i.e., do not
modify the data), and small amount of memory is available at the client. Our
ORAM scheme completely hides the data access pattern (the sequence of blocks
read/write) from the server. From the server’s perspective, the data access pat-
tern from two sequence of read/write operations with the same length should be
indistinguishable. Now we provide the followings:

Definition 1 (Access Pattern). Let A(y) denote the sequence of access to the
remote server storage given the data request sequence y from client. Specifically,
y = (opL′ , aL′ , dataL′), ..., (op1, a1, data1)(L′ = |y|), and opi denotes a operation
of either read(ai) or write(ai, datai). In addition, ai is logical identifiers of the
block.

Definition 2 (Security Definition). An ORAM construction is said to be
secure if (1) For any two data request y and z of the same length, their access
pattern A(y) and A(z) are computationally indistinguishable by anyone but the
client, (2) the ORAM construction is correct in the sense that it returns correct
results for any input y with probability ≤ 1 − negl(|y|).

3 Our Scheme

3.1 Overview

Our Scheme follows the tree-based ORAM framework in [16], by building a
binary tree with N leaves nodes. Each node is a bucket with capacity Z = O(1)

An ORAM Scheme with Improved Worst-Case Computational Overhead 397

blocks. Furthermore, the client stores limited amount of local data in a stash.
The blocks to be outsourced are denoted by b1, b2, ..., bN . We combine every
contiguous Q = O(log N) blocks into a trunk, denoted by B1, B2, ..., BM , where
M = N

log N . i.e., bkQ+1, bkQ+2, ..., b(k+1)Q are contained in Bk.
We maintain the invariant that at any time, each trunk is mapped to a

uniformly random interval of contiguous leaf buckets in the range of (1, N), and
every block biQ+j in the binary tree is always placed in some node of the Path
Interval PI(pos(i), S).

Whenever a block is read from the server, the nodes in the Path Interval is
read into the stash and the trunk which contains the requested block is remapped
to a new path interval. When the nodes are written back to the server, additional
blocks in the stash may be evicted into the path as close to leaf level as possible
there exists available spaces in the buckets.

3.2 Server Storage

Our server storage consist of three parts:

Tree: The server stores a binary tree data structure of height h and 2h leaves,
and we need h = �log2(N)�. the levels of the tree are numbered 0 to h where
level 0 denotes the root of the tree and level h denotes the leaves. Each node in
the tree contains one bucket that contains up to Z blocks. If a bucket has less
than Z real blocks, it is padded with dummy blocks to always be of size Z.

Server Storage Size: There are O(N) buckets in the tree and the total server
storage used is about Z · O(N) = O(N) blocks.

3.3 Client Storage

Stash: When we write the blocks back to the tree after a read/write operation,
a small number of blocks might overflow from the tree buckets and they would
stay in the stash. We will show in the following sections that O(log2 N) size of
a shared stash for all recursive ORAM is enough to bound the overflow blocks
with high probability. Specifically, we store the tuple of (index, pos, data) for
each block in the stash arranged. If we store stash as a binary searchable tree
with pos as the key, which still has O(log2 N) storage size. Therefore each access
operation in the stash will cost O(log log2 N) = O(log log N) overhead.

Position Map: In our scheme, we have to keep a record of which Path Interval
each Trunk is mapped to. We use pi to denote the index of the start leaves and
assume that a trunk Bi will be mapped to the leaves in [pi, pi +S]. O(log N) bits
are needed to mark the leaves, so the size of position map is N

Q ·O(log N) = O(N)
bits, which is N

O(log N) · O(log N) = O(N) bits when Q = O(log N). We can use
recursion method to save position map in the server just like previous schemes
to achieve constant position map storage on client side when we can achieve
compress factor α in each recursion layer as much as Q = O(log N)

398 N. Cao et al.

Input: Tree T, position map PM, client stash stash

1 Construct binary tree T with height h and fill all buckets with Z dummies each;
2 ∅ ← stash;
3 for i = 1 to N(B) − 1 do
4 PM [i] ← UniformRandom(0, 1, . . . , L − 1);
5 end

Algorithm 1. Init(T, PM, stash)

Client Storage Size: The size of stash is O(log2 N), which will be discussed
later, and position map will be reduced to constant by the idea of recursive
ORAM on server side. Therefore, the client storage size if O(log2 N).

3.4 Detailed Scheme Description

Initialization. We require that the client stash S is initially empty, and each
server buckets are initialized to contain Z random encryptions of the dummy
block while the client’s position map is filled with independent random numbers
between 0 and L − 1. The algorithm is described in details in pseudocode in
Algorithm 1.

Access Operation (a). In our construction, reading and writing a block to
ORAM is done via a single protocol called Access. Specifically, to read block
a, the client performs data ← Access(read, a, None) and to write data∗ to a
block a, the client performs Access(write, a, data∗). The Access protocol can
be summarized in following simple steps:

1. Remap block : We determine that which trunk Bi contains a by i = a/Q , and
get the PositionInterval pi = PM(i) from position map. Then randomly
remap the position of Bi to a new random position in range (0, L − 1), and
update the position map.

2. Read path interval : Read the path interval PI(pi, S) containing block a,
and store all the blocks in this path interval in stash on the client side.

3. Search Stash(pi, .., pi + S): As described in Sect. 3.3, stash is the searchable
binary tree with size of O(log2 N) sorted by key pos. In our access operation,
we have retrieved the positions of Path Interval of the target block in step 1.
Supposed it contains the paths of pi, ..., pi +S in the Path Interval, then we
can search each path in the stash, which cost O(log log2 N) = O(log log N)
for each access. Since S is set as constant in our scheme, the overhead for this
step is O(log log N).

4. Update block : If the operation is write, update the data stored for block a.

We provide the detailed algorithm in pseudocode in Algorithm2.

An ORAM Scheme with Improved Worst-Case Computational Overhead 399

Input: The index index of the entry required by the client; new value data∗ if
it is a write operation

Output: The content at index

1 found ← false;
2 index trunk ← index/Q //the index of the trunk index belongs to;
3 curPos ← PM[index trunk];
4 PM[index trunk] ← UniformRandom(0, 1, . . . , L − 1);
5 I ← PI(curPos, S);//the path interval we are going to search
6 for each node n in I do
7 if index is in the bucket of n then
8 b ← the required block; data ← contents of b;
9 found ← true;

10 if the operation is write then
11 b.content = data∗;
12 end
13 delete b from bucket of n and add b to stash;

14 end
15 stash ← stash + bucket(n); set bucket(n) to empty;

16 end
17 if found != true then
18 search for index in stash;
19 if found then
20 data← the value found; found←true;
21 end
22 else
23 data← ⊥ and add it to stash;
24 end

25 end
26 return data;

Algorithm 2. Access(index)

Flush Operation. After an Access operation, we have to flush the elements
in the stash to the tree in order to avoid overflow. Hence any Access operation
is invariably succeeded by a flush operation. In a flush operation, we flush
the elements in the stash to the tree within a random path interval PI. When
the Access operation and the flush operation is considered as a whole, the
path interval we use in the flush operation is precisely the same interval we
search in the tree for the index we have just had accessed to. Before describing
the details of the algorithm, we first introduce a property of a node n in the
tree called compatible. Specifically, n.compatible(i) is true if index i belongs to
the Path Interval PI, and there exists one path in PI whose ancestor is n.
Pseudo-code of flush operation is presented in Algorithm3.

Intuitively, supposed we will evict the Path Interval PI(pi, S). Then we will
traverse nodes of this Path Interval from leaf level to root. For each node, we
will write back the blocks in stash that are compatible with the node. Specifically,
to write back a node n in PI(pi, s). It is easy to decide the path range (pi, pj)

400 N. Cao et al.

that node n covers. Then choose a position pr ∈ (pi, pj) randomly, and search
the stash for key pr to retrieve a block subset S′. Obviously, the subset S′

constructed in this way contain the blocks whose indexes are compatible with
node n. Then write back Z blocks from S′ to the node n if size of S′ is larger
than Z.

For example, the green nodes in Fig. 1 is the path interval PI(4, 2). To flush
this Path Interval, we start with node 13, we search the stash with key 13, and
write back the blocks to the node. It is similar for node 14. Next, we move to
node 6. Supposed that S = 2, then the position range for node 6 is 12–15. Then
all blocks whose index mapped to PI(3, 2),PI(4, 2),PI(5, 2) are compatible with
the node 6. In this case, we will randomly pick one position in range of 12–15.
For example, we will call search (13) in the binary searchable tree in stash if we
pick pr = 13. Then write back the retrieved blocks in S′ to node 6. Likewise, we
can get the position range (denoted as leaf id) for node 3 and node 1 is 12–16 and
8–16 respectively. Then pick random position and write back the corresponding
nodes.

Fig. 1. Path interval

Combining the Access operation and Flush operation, we can now readily
give our whole set of read/write operations. The pseudo-code for the complete
protocol is written in Algorithm4.

3.5 Security Analysis

To prove the security of our scheme, let y be a data request sequence of size M .
The server sees A(y) which is a sequence

p = (positionM [aM], positionM−1[aM−1], ..., position1[a1])

An ORAM Scheme with Improved Worst-Case Computational Overhead 401

Input: PI, which is the path interval to be flushed

1 for i=h to 0 do
2 IL ← PI(i);//the set of i-levelled nodes in the path interval
3 for each node n in IL do
4 S′ ← all blocks in stash that are compatible with n;
5 TEMP ← any max{Z, |S′|} blocks from S′;
6 add all blocks in TEMP into n.bucket, and fill with dummies if not full;
7 stash ← stash − TEMP;

8 end

9 end

Algorithm 3. Flush(PI)

Input: index, the index required by the client; v′ which is the new value
written if it is a write operation

Output: v, the value associating with the index

1 PI ← the path interval corresponding to the big block index belongs to;
2 v ← Access(index);
3 Flush(PI);
4 return v;

Algorithm 4. RWWithFlush(index)

where positionj [aj] is the position of address aj indicated by the position map
for the j-th Access operation. Note that once positioni[ai] is revealed to the
server, it is re-mapped to a completely new random label, hence, positioni[ai]
is statistically independent of positionj [aj], when the i-th address and the j-th
address correspond to the same trunk.

As for aj �= ai, the i-th and j-th address are mapped to distinct trunks, with
high probability. Their positions positioni[ai] and positionj [aj] are independent
(i.e., never affect each other) according to our flush mechanism. Therefore, the
position sequence {positionj [aj]}M−1

j=0 consists of independent random integers
from 0 to L − 1. So the server, after seeing the position sequence of y , guesses
correctly with probability at most

Pr[p] ≤
M−1∏

j=0

Pr[positionj [aj]] = (
1
2h

)M = 2−hM (1)

which is negligible in h, where Pr[X] denotes the probability of a correct guess on
the corresponding access step made by the server after seeing the corresponding
position X. This indicates that A(y) is computationally indistinguishable from
random coins.

Now the security follows from the statement above and the fact that the
O(log2 N)-sized stash will not overflow with high probability, which we will dis-
cuss in the following section.

402 N. Cao et al.

3.6 Parametres and Complexities

Now we analyze our parametre settings and corresponding complexities.

Parametre Settings. We choose block size C as a constant, e.g. C = log N
and Z = 5 as in [16]. Furthermore, the size of the trunk is set to 1

2 log N ≤
S ≤ log N(e.g. when N = 219 to 224, we have S = 16). Now we analyze the
complexity of our scheme.

Recursion. We can follow the similar recursion in [16] to reduce the client
space usage to O(1)(i.e., constant). In each recursion, suppose initially we have
N indexes in total, which make up N ∗ log N bits originally. With the help of
trunk, we should actually store N∗log N

Q bits, which is N∗log N
Q∗C = O(N

α) blocks.
α is denoted the compress factor in the recursive layer, and obviously α ≥ 1,
which is decided by the size of trunk Q. The number of recursion layer is log αN .
Particularly, the number of recursion is log N/ log log N when Q = O(log N).
Compared with the previous work [16] that rely on large block to achieve the
compress factor α ≥ 1, our method can achieve lower overhead, and avoid the
burden of bandwidth overhead caused by big block size, simultaneously, reduce
the storage of position map to constant.

Time Complexity. First we consider time complexity. To analyze the time
complexity of read/write operation, we have to figure out the number of blocks
fetched from the path interval in each read/write operation. First we introduce
the following theorem:

Theorem 1. The total number of nodes in a path interval PI of length S (S is
constant) is still O(log N).

Proof. For a path interval PI of length O(log N), we consider PI(j) for each
level j ∈ {0, 1, . . . , h}. Without loss of generality, we suppose the length of
PI is C log N where C is a constant. By the definition of path interval, the
size(i.e., number of nodes) in PI(h) is C log N . Note that for any PI(j), the
nodes in PI(j) are the parents of nodes in PI(j + 1). Since nodes in PI(j + 1)
are consecutive, except for at most the leftmost and rightmost ones, every two
adjacent nodes in PI(j + 1) share the same parent in PI(j). So, the number of
nodes in PI(j) is at most

PI(j + 1) − 2
2

+ 2 =
PI(j + 1)

2
+ 1 (2)

Solving this recursion yields

PI(j) ≤ 2−(h−j)(PI(h) − 2) + 2 (3)

Hence, adding them together, the total number of nodes is

h∑

j=0

PI(j) ≤
h∑

j=0

2−(h−j)(PI(h) − 2) + 2h ≤ 2PI(h) + 2h − 4 = O(log N) (4)

which comes from the fact that PI(h) = O(log N) and h = O(log N).
�

An ORAM Scheme with Improved Worst-Case Computational Overhead 403

Time Overhead Analysis. An access in each recursive level consist of three
sub-steps: 1. Read path in the binary tree totally visit O(log N) nodes (buck-
ets) in a random path interval according to Theorem1. Since the number of
blocks held by a bucket is constant Z, the total time usage is O(log N). 2.
Scan local stash: Supposed stash is maintained as a binary searchable tree with
size O(log2 N), the access of stash in total make up O(log log N). 3. Flush
cost: In a flush operation, according to Theorem1, we visit O(log N) num-
ber of nodes.Adding up the three steps, we get the overhead for each layer
to O(log N log log N).

log αN is the number of recursive layer since we can achieve compress fac-
tor α = O(log N). Take recursion into consideration , we can get overhead of
O(log2 N log log N).

Continuous Access. Our scheme is extremely suitable for continuous access.
While accessing one block needs O(log2 N log log N) overhead, the overhead will
be at most O(log2 N log log N) if we access continuous Q blocks, thus the amor-
tized complexity will be O(log N log log N), nearly the asymptotic lower bound.
The O(log log N) comes from the flush operation: for each ‘flushing’ node, we
need to find an appropriate block, taking an extra O(log log N).

Bandwidth. Similar to the analysis in [16], in each read-write operation, by
Theorem 1, the client reads a total number of O(log N) blocks from the tree and
writes them back, inducing a bandwidth of O(log N).

Fig. 2. Experiment results for stash size. As log N increase, so does the stash size.
When the log N increases by one, the stash size increases nearly log N . Another
observation is the maximum stash size usually does not appear at first round. Since
the Path Oram [16] has a similar distribution depend on round, we think maybe one
round is not enough for proof.

404 N. Cao et al.

4 Discussion

In this section we show that our bound for stash size is O(log2 N). Intuitively
this complexity can be formed by results in [13], but we require some more actual
evidences. In our experiment, we tested a number of cases with parameters Z = 5
and log N ranging from 19 to 23. The results show that the stash size is approx.
O(log2 N) and the maximum stash size will not increase after O(log N) rounds.
We present the actual results in Fig. 2.

Note that the distance between any two adjacent lines is at most O(log N),
indicating that the stash usage is bounded by O(log2 N). We can also notice
that after visiting all indexes once, the maximum stash usage is approximately
half the total maximum stash usage, and only when approximately 16 rounds
have been performed, then maximum stash usage reaches a balance.

5 Conclusion

We propose a new scheme of ORAM achieving O(log2 N log log N) time over-
heads per access, and most importantly, attaining almost asymptotically lower
bound time complexity if continuous data are requested. However, it is still
an open question whether the lower bound can be achieved even when random
addresses are visited, or, on the other hand, if the lower bound can be improved
for general cases.

Acknowledgement. This work is supported in part by National High Technology
Research and Development Program of China (No. 2015AA016008), NSFC/RGC Joint
Research Scheme (N HKU 729/13), and Seed Funding Programme for Basic Research
of HKU (201411159142).

References

1. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. CoRR, abs/0912.5424 (2009)

2. Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(log2 n) over-
head. CoRR, abs/1307.3699 (2013)

3. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

4. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

5. Goodrich, M.T.: Randomized shellsort: a simple data-oblivious sorting algorithm.
J. ACM 58(6), 27: 1–27: 26 (2011)

6. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

An ORAM Scheme with Improved Worst-Case Computational Overhead 405

7. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious ram
simulation with efficient worst-case access overhead. In: Proceedings of the 3rd
ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, New York,
pp. 95–100. ACM (2011)

8. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious ram simulation. In: Proceed-
ings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, pp. 157–167. SIAM (2012)

9. Liu, Z., Chung, K.M., Lam, H., Mitzenmacher, M.: Chernoff-hoeffding bounds for
markov chains: generalized and simplified. In: ACM (1998)

10. Chung, K.-M., Pass, R.: A simple oram (2013)
11. Goldreich, M.T.: Towards a theory of software protection and simulation by obliv-

ious rams. STOC (1987)
12. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO

2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)
13. Raab, M., Steger, A.: “Balls into bins” - a simple and tight analysis. In: Proceed-

ings of the Second International Workshop on Randomization and Approximation
Techniques in Computer Science, RANDOM 1998, London, pp. 159–170. Springer-
Verlag (1998)

14. Ostrovsky, R.: Efficient computation on oblivious rams. STOC (1990)
15. Shi, Elaine, Chan, T-HHubert, Stefanov, Emil, Li, Mingfei: Oblivious RAM with

o((logn)3) worst-case cost. In: Lee, Dong Hoon, Wang, Xiaoyun (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011)

16. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Xiangyao, Y., Devadas,
S., Path oram: An extremely simple oblivious ram protocol. In: Proceedings of the
ACM SIGSAC Conference on Computer & Communications Security, CCS 2013,
New York, pp. 299–310. ACM (2013)

17. Wang, X., Chan, H., Shi, E.: Circuit oram: On tightness of the goldreich-ostrovsky
lower bound. Cryptology ePrint Archive, Report /672 (2014). http://eprint.iacr.
org/

18. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: Proceedings of the 15th
ACM Conference on Computer and Communications Security, CCS 2008, New
York, pp. 139–148. ACM (2008)

http://eprint.iacr.org/
http://eprint.iacr.org/

	An ORAM Scheme with Improved Worst-Case Computational Overhead
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Our Scheme
	3.1 Overview
	3.2 Server Storage
	3.3 Client Storage
	3.4 Detailed Scheme Description
	3.5 Security Analysis
	3.6 Parametres and Complexities

	4 Discussion
	5 Conclusion
	References

