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Abstract. Outsourcing data to are remote cloud service provider allows orga-
nizations or individual users to store more data on the cloud storage than on
private computer systems. However, a specific problem encountered in cloud
storage is how to ensure user’s confidence of the integrity of their outsourced
data on cloud. One important approach is Proof of Retrievability (POR) which
allows a verifier to check and repair the data stored in the cloud server. How-
ever, most of existing PORs can only deal with static data and provide one
single recovery method which may lead to inefficiency and inflexibility. To
address these cloud storage issues, we propose a map-based dynamic data
integrity verification and recovery scheme in cloud storages. We first present
two recovery methods with different granularity and introduce a new data
structure. Relying on algebraic signature with homomorphism property, our
integrity verification is highly efficient. Furthermore, our solution can prevent
multiple cloud servers from colluding to fabricate consistent signatures.

Keywords: Cloud storage � Data integrity � Algebraic signature � Dynamic
operation � Erasure code

1 Introduction

Since data is increasing exponentially, data owners rapidly increase their demand for
cloud storage. Abilities like scalability, reliability, flexibility and security make cloud
storage essentially a technology for future. Cloud service providers (CSP) offer users
clean and simple distributed file-system interfaces, abstracting away the complexities of
direct hardware management.

From the data security’s point of view, which is always an concerned aspect of
quality of service, however, cloud storage is confronted with new challenging security
threats. Firstly, CSP may not be trustworthy, data owners lose direct control over their
sensitive data. This problem brings data confidentiality and integrity protection issues.
Secondly, cloud storage does not just store static data. The data stored in the cloud may
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be frequently modified and updated by users. CSP should have ability to demonstrate
users’ data is correctly update.

So data integrity and availability are important components of cloud storage, it is
imperative for users to verify the integrity of their data and could recover the corrupted
data anytime. One solution is the so-called Proof of Retrievability (POR), which was
first introduced by Juels and Kaliski [1] and its subsequent versions are [2, 3]. PORs
enable the server to demonstrate to the verifier whether the data stored in the servers is
intact and available, and enables the clients to recover the data when an error is
detected. Atenies et al. [4] introduced a Provable Data Possession (PDP) scheme, in
which the user generates some information for a file to be used later for verification
purpose through a challenge-response protocol with the cloud server. Based on this
scheme, there are different variations of PDP schemes [5–8].

Main Contribution. In this paper, we propose an efficient and secure public auditing
and recovering scheme, which also supports the dynamic data operations. Our con-
tributions can be summarized as follows:

(1) To the best of our knowledge, our scheme is the first to support two data recovery
methods at different levels of granularity.

(2) We design a data structure called map-based dynamic storage table, which pro-
vides better support for dynamic data operation and two different levels of
recovery methods.

(3) We propose a solution to protect the security of algebraic signature verification
process with little storage overhead against cloud servers colluded to offer fake
data signatures and created parity for these signatures.

2 Scheme Overview

2.1 System Model

The system model of the MB-DDIVR scheme is depicted in Fig. 1:

Fig. 1. System model of MB-DDIVR Fig. 2. One group encoding example
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User: These entities have data to be stored in the cloud.

Cloud service provider (CSP): The CSP has major resources and expertise in
building and managing distributed cloud storage service. The servers are managed and
monitored by a CSP.

Third Party Auditor (TPA): This entity is delegated the responsibility to check the
servers on behalf of the clients. The TPA is assumed to be trusted

2.2 Thread Model

In this work, we assume the TPA to be curious-but-honest. It performs honestly during
the whole auditing procedure but it is curious about the received data. The CSP is not
trusted, even though the file data is partially or totally losing, the CSP may try to
deceive the user that he holds the correct file. All of storage servers may join up to
implement collusion attack, i.e., they may forge the response of integrity challenge to
deceive the user and TPA.

2.3 Design Goals

In this paper, we analyze the problem of ensuring the security and dependability for
cloud storage and we aim to design efficient mechanisms for data verification, recovery
and dynamic operation. We expect to achieve the following goals:

(1) Fast fault localization of data: to effectively and efficiently locate the specific error
block when data corruption has been detected.

(2) Fast reparation of data: to use different recovery methods to ensure quick recovery
of the data when errors are detected.

(3) Security: to enhance data availability against malicious data modification and
server collusion attack.

(4) Support of dynamic data operation: tomaintain the same level of storage correctness
assurance even if users modify, delete or append their data files in the cloud.

3 Key Solutions on MB-DDIVR

This section presents the principium of our scheme. We start from explaining what two
different granularity of recovery methods are, and then present the structure of our
map-based dynamic storage table, at last we will show the security of our scheme.

3.1 Recovery Method

To make our recovery method easier to follow, we assume that the user wants to store a
file F on the cloud server S which is a finite ordered collection of m blocks: F = (b1, b2,
…, bm) and every bi is partitioned into n sections (section is the smallest unit of storage)
denoted as bi = (si1, si2, …, sin) (i2{1,…,n}).
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• Two Levels of Recovery Methods: We firstly use a dynamic reliability group as an
example to illustrate our encoding strategy, which is shown in Fig. 2. Every
k blocks are grouped into a group which is named dynamic reliability group. In
each of the group (k + g,g)-erasure code is used to encode group members as
g parity blocks, which are called group parity blocks. For each of Fi, we also use
(n + b,b)-erasure code over GF(2l) to encode {fij}(i 2{1,…,n}) sections as b small
parity sections, which are named block parity sections.

As mentioned, our scheme has two data recovery methods at different levels of
granularity, there are coarse-grained intra-group and fine-grained intra-block
recovery methods. Group parity blocks are used in intra-group recovery method
which has higher fault tolerance but slower rate of recovery, but intra-block
recovery method utilizes blocks’ parity sections to restore corrupted sections whose
feature is fast repair speed but lower data recovery ability.

• Recovery Scenarios: To be convenient for explanation, this section only consider
the recovery scenario in one single dynamic reliability group. The way to recover
multi groups is the same as a single group. When corrupted data is detected,
verification function could tell us the number of damaged sections, which is denoted
as d. The following scenarios are possible:

Scenario A: If d ≤ b, no matter whether these d damaged sections are included in a
single block or not, intra-block recovery method, by the knowledge of erasure code,
has ability to reconstruct those corrupted blocks. Intra-group recovery method, which
has higher fault tolerance, can also recover data successfully in above case, but its rate
of recovery is slower than intra-block’s. Therefore, we take intra-block recovery
method without using intra-group method in this case.

Scenario B: Damaged sections are included in a single block and d satisfies the
inequality b < d ≤ n. The intra-block recovery method is disable, and intra-group
recovery method can play a role to reconstruct the block even this whole block is
missed.

Scenario C: If the number of corrupted blocks—in each of which has at least b up to n
of broken sections—is up to g, we must first use intra-block recovery method to repair
the rest of blocks, and only then use intra-group recovery method to recover
above-mentioned block sections.

3.2 Map-Based Dynamic Storage Table

The map-based dynamic storage table (MBDST) is a small dynamic data structure stored
on the user(or TPA) side to validate the integrity and consistency of file blocks out-
sourced to the CSP. It is composed of three sub-tables, which are dynamic group table,
block table and section table. An example about the data structure is given in Fig. 3.

As its name indicates, the group table is used for managing the information of
dynamic reliability group, which consists of three columns. NoM is used to show how
many original data blocks are in this group. In our scheme the minimum number of
blocks that a group contains has been set, if the number of memberships in this group is
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less than the threshold we will merge a group into another, so we can judge whether
this group should be merged or not via NoM. BPoint is a pointer that points to the block
table belonging to this group.

Block table is the virtual table, in other words, the base unit of storage system for
blocks and their parity data is section. Each row in a block table represents an virtual
data block or a parity block, and it has four columns. BIndex indicates the logical
position of block, and the index is numbered from 1. IsOrig is used to mark if this
block is an original data block or a parity block. PPoint is a point that point to its parity
blocks. ASPoint points to sections that belonged to this virtual block.

Every virtual block holds a section table, which contains metainformation about
each section. There are only two columns: Sname and HV. HV stores the hash value of
the block which is used for determining specified corrupted sections.

It is important to note that the verifier keeps only one structure for unlimited
number of file sections, i.e., the storage requirement on the verifier side does not
depend on the number of file blocks on cloud servers. For k sections of a data file of
size|F|, the storage requirement on the CSP side is O(|F|), while the verifier’s overhead
is O(m + n + k) for the whole file (m is the number of dynamic groups, n is the number
of blocks).

3.3 Collusion Attack

We apply algebraic signature to verify integrity of data in cloud storage, but that basic
verification model may suffer from a drawback: many storage servers may make up
signatures as long as they internally consistent. To solve this problem, we developed an
improved model that allows a user or TPA to ensure the security of signature verifi-
cation process with little storage overhead.

We simply blind the original data by pseudo-random stream. Firstly, we design a
hash function H(block_id, user_id, secret_key), where block_id identifies a block,
user_id varies for each use of the hash function, and secret_key is used to prevent
storage servers from deriving the same function. The original data is then XORed with
a pseudo-random stream generated by RC4, for example, seeded with a value derived
from the above hash function; thus, the value stored for a block section would be
sij ⊕ psij, where sij is the jth section of the block bi, and psj is the jth value of the
pseudo-random stream for bj.

Fig. 3. Map-based dynamic storage table
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When the user sends a challenge to storage servers and receives algebraic signa-
tures, he must remove the blinding factor from the signature of encrypted data sections
(sigi, for example). This can be done by computing the signature of the values in the
pseudo-random stream and XORing it with the signature of encrypted section data.
That is to say, let signature of the values in the pseudo-random stream is psi, the
signature of original data section is sigi ⊕ psi. Then the user can utilize the method we
mentioned in Sect. 4 to verification the correctness of his data. Because of hardly
obtaining the hash function and secret key, CSP cannot colluded to offer fake data
signatures, thus our scheme achieves the goal to defense collusion attack.

4 Implementation of MB-DDIVR

We propose a MB-DDIVR scheme allowing the user to update and scale the file
outsourced to cloud servers which may be untrusted. Our scheme consists of four
algorithms: file distribution preparation, integrity verification, data recovery and
dynamic operation. In this section, we will give detailed implements descriptions of
these for algorithms in proposed scheme.

4.1 File Distribution Preparation

The preparation operation is to encode files. As mentioned in Sect. 4, firstly we par-
tition F into m distinct blocks F = (b1, b2, …,bm), then every block bi continues to be
partitioned into n distinct sections bi = (si1, si2, …, sin)(i2{1,…,m}), where n ≤ 2p− 1.
Next, we group these file blocks into different dynamic reliability groups and compute
parity data for dynamic reliability group and blocks. Using erasure code algorithm to
generate parity blocks and parity sections for every dynamic reliability group DRGi and
every block, i.e., (GroupPi1,…, GroupPig) and (BlockPi1, …, BlockPik), respectively.

We then generate hash for each block section and parity data. Generating secret
keys and using pseudo-random stream mentioned in Sect. 4 to blind user’s original data
sections Σsij can defense storage servers’ collusion attack. At last we should use rel-
evant information to initialize our dynamic map-based storage table. The user only
keeps secret keys in local and uploads the file and parity data to the cloud, and dynamic
storage table to the TPA respectively.

4.2 Integrity Verification

Algebraic signature interact well with linear error and erasure correcting codes, thus, it
may be used to verify that the parity and the data files are coherent without the need to
obtain the entire data and parity, and users have no need of saving any validate tags.
Specifically, corruption localization is a very important link in integrity verification in
storage system. However, many previous schemes do not consider the problem of data
error localization. Our scheme exceeds those by combining the integrity verification
with error localization.
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The verification protocol is illustrated in Fig. 4. Like recovery method, our veri-
fication method is at different levels of granularity, which are block level verification,
group level verification and file level verification. We will use b, g and f to represent
above verification operations respectively. Our challenging index dataset is
U ¼ section ni; parity nj

� �
1� i� n;1� j�m, where section_ni indicates the name of the i

data section, and parity nj is the name of the j parity section. The user firstly select
which level he want to verify, the index of group or block and the parameter of
algebraic signature α, then sends the audition command to the CSP. A user sets a
challenging index dataset to the TPA and delegates TPA to carry out the audit. Upon
receiving the index dataset, the CSP let each corresponding storage server compute a
short signature over the specified blocks and return them to the TPA. After receiving
the set of signatures from CSP, the user can easily judge the integrity of data file.

4.3 Dynamic Data Operation

In cloud storage, there are many scenes where data stored in the cloud is dynamic, like
log files. Therefore, it is crucial to consider the dynamic cases, where users may
perform update, insertion and deletion operation at the block level. However, for users,
CSP is untrusted and they do not wish these dynamic operations to be dominated by
CSP, but performed by delegated TPA instead. In this section we design dynamic
operation to reduce overhead and in practice, this cast is perfectly acceptable to users.

• Update Operation: A basic data modification operation refers to replace specified
blocks with new ones. Let a file F = {b1, b2, …, bm}, suppose the user wants to
modify a block bj with b

0
j. He sends the block b

0
j to TPA, and delegate the TPA to

execute update operation. The TPA gets the reliability group RGi which contains
block bj, then obtains all block sections belong to group RGi from CSP. After
updating bj to b

0
j, and re-encoding group parity blocks and block parity sections,

whose new values are GPB
0
i and BPS

0
j, the TPA partitions the new block b

0
j into n

sections {sj,i
′ }i2(1,n), and update the table list entry. At last the TPA replaces original

data in cloud with new data.
• Delete Operation: A delete operation on a file means deleting few file blocks from

the file. To delete a specific data block bj, the TPA gets the reliability group RGi

which contains block bj, then the user sends download commands to CSP to only

Fig. 4. Protocal of integrity verification
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obtain data sections belong to group RGi excepts {sj,i}i2(1,n), then re-computes
group parity blocks, whose new value is GPB

0
i and updates the table list entry. The

user sends commands to CSP to replaces RGECi with RGEC
0
i in the cloud storage,

and removes local data that just downloaded and generated.
• Append Operation: Block appending operation means adding a new block at the

end of the outsourced data. To simplify the presentation, we suppose the user want
to append block b′ at the end of file F. The TPA looks in the MBDST to get the
information about last reliability group RGi and downloads data sections. If the
group RGi contains too much blocks after adding the block b′ (this cloud be judged
regarding a threshold), go to (a), or go to (b).

(a) RGi will be partitioned into two dynamic reliability group RGi and RGi+1, and b′

is merged into group RGi+1. And then calls GPBGen(RGi) and GPBGen(RGi+1)
functions to re-encode group parity blocks, whose new values are GPB

0
i and

GPB
0
iþ 1. TPA updates the table list entry, and replace GPBi with new value,

then uploads b′ and GPB
0
iþ 1 to the cloud storage.

(b) b′ is merged into group RGi, TPA re-encodes group parity block GPB
0
i, then

updates the table list entry and replace GPBi with new value, then uploads b′ to
the cloud storage.

5 Experiment and Evaluation

We have implemented our scheme in C and JAVA language. We conducted several
experiments using the local 32-bit Centos operation system with an Intel Core 2 pro-
cessor running at 1.86 GHz, 2048 MB of RAM, and run Hadoop 2.7.0. Most PDP and
POR schemes who support dynamic data operation are based on an authenticated data
structures – Merkle Hash Tree (MHT) [12] (short for MHTPOR-scheme), and we also
construct a scheme based on that structure which is used as a reference model for
comparing the proposed MB-DDIVR scheme. In [12] the MHT is explained in detail.

In order to compare the performance of the two schemes mentioned above, the
stored files are chosen from 200 MB to 800 MB. We set up the size of every data block
is 126 MB, and each of them will be partitioned into 6 sections. Every dynamic
reliability group contains 3 blocks. One encoded parity block is generated for each of
groups and two encoded parity sections are generated for every data block.

5.1 Time Analysis

In this section, we compare the MHTPOR scheme with our proposed scheme in file
distribution preparation time and verification time.

• File Distribution Preparation Time
The experimental results are shown in Table 1. It is can be seen from the result that
the computation costs grow with the increase of file size linearly. Note that
MHT-scheme need not to generate group encoded blocks, and the run time of our
scheme is less than that of the MHT-scheme. That is because the creation of MHT
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and the operation on it is much more complicated than our designed dynamic
storage table.

• Integrity Verification Cost
In this experiment we select to verification the integrity of whole file. Figure 5(a)
the communication cost on the CSP side when audit different size of file. The result
shows that the cost is almost constant versus file size, i.e., the file size has no
remarkable influence on the CSP’s cost. Figure 5(b) also indicates our verification
time on TPA side is also almost constant versus file size. That is due to the fact that
algebraic signature has feature of homomorphism, and only need XOR operation,
which has quick operating speed than regular integrity verification of PORs.

5.2 Recovery Performance Analysis

We will use the experimental 620 MB data file to analyze the performance of our
proposed data recovery methods under the same experimental background mentioned
above. From the aspect of theoretic analysis, as we discuss in section recovery method
in III, the worst-case scenario is the scenario C. In our experiment, each of the two
groups misses one block (i.e., six sections, and every section is 21 MB), and each of the
rest blocks misses two sections. So the fault tolerance rate in this experimental scheme
is (2 * 126 MB + 3 * 2 * 21 MB)/620 MB = 60.9 %.

By contrast, we design the other two recovery methods, and each of them has only
one recovery grain: intra-block and intra-group recovery methods. As can be seen in
Table 2, the efficiency and capacity of recovery is not high if we use intra-block or

Table. 1 Preparation Time (second) of the MHT-SCHEME and ours

Preparation Time (second) Of the MHT-SCHEME and ours
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Fig. 5. Integrity verification cost.
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intra-group recovery methods alone. We offer flexible and powerful solutions to
reconstruct corrupted data, it owns more powerful recovery capability to combine the
intra-block and intra-group recovery methods together.

6 Related Works

To check the cloud server, researchers proposed the POR protocol [1–3] that enables the
servers to demonstrate to the verifier whether the data stored in the servers is intact and
available. But existing POR scheme can only deal with static data. Zheng and Xu [9]
proposed 2-3 tree as the data structure on top of POR. This scheme introduced a new
property, called fairness, which is necessary and also inherent to the setting of dynamic
data. The related concept of PDPwas introduced byAteniese et al. [4], which was the first
model for ensuring the possession offiles on untrusted storages. PDP uses homomorphic
tags for auditing outsourced data without considering dynamic data storage. Subsequent
works [5–7] proposed data update protocols in the PDP model. Wang et al. [10] used
Merkle Hash Tree to detect data integrity and their scheme supports dynamic data
operations, however, this scheme did not encrypt the data and was only useful for a single
copy. Curtmola et al. [6] proposed multiple-replica PDP scheme where the data owner
can verify that several copies of a file are stored by the CSP.

Algebraic signature was proposed by Schwarz and Miller [11], which detects for
sure any change that does not exceed n-symbols for an n-symbol signature. This
scheme primarily utilizes one such characteristic homomorphism: taking a signature of
parity gives the same result as taking the parity of the signatures. For example, assume
that we have an erasure correcting code that calculates k parity containers P1, …, Pk

from the m data buckets D1, D2, …, Dm as Pi = Ƥi(D1, D2, …, Dm). So there is:

siga pi D1;D2; . . .;Dmð Þð Þ ¼ Pi siga D1ð Þ; siga D2ð Þ; . . .; siga Dmð Þð Þ

7 Conclusion

In this paper, we proposed a distributed integrity verification and recovery scheme to
ensure users’ outsourced data with explicit dynamic data operation support. We utilize
erasure coding to guarantee data confidentiality and dependability. To ensure the

Table. 2 Recovery Performance (%) Comparison

Recovery Performance (%) Comparison
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integrity of data files, an efficient dynamic data integrity checking scheme is con-
structed based on the principle of algebraic signatures.
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