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Abstract. This paper proposes an approach of encrypted network traf-
fic classification based on entropy calculation and machine learning tech-
nique. Apart from using ordinary Shannon’s entropy, we examine entropy
after encoding and a weighted average of Shannon binary entropy called
BiEntropy. The objective of this paper is to identify any application flows
as part of encrypted traffic. To achieve this we (i) calculate entropy-based
features from the packet payload: encoded payload or binary payload, n-
length word of the payload, (ii) employ a Genetic-search feature selection
algorithm on the extracted features where fitness function is calculated
from True Positive Rate, False Positive Rate and number of selected
features, and (iii) propose a data driven supervised machine learning
model from Support Vector Machine (SVM) for automatic identifica-
tion of encrypted traffic. To the best of our knowledge, this is the first
attempt to tackle the problem of classifying encrypted traffic using exten-
sive entropy-based features and machine learning techniques.
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1 Introduction

Today’s Internet is evolving in scope and complexity. Internet applications adapt
rapidly to changing situations. Emerging proprietary protocols (e.g. Skype) serve
as obfuscation to bypass network filters, firewalls and NAT restrictions. All
these developments significantly obstruct efforts in network analysis and moni-
toring. Understanding network traffic content (e.g., intrusion detection purposes)
becomes increasingly difficult task. Mostly because it requires requires an under-
standing of network traffic nature or characteristics that can associate traffic
flows with the application types. The research studies show that existing traffic
classification methods are plagued with problems [1]. Among them the lack of
accuracy in classification and unavailability of datasets are prominent.

Techniques based on packet payloads (e.g., [17,20]), usually called Deep
Packet Inspection (DPI), provide more accurate result since they classify the
traffic based on comparing information included in the packet payload against
existing signatures. But these techniques cannot be used in many deployment
environments due to privacy concerns [29]. (e.g., imposed legal restrictions of
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the organization) or unable to cope with completely encrypted network packets
e.g., application is unknown or newly launched (no signatures exists).

Alternatively, techniques based on packet headers [2,3,10,13,14], usually
called behavioral statistics focus on general properties of the packet head-
ers/flows (such as packet size, port numbers, inter arrival times, average number
of packets in a flow etc.) and aim to match a behavioral pattern to certain appli-
cations. However, these models’ accuracy were evaluated on the test dataset that
might fail when being applied to different point of metric and network environ-
ment e.g., network latency jitter, packet loss or fragmentation. Moreover, time
based features employed by many of these techniques are less likely to remain
the same across different networks.

A packet consisting of a sequence of random numbers or a compressed data1

also yields high entropy level [33]. Therefore, high entropy of a packet alone
does not always imply encryption. For instance, a compressed file such as, .gz
or .zip shows a high entropy level. In the latter case, the data is actually highly
structured and not random [22]. Therefore, observing ordinary entropy alone
would not necessarily provide enough information to let the classifier distinguish
between encrypted and compressed unencrypted traffic. In this context, we take
a look at an alternative set of features.

Apart from encryption, encoding plays a significant role in achieving high-
entropy. For example, if we just encode a random bytes into HEX, the resulting
string will be twice (each byte encoded to HEX consists of 2 characters) as
long as the original random bytes. It sharply increases the randomness and
hence entropy. Besides that, many protocols use ASCII encoded plain text for
unencrypted payload. If it is converted to HEX values, it looks nearly random.
Therefore, HEX-encoded entropy of these payloads is very close to encrypted
payload.

Our Contribution: Our DPI-based technique use machine learning (ML) based
classifier for filtering out unencrypted traffic. To bypass compressed data, we
focus on a binary entropy analysis tool, called Bintropy. Bintropy was intro-
duced as an analysis tool which is a prototype analysis tool to estimate the
likelihood of the compressed content [23]. Although the target was to explore
trends associated with malware executable files in either compression or encryp-
tion state, we discover that features extracting from Bintropy with other reliable
features significantly boost the overall performance of the classifier. Note that
due to high-entropy output for encrypted traffic, a variant of Bintropy called
TBiEn2 has been used in the experiment.

In order to placate encoded plain text problem, we analyze the influence of the
size of the alphabet (n-length) in encoded message on the entropy calculation.
At this point, we found that n-length HEX-encoded entropy can distinguish
encrypted payloads more correctly where ordinary HEX encoding fails. Since
most of the payloads are received in HEX values, we then stress more on a

1 Since the repeated patterns in the uncompressed data are removed the redundancy
also disappears making data look random and less predictable.

2 A logarithmic weighting that gives higher weight to the higher derivatives.
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complex possibility that is to check for any other standard encoding scheme e.g.,
UTF-8.

To decrease training time and improve accuracy and performance of the clas-
sifier, we employ feature selection algorithm and choose the best and promising
features extracted from different entropy based algorithms. We combine Genetic
algorithm with Support Vector Machine (SVM) following the model presented in
[34] where authors develop a detection system with optimal features for diagnos-
ing diseases. By using the same model, our aim is to discover traffic patterns for
the automatic identification of encrypted traffic from any anonymous network
traffic.

Decision trees, in comparison to other classification techniques, produce a
set of rules and using C5.0 algorithm can easily be incorporated into real time
techniques like traffic classification. As an alternative approach to SVM-based
model, we build a decision tree model, namely C5.0 [26] with optimal features
and check the feature usage by C5imp function.

Finally, results from Genetic-SVM and C5.0, were cross-checked by employ-
ing an unsupervised machine learning algorithm such as K-Means [37]. Cluster
analysis is a promising tool to identify traffic classes. We evaluate K-Means as
an external validation measure for classifier models using identical features on
the same dataset. In [36], authors applied DBSCAN and K-Means clustering
algorithms to group Internet traffic using transport layer characteristics. The
idea was to use unsupervised learning technique to group unlabelled training
data based on similarity. This approach possesses some practical benefits over
learning approaches with labelled training data [36].

The rest of this paper is organized as follows. Related work is discussed in
Sect. 2. Section 3 briefly describes the dataset collection and pre-processing for
extracting features. While Sect. 4 details employed machine learning algorithms,
the experimental results, evaluation and validation methods, conclusions are
drawn in Sect. 5.

2 Related Work

In this section, we discuss relevant work based on payloads in traffic classification.
Then we focus on some recent work based on entropy in different field of the
traffic classification.

DPI or payload based techniques [11,12,16,17] were mainly used for unen-
crypted traffic because of their error-prone nature to completely encrypted traf-
fic. However, a very recent work on encrypted-traffic based DPI technique in
[20] where authors present a classifier based on first-order homogeneous Markov
chain to identify encrypted traffic for applications such as Dropbox, Twitter
etc. However, if the application protocol do not follow the RFC specifications
strictly, use SSL for tunneling only (e.g., Skype, Tor), or behave differently from
SSL stacks, this technique fails abruptly. Besides that, the employed periodic
update fingerprints need as the application nature changes nature over time.

In [30], an statistical modelling based approach has been proposed where the
authors define a vector from the number of different word-values available in the



An Entropy Based Encrypted Traffic Classifier 285

payload and match the similarity of the vectors with payloads from consecutive
packets. After classifying the similarity between network flows they conclude
with tracing five applications with 80 % accuracy. A pattern-matching P2P traf-
fic classifier has been proposed in [31] that extracts payload signatures by using
temporal correlation of flows and observing network traffic on different links. In
[20], authors propose a payload-based method depending on first-order homo-
geneous Markov chains fingerprints conveyed in TLS sessions. Since application
signatures change over time, their fingerprint models need to be updated peri-
odically.

Entropy-based approaches are often used to detect malicious traffic [23–25].
A very few studies have been done for specific encrypted application e.g., Skype
[19]. However, we found no research solely devoted to classifying encrypted and
unencrypted traffic using entropy. Here we discuss some of the previous work
using entropy in the literature.

In Olivian and Goubault-Larrecq [24], proposed an N-truncated entropy
range for selected encrypted applications. If a payload’s entropy does not satisfy
the range, the traffic is deemed as malicious. The study considers consider the
payload of the first packet of a connection and compares it with the N-truncated
entropy of uniformly distributed payload.

Dorfinger et al. in [19] propose a real-time classifier based on the entropy
of the first packet’s payload of a flow and compare the result with the entropy
of random payload. We found that in some encrypted applications or protocol
first packet in a flow is partially encrypted (e.g. Client Hello Message of TLS) or
smaller in size that may cause false positive result or unreliable evaluation [20].
Besides that it’s an application (skype) specific solution.

In [21], Sun et al. investigated the encrypted web pages based on entropy in
a large sample of Web pages using individual object sizes in a page to identify
encrypted pages. In [15], authors studied traffic classification from several P2P
and non-P2P applications where entropy was used to measure the heterogeneity
of network level to characterize traffic samples. Zhang et al. in [18] proposed
two high-entropy classifiers to detect bot. In order to avoid falsification, this
scheme adds extra tools or mechanisms e.g., BotHunter and flow based cumula-
tive entropy.

In [33], authors use BiEntropy to explore noticeable differences between the
encrypted and unencrypted binary files of some real and synthetic spreadsheets
(e.g., MS Excel).

Note that almost all of the aforementioned works are based on the measure-
ment of conventional Shannon entropy over the whole packet’s payload and for
any specific protocol or application. We on the other hand focus on encrypted
traffic in general. In compare to previous scheme, we extend our approach in
mainly two ways: using different types of entropy measurements and employing
it not for a specific protocol, but for any kind of encrypted traffic.
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3 Dataset and Preprocessing

When starting a machine learning project the most important piece and hardest
to obtain is to get a perfect data set that would have to be heterogeneous enough
to emulate real traffic to some extent. To provide a comprehensive evaluation of
encrypted traffic, we gathered a large collection of traffic samples representing
both encrypted and unencrypted traces.

Capturing background network data in a real life environment is challenging
due to two main reasons: privacy concerns of the gathered data and noise such as
unwanted packets. Typically, traffic is either collected from a trusted sources or
captured in a controlled environment. To address this challenge, our experimen-
tal dataset has been generated from combining non-overlapping portion of the
several data sources where ground truth was known. Our accumulated dataset
combines traffic traces mainly from ISCX 2015 dataset [7], skype traces from [8]
and some traces from wireshark [9] samples.

– ISCX 2015 dataset [7] has been created in a controlled testbed environment
simulating real applications from a diverse set of application traces and back-
ground traffic. To facilitate the labeling process or removing the need of san-
itization, when capturing the traffic all unnecessary services and applications
were closed. The traffic was captured with wireshark [9] and tcpdump [32],
generating a total amount of 5 GB of data (encrypted/unencrypted). Pro-
tocols such as HTTPS, HTTP, SMTP, SSH, FTP were chosen to be simu-
lated. However, following protocols were generated readily as a consequence of
employing aforementioned protocols: DNS and NetBios. Specific applications
were labelled accordingly, for example, Facebook, Twitter, Dropbox traffic as
secure web or https connection. The prepared labelled dataset including full
packet payloads, along with the relevant entropy results are publicly available
to researchers through our website [7].

– Tstat dataset in [8], a research project testbed data containing only Skype
traffic. Traces have been collected and organized with the support of the
RECIPE (Robust and Efficient traffic Classification in IP nEtworks) projects.

– Sample captures in Wireshark wiki [9] are some example capture files collected
from several application/protocol traces.

Since the dataset includes heterogeneous traffic flows (mixed traffic), exper-
iments on datasets would help assess the accuracy of classification. However,
even if the dataset containing payloads were collected from homogeneous traf-
fic flows, they must be network independent in compared to their flow/header3

counterpart.
A detailed description of the different type of captured/collected traffic is

given in Table 1. Under Secure web label, we have HTTPS traffic mainly gener-
ated while browsing through Firefox and Chrome. Any browser related activities
such as voice call using facebook or streaming through Youtube do not belong
3 dependent on network latency, jitter, packet loss etc. that are less likely to remain

across heterogeneous network.
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Table 1. Number of payloads in the dataset employed

Application Source Type Number Label/Class

of Payloads

HTTPS ISCX Dataset [7] Secure web 1814708 Encrypted

Skype TStat Dataset [8] VOIP 1945827 Encrypted

DTLS Wireshark Sample Capture [9] TLS 6084 Encrypted

LDAP Wireshark Sample Capture TLS 73655 Encrypted

SSL ISCX Dataset Tunnel 1228889 Encrypted

Youtube ISCX Dataset Streaming 194927 Encrypted

HTTP ISCX Dataset Weblogs 323158 Unencrypted

DecPhone Wireshark Sample Capture VOIP 25868 Unencrypted

Unencrypted Video ISCX Dataset Streaming 187196 Unencrypted

DNS ISCX Dataset Internet Service 37972 Unencrypted

NetBioS ISCX Dataset Network 62224 Unencrypted

SMTP ISCX Dataset Mail 4030 Unencrypted

Total Encrypted payloads 5264090

Total Unencrypted payloads 640448

to this label. The Voice over IP (VOIP) includes traffic generated by voice appli-
cation such Skype, DecPhone. Streaming data, a continuous and firm stream
of data, includes data from Youtube, Vimeo. Unencrypted traffic payloads were
collected mainly from 3 type of sources, such as, streaming video, VOIP, and
weblogs (HTTP).

jNetPcap [6], an open-source java wrapper for libpcap library native calls,
was used to extract payloads from network packet (pcap files). Note application
layer payload and transport layer payload were separated. For our experiment,
only application layer payloads were considered in order to avoid noises with
encrypted payloads. Because in most of the cases, protocols’ payload encryp-
tion is done in the application layer i.e., SSL, HTTPS etc. For instance, length
of application layer payload/transport layer payload (in bytes) for some pack-
ets in our experiments were 1133/1338, 3663/4036, 2280/2700 etc. Note that
application layer payloads are smaller than that of transport layer.

For training data set we discard any payloads smaller than 20 Bytes (includ-
ing noise) mainly due to bias such small payloads introduce into the model
causing highly unreliable result. Finally, we end up with a large dataset consist-
ing of encrypted payloads from 5264090 packets and unencrypted payloads from
640448 packets as shown in Table 1.

4 Experiment and Results

4.1 Feature Selection

Features for the classifier were chosen from entropy of the entire payloads, n-
length Word or sliding window entropy, entropy of the encoded payload, and
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Table 2. Entropy Based Features Employed

Encoded payload Abbreviation Binary payload Abbreviation

Entire-file entropy e ENC Entire-file entropy e BIN

n-length Word entropy n ENC n-length Word entropy n BIN

Mean of n-length Word Bintropy n ̂BIN m

Std. Deviation of n-length Word Bintropy n ̂BIN s

BiEntropy: a logarithmic weighted average of the Shannon binary entropy. The
following three algorithms were considered in calculation of entropy:

1. Entropy of the entire file where conventional Shannon’s entropy (in [4]) is
used for measurement. In case of a binary file, the entropy is measured in bits
where the symbol is either 0, or 1. However, in case of a HEX-encoded file,
there are 16 distinct symbols: [0–9], [A-F].

2. Entropy of n-length Word (where n = 2 to 64) or sliding-window technique
[5]. It measures Shannon entropy over a sliding window of all the word tokens
in a file. For instance, measuring byte entropy over a sliding window (where
word size or window size n = 8) provides entropy value for each byte.

3. Mean and Std. deviation of n-length Word BiEntropy (in [33]) to detect the
existence of repetitive pattern. First, calculate all the binary derivatives (< n)
of a n-length word. If the last derivative is 0, word is periodic BiEntropy is 0
and vice versa.

Table 3. Selected Features by Genetic and C5imp

Method Number of features Selected Features

GF-SVM 8 e ENC (HEX), e BIN, 8 ENC (UTF-8), 8 BIN,

32 ̂BIN m, 32 ̂BIN s 8 ̂BIN s, 16 ̂BIN s

C5imp 10 e ENC (HEX), e BIN, 24 ̂BIN m, 12 BIN, 8 BIN,

12 ̂BIN m, 32 ̂BIN m, 8 ENC (UTF-8), 8 ̂BIN s, 4 ̂BIN m

While (1) and (2) are applied to encoded (HEX and UTF-8) payloads, all
the algorithms are applied to the binary payloads as shown in Table 2. Note that
all the entropy metrics were transformed by a logarithmic function since it has
been observed to greatly increase machine learning accuracy. Resultant entropy
were also normalized based on unity-based normalization before applying genetic
algorithm.

Feature selection based on Genetic algorithm (in [34]) follows several steps:
chromosome coding, initial population or feature chromosome, training Least
Square SVM (LSSVM) classifier, fitness function, and terminating condition.
For chromosome coding, we encode selected feature subset into a binary code4

4 where 1 indicates the features to be selected and 0 not.
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consisting of the total number of features. Regarding initial population, we choose
some important features from our initial experiments (e.g., e ENC (HEX),
32 ̂BIN m, 8 ̂BIN s etc.). LSSVM classifier helps to evaluate initial population
(through classification accuracy) and hence the genetic algorithm to decide the
effective features finally. The most important step in genetic algorithm is to
construct an effective fitness function that evaluates a feature’s fitness to sur-
vive. Chromosomes must be evaluated by fitness function. Our fitness function
stems from weighting True Positive Rate (TP), False Positive Rate (FP) and
the number of selected features N(s).

Fit(s) = wt × TP + wf × FP + ws × N(s) (1)

where wt, wf , and ws be the weight values for TP, FP and N(s) respectively.
In our experiment, we set wt = .5, wf = .3 and ws = .1 to achieve high TP, low
FP, and a small subset of selected features. In each iteration, chromosome with
highest fitness value survives by which genetic operator creates new generation.
The algorithm terminates when the maximum number of iteration takes place.

We start with the features in the Table 2 with varying the value of n. However,
considering all possible combinations of features for calculating detection rate
would require a significant computational cost while dealing with large dataset.
That is why, we make several small groups i.e., features based on Bintropy, fea-
tures based on entire file etc. and run genetic algorithm on each individual group.
Apart from Genetic algorithm, we employ C5imp, a variable importance mea-
sures for C5.0 models with metric ‘splits’5 with 100 different trials to maximize
the C5.0 classifier accuracy.

Table 3 demonstrates the number and labels of important/ optimal features
selected by Genetic and C5imp feature selection algorithms. Results show that
C5-imp mainly weights on n-length Bintropy based features while both of them
consider encoded/binary payload based features.

4.2 Result Discussion

In this section, we discuss the detailed experiments and results of validation on
the traced datasets. First, a set of statistical features based on encoding and
entropy of the packets’ payload has been studied for the experiment. Following
the model of Zhao et al. (in [34]) where Genetic algorithm and LSSVM are used
to were used to develop a detection model with effective feature selection. We use
the same model but to detect encrypted/unencrypted traffic through network.

First, we select optimized number of features for encrypted and unencrypted
traffic payload by creating feature chromosomes and evaluating them with the
highest classification accuracy. Second, training LSSVM with the training data,
that is, support vectors will be created based on training traffic traces. Finally,
classifying the traffic data into two class encrypted and unencrypted. Nonethe-
less, in order to identify an ideal model for encrypted traffic classification and

5 To calculate the percentage of splits associated with each predictor.
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compare the robustness of the models with respect to selected features Genetic-
LSSVM, LibSVM, and C5.0 algorithms were employed.

This study has employed a LSSVM to distinguish 2 classes (encrypted and
unencrypted) of traffic data. Our experiments took place on a Ubuntu platform
having configuration Intel core i7 3.6GHz, 32 GB RAM. Feature subset has been
selected based on Genetic algorithm and C5imp in terms of ensuring the highest
classification accuracy, TP and the lowest FP. The use of top ranked features (8
features out of more than 110 features) for classification give a drastic change
in TP and FP values (Table 2). LS-SVMlab toolbox in [35] is used to implement
LSSVM and modeling the classifier. LibSVM library available in weka [27] is used
to run SVM algorithm with all features. RStudio [28], an integrated development
environment (IDE) for R, is used for decision tree based model C5.0.

Table 4 shows the numeric result of the proposed Genetic-LSSVM in com-
parison to the all features selected SVM model. In fact, proposed model selects
the best feature subset and then final results of the classification with the
selected features are shown in the table. As the result shows, there is a sig-
nificant change in both the encrypted and unencrypted class performance using
Genetic-LSSSVM, where DR has reached 97 % while it was approx. 87 % using
SVM with all possible features. FPR results are also noticeable as it has a 28 %
reduction.

In order to compare our model, we apply decision tree and rule based model
C5.0 and find 98.1 % accuracy from 10 selected features with minimal error
(0.9 %). Note that the accuracy of C5.0 decision tree algorithm depends on the
highest Information Gain of the features [26].

High detection rate can be better explained by (i) considering only applica-
tion layer payloads in case of TCP payloads, (ii) the nature of the type of data,
e.g., Skype or HTTPS payloads are huge and might be partially dominating the
dataset (iii) dataset is partly biased containing payloads from limited number of
applications. Results may fluctuate with much more diverse set of traffic from
many applications/protocols.

4.3 Evaluation and Validation

In order to validate the selected features (e.g., word size, encoding scheme etc.),
experiments have been done in two steps: (i) using randomly selected plain-text
and their corresponding encoded-text and cipher-text, and (ii) using clustering
algorithm as an alternative approach to classify traffic and to observe whether
cluster analysis can identify encrypted or unencrypted traffic effectively using
only the selected features by genetic algorithm. Note that, there is a sharp dispar-
ity between the entropies of plain-text and cipher-text. However, Encoded-text’s
entropy is very close to that of Encrypted-text.

Bintropy based features, that is, a weighted average of the Shannon entropy,
show significant differences between the encrypted and unencrypted (but
encoded) binary payloads. Especially features from Std. deviation (32 ̂BIN s)
was promising in most of the case. On the other hand, Encoded-text’s entropy,
whether from entire file or from n-length word (e ENC, 8 ENC), demonstrate
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keen difference to the encrypted. Nonetheless, our feature selection algorithm
chooses HEX encoding for entire file and UTF-8 encoding for n-length word.
Although n-length word entropies (8 ENC and 8 BIN) indicate sharp diver-
gence in this example, for a large file (payloads) difference is not substantial.
This experimental procedure has been applied to different size of text files and
observed the entropies for the feature set selected by the genetic algorithm and
C5imp.

We consider an unsupervised algorithm, namely K-Means to evaluate and
compare them with previous used Genetic-LSSVM and C5.0 classification algo-
rithms using the GF-SVM features. It consists of 2 stages: a model generation
and a classifier generation. In the former stage, K-Means algorithm clusters
training data to produce a set of clusters to be labelled. In the latter stage, this
model is used to develop classifier that can label any traffic traces. K-Means
clustering evaluated with K initially being 2 exhibits overall accuracy exceeding
96 % with 7 iterations. The overall accuracy was sharply declined to 54 % with
25 iterations when K was 3. This declining continued until we check for K is 10.
Accuracy results for DBSCAN clustering is 89.7 % (inc. noise or unclustered 24
instances) with two input parameters: ε is 0.3 where at least minPt is 3. The
additional 6 clusters found using 3 minPt were typically small clusters contain-
ing 3 to 31 instances. However we did not trial with different ε and/or minPt
that may improve its overall accuracy.

In order to train each of the learning algorithms properly several runs were
conducted with different parameter values. It helps to generate accurate model
with highest gain and ensures the result is not biased or dominated but from
statistically compelling trails.

Table 4. Accuracy using Genetic-LSSVM, traditional LibSVM, C5.0 algorithms

Model Correctly FPR DR

Classified instances Encrypted Unencrypted Encrypted Unencrypted

Genetic-LSSVM 96.639% 0.034 0.033 0.967 0.966

LibSVM (all features) 86.954% 0.29 0.31 0.693 0.761

C5.0 (C5imp features) 98.10% - - - -

K-Means (GF-SVM features) 95.90% - - - -

DBSCAN (GF-SVM features) 89.70% - - - -

5 Conclusion

Our primary motivation was to find the solution to detect encrypted traffic
from the network traffic depending on entropy-based features. We investigated
several interesting characteristics of traffic payloads related to encoding, n-length
word of the raw byte distribution and observe the aftermath effect on entropy
measurement.
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However, we have several shortcomings though. First, although we try to
accumulate packets from the popular encrypted protocols, the dataset we worked
do not consist of each and every type of encrypted or unencrypted traffic. Aside
from these, in some applications, first few payloads are partially encrypted or
unencrypted, we could not consider that in this time. That is why, we do believe
that still there are some noises in the experiment training dataset. Although
our dataset does not contain every kind of encrypted or unencrypted applica-
tion traces, effectiveness of different combination of entropy features in terms of
getting more detection accuracy has been fully studied.

As a future work, we have plan to investigate our proposed model on a wider
range of applications and heterogeneous datasets from various networks. We also
aim at analyzing protocol’s individual signature from entropy and cross-validate
its consistency with clustering algorithms. Finally, we plan to apply this approach
to reveal signatures for network intrusion detection system. That would make
it easy to infer if the encrypted traffic is benign or something that should be
investigated further.
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