
Real-Time Lane Estimation Using Deep Features
and Extra Trees Regression

Vijay John1(B), Zheng Liu1, Chunzhao Guo2, Seiichi Mita1,
and Kiyosumi Kidono2

1 Toyota Technological Institute, Nagoya, Japan
vijayjohn@toyota-ti.ac.jp

2 Toyota Central R&D Labs, Nagakute, Japan

Abstract. In this paper, we present a robust real-time lane estima-
tion algorithm by adopting a learning framework using the convolutional
neural network and extra trees. By utilising the learning framework, the
proposed algorithm predicts the ego-lane location in the given image even
under conditions of lane marker occlusion or absence. In the algorithm,
the convolutional neural network is trained to extract robust features
from the road images. While the extra trees regression model is trained
to predict the ego-lane location from the extracted road features. The
extra trees are trained with input-output pairs of road features and ego-
lane image points. The ego-lane image points correspond to Bezier spline
control points used to define the left and right lane markers of the ego-
lane. We validate our proposed algorithm using the publicly available
Caltech dataset and an acquired dataset. A comparative analysis with a
baseline algorithms, shows that our algorithm reports better lane estima-
tion accuracy, besides being robust to the occlusion and absence of lane
markers. We report a computational time of 45 ms per frame. Finally, we
report a detailed parameter analysis of our proposed algorithm.

Keywords: Convolutional neural network · Extra trees · Lane detec-
tion · Occlusion

1 Introduction

Urban environment driving often requires to driver to concentrate while driving,
which results in the increase of driver stress and fatigue. To provide assistance to
the drivers, in recent years, there has been significant interest in the development
of advanced driver assistance systems (ADAS) and autonomous vehicles. Within
ADAS, lane detection plays an important role, and is used for applications such
as lane following, lane departure warning, collision warning and vehicle path
planning. The standard lane detection algorithm relies on the robust estimation
of visible lane markers from the camera image, using vision and image processing
algorithms. But the robust estimation of lanes is not trivial. Some of the chal-
lenges include degraded or absence of lane markers, lane marker occlusion, lane

c© Springer International Publishing Switzerland 2016
T. Bräunl et al. (Eds.): PSIVT 2015, LNCS 9431, pp. 721–733, 2016.
DOI: 10.1007/978-3-319-29451-3 57



722 V. John et al.

marker appearance variations, illumination variations and adverse environmen-
tal conditions such as snow and rain. Examples of challenges in the lane detection
algorithm are presented in Fig. 1. Researchers often employ constraints such as
tracking [1], region-of-interest (ROI) based estimation [2] and prior lanes [3] to
overcome these limitations. However, even the use of additional constraints has
some limitations and does not completely solve the lane detection problem [4].

In this paper, we propose an alternative scheme to address these issues using
a learning framework. The proposed learning framework models the relation-
ship between the entire road image and annotated ego-lane markers for various
scenarios. The modeled relationship is then used to predict the ego-lane loca-
tion within a given test road image. The ego-lane image location is represented
using annotated Bezier spline control points, defined for the left and right lane
markers. Using training pairs of road images and annotated lane control points,
the ego-lane location is estimated in two learning-based steps. In the first step,
we utilise the convolutional neural network (CNN) to extract robust and dis-
criminative features from the entire input road image. We train the CNN to
perform feature extraction by fine-tuning the pre-trained Places-CNN model [5]
using a dataset of road images. In the second step, the extra trees regression
algorithm is used to model the relationship between the extracted CNN-based
road features and their corresponding annotated ego-lane markers. The trained
models are then used to estimate the ego lane location in real-time during the
testing phase, by CNN-based feature extraction and extra trees-based ego-lane
prediction. Our main contribution to the lane detection literature is the use of
a CNN and extra trees-based learning framework to accurately predict the ego-
lane location in an image even under conditions of lane occlusion and absence.
We validate our proposed algorithm on the publicly available Caltech dataset [6]
and an acquired dataset. As shown in our experimental results, the proposed
algorithm demonstrates the ability to accurately estimate the ego-lane, besides
being robust to occlusion and absence of lane markers. Moreover, we report a
real-time computational time of 45 ms per frame. A comparative analysis with
the baseline algorithms is shown, along with a detailed parameter analysis. The
rest of the paper is structured as follows. In Sect. 2 we report the literature
review. The algorithm is presented in Sect. 3, and the experimental results are
presented in Sect. 4. Finally, we summarize and conclude the paper in Sect. 5.

Fig. 1. An illustration of the various challenges in the lane detection including the
absence of lane markers, degraded lane markers, shadows and occlusions.



Real-Time Lane Estimation Using Deep Features and Extra Trees Regression 723

2 Literature Review

Lane detection being an important problem in ADAS, has received significant
attention in the research community. The summary of lane detection algorithms
can be found in the surveys by Hillel et al. [4] and Yenikaya et al. [7]. The
literature for the lane detection problem can be categorized into feature extrac-
tion techniques [1,2] and model-based techniques [3,8]. In feature extraction
techniques, the lane markers are identified from the input image using image
processing and fitting algorithms. On the other hand, the model-based tech-
niques are generative models, where candidate lane models are evaluated for
optimum fitness with the image-based features. We next present a brief overview
of the literature in both the techniques.

In the standard feature extraction technique, the road image is first pre-
processed to remove noise. Next, using image thresholding techniques, candi-
date lane markers are localised in the image. The final lanes are then identified
from the candidate set. For example, Andrew et al. [2] localise the lanes in the
image by identifying the painted lines on the road, and prune the candidates
using orientation and length-based threshold. To enhance the accuracy of fea-
ture extraction-based techniques, researchers utilise techniques such as spatial
constraints (ROI), tracking and inverse perspective transformations (IPT) into
their algorithms. The ROI is used to constrain the lane search to a specific region
in the image. While the tracking algorithm is used to incorporate temporal infor-
mation to enhance the detection accuracy. Arshad et al. [9] utilise an adaptive
ROI within their colour-threshold-based lane detection algorithm to identify the
lanes. While Choi et al. [1] propose a lane detection algorithm using template
matching, RANSAC and Kalman filtering. The template matching framework is
used to obtain candidate lanes from the image, which are then pruned using the
RANSAC and Kalman filter. In the work by Aly et al. [6], the IPT algorithm
is used to generate the top view of the road, which are then filtered using ori-
ented Gaussian filters to obtain candidate lanes. The candidate lanes are pruned
using RANSAC and Bezier spline fitting algorithm. In the recent work by Kim
et al. [10] a RANSAC and CNN is used to estimate the lanes from the edges in
the image. The CNN is trained to generate output binary lane maps from input
edge maps containing visible lane markers. The output binary lane maps are
then used within the RANSAC algorithm as priors to estimate the lanes. How-
ever, the CNN-based output binary lane maps are dependent on the presence of
visible lane markers in the input edge maps. Summarising the feature extraction
methods, we observe that these methods are simple and easy to implement, but
are limited by their dependence on strong lane cues.

In the model-based technique, lane models defined using parameters are used
within a model-fitting framework to estimate the lanes. Candidate lane models
generated using parameter estimates are evaluated within model-fitting frame-
works such as RANSAC, particle filtering, etc. For example, Sehestedt et al. [8]
evaluate the candidate lanes using the particle filter in the IPT edge image. In the
work by Huang et al. [11], basis curves are used within a probabilistic framework to
estimate the lanes. Lane estimates defined by the basis curves, are evaluated with



724 V. John et al.

observations from the road in a probabilistic framework. To enhance the accuracy
of the lane estimation, the authors integrate the curb detection and road paint
detection algorithm in their framework. Similar to the feature extraction tech-
niques, researchers also employ constraints within the model-based framework.
For example, Kowasri et al. [3] constrain the particle filters-based model fitting
algorithm using lane priors. The lane priors are annotated on the map, and are
retrieved by the vehicle during testing. Comparing the two categories of literature,
we can observe that the model-based technique are more robust. But the perfor-
mance of both these methods are affected by degraded lane markers, absence of
lane markers, lane occlusion, and adverse weather conditions such as snow and
rain. Unlike the aforementioned approaches, in this paper, we propose to address
these issues using a learning-based approach by modeling the relationship between
road image and annotated lane markers. The modeled relationship is then used to
predict ego-lanes for various challenging scenarios.

3 Algorithm

In this paper, we formulate the lane detection problem using two learning algo-
rithms, the CNN and the extra trees. The proposed algorithm consists of a train-
ing and testing phase. During the training phase, the CNN is trained to extract
D-dim road features f ∈ R

D from the input road image I. Next, the extra trees
model is trained to predict the ego-lane in the image using training pairs of
input road features F = {fn}Nn=1 and output Bezier splines B = {Bn}Nn=1. In
the training output, Bn = [bl

n,br
n], represents the set of Bezier splines for the

n-th image, where bl
n and br

n corresponds to the Bezier spline control points
for the left and right lane marker. Each Bezier spline is defined using 4 control
points or 8 image pixel coordinates. The 8 image pixel coordinates are manu-
ally annotated within a predefined ROI in the image, and used for training and
testing. In the testing phase, for a given input road image It the trained CNN
extracts the features ft. The feature ft is then given as an input to the trained
extra trees, which subsequently predicts the ego-lane using the output Bezier
splines Bt. An overview of our proposed algorithm is shown in Fig. 2. We next
present a detailed overview of the training and testing phase.

3.1 Training

Convolutional Neural Network. The convolutional neural network (CNN) is
a deep learning framework used for multi-class classification [5]. It has reported
state-of-the-art detection and classification result in various image classification,
speech recognition applications [5]. The deep learning framework is an end-to-
end machine learning framework, where multiple layers of processing are used
to simultaneously perform feature extraction and feature classification. To per-
form the feature extraction and classification, CNN based on the multi-layered
perceptron learns the weights and bias in each layer. The lower layers of CNN
extract the low level features, while the higher layers learn the high-level features.



Real-Time Lane Estimation Using Deep Features and Extra Trees Regression 725

(a)

(b)

Fig. 2. An overview of the (a) training and (b) testing phase of the proposed algorithm

The extracted features are represented as feature maps in the CNN network.
Given the feature maps, CNN performs the feature classification inherently in
the final layers. The CNN architecture is represented using convolutional layers,
pooling layers, fully connected layers, drop-out layers and loss layers. The con-
volutional layers and pooling layers are used in the initial layers to inherently
perform feature extraction. The final layers contain the fully connected layers,
drop-out layers and loss layers function, which are used to the perform inherent
feature classification. To update the weights in the different layers, the stochas-
tic gradient descent is used, where the weights are updated by the following
equations.

Vt+1 = μVt − α∇L(Wt) (1)

Wt+1 = Wt + Vt+1 (2)

where Wt is the previous weight and Vt is the previous weight update at iteration
t. Vt+1 and Wt+1 are the updated weight update and weights at t+1. ∇L(Wt) is
the negative gradient of the previous weight. α is the learning rate for the weight
of the negative gradient. μ is the momentum or the weight of the previous update.
Additionally, each layer has a learning rate multiplier term for the weights and
bias βw and βb, respectively. This is used to vary the α during training for each
layer to facilitate faster convergence.



726 V. John et al.

In this paper, the CNN is utilised to extract the features from the entire
road image. To extract the road specific features, the weights (filters) and bias
of the CNN model pre-trained on the Places dataset [5] is fine-tuned with a
dataset of road images. The Places dataset is a scene-centric database with 205
scene classes and 2.5 million images used for scene recognition. Consequently,
the Places-CNN model filters are highly tuned for scene feature extraction and
classification. The detailed architecture of the pre-trained Places-CNN model is
as follows: The size of the input RGB is 256×256×3, and the first convolutional
layer consists of 96 filters with size 11×11 with stride 4. The second convolutional
layer contains 256 filters of size 5 × 5. Both the first and second convolutional
layers are followed by maximum pooling with filter 3 × 3 and stride 2 and local
response normalisation over a 5× 5 window. The third and fourth convolutional
layer contains 384 filters of size 3 × 3. The fifth convolutional layer contains 256
filters of size 3 × 3, followed by maximum pooling with filter size 3 × 3. The
next two layers are the fully connected layers with 4096 neurons followed by a
drop-out layer with drop-out ratio of 0.5. Note that the convolutional and fully
connected layer contain the relu activation function. The output layer contain
205 neurons with softmax functions. Finally, the α is set to 0.01, μ is set to 0.9
and βw = 1 and βb = 2 for all the layers.

To perform the fine-tuning for road feature extraction, we formulate the mul-
ticlass Places-CNN model as a binary road classifier. We adopt this formulation
to fine-tune the feature extraction layers of the (C1–C5) through the backprop-
agation algorithm. To modify the Places-CNN model as a binary classifier, we
replace the 205 neurons in the output layer with 2 neurons. Henceforth we refer
to this modified binary model, as the road-CNN model. The fine-tuning for the
road-CNN model is done using 100000 positive road scene samples and 100000
negative non-road scene samples. Note that the binary classification modification
is primarily done to fine-tune the pre-trained feature extraction layers, owing to
the CNN’s characteristic of network training using backpropagation from the
output layers.

During the fine-tuning step, the weights and bias of the road-CNN fea-
ture extraction layers, C1–C5, are initialised with the corresponding pre-trained
weights and biases of the Places-CNN model. On the other hand, the weights
and bias for the fully connected layers FC6–FC8 or feature classification lay-
ers are initialised without the pre-trained weights and bias. To reflect the pre-
initialisation, we lower the learning rate α to a lower value 0.001, compared to
the Places-CNN model. But, the momentum and learning multipliers (βw and
βb) for convolutional layers C1–C5 are kept the same (0.9,1,2). On the other
hand, to enable the feature extraction layers to learn quickly, βw and βb for fully
connected layers FC6 and FC7 are set as 2 and 4, while the βw and βb for the
output layer is set as 10 and 20. The number of training iterations is lowered to
50000. Using the above described parameters, we fine-tune the road-CNN and
learn the road-specific weights and bias. The fine-tuned road-CNN is then used
to extract the road features, which corresponds to the output feature maps of
the fifth pooling layer (P5). Consequently, each road feature f is represented by



Real-Time Lane Estimation Using Deep Features and Extra Trees Regression 727

256 feature maps of size 7 × 7. Thus generating a 12544 dim feature vector. We
refer to this feature vector as the complete feature vector. An illustration of the
filters and feature maps of the road-CNN model is presented in Fig. 3

(a) (b) (c)

(d) (e) (f)

Fig. 3. A visualization of the (a) C1-filters, (b) C2-filters, and (c) C1-feature maps for
the fine-tuned road-CNN. The (d) C1-filters, (e) C2-filters and (f) C1-feature maps for
the directly-trained road-CNN (Details of this model given in Sect. 4.2)

Extra Trees Regression. The extra trees are an extension of the random for-
est regression model and proposed by Geurts et al. [12]. The extra trees belong to
the class of decision tree-based ensemble learning methods. In decision tree-based
ensemble methods, multiple decision trees are used to perform classification and
regression tasks [13]. Random forest and extra trees are important algorithms
within this class and have reported state-of-the-art performance on many regres-
sion tasks with high-dimensional input and outputs [13]. The random forests are
trained to perform the regression tasks using the techniques of tree bagging and
feature bagging. In tree bagging, each decision tree in the ensemble is trained on
a random subset of the training data, generating an ensemble of decision trees.
Given, the ensemble of decision trees, the feature bagging technique is used to
perform the split at each node in the decision tree. The feature bagging-based



728 V. John et al.

split is performed in two steps. In the first step, random subset of features are
selected from the previously selected training data subset. In the second step,
the best subset feature and its corresponding value are chosen to perform the
decision split. Typically, the best feature is selected based on the information
gain or Gini criteria [12]. The extra trees was proposed as an computationally
efficient and highly randomised extension of the random forest. There are two
main differences between the extra trees and the random forest. Firstly, unlike
the random forest, the extra trees does not use the tree bagging step to generate
the training subset for each tree. The entire training set is used to train all the
decision trees in the ensemble. Secondly, in the node-splitting step, the extra
trees randomly selects the best feature along with the corresponding value to
split the node. These two differences results in the extra trees being less suscep-
tible to overfitting and reporting better performance [12]. In our problem, we
train the extra trees regression model with 50 trees to predict the ego-lane loca-
tion for a given input image. During training, the extra trees model is trained
using pairs of input road features, F = {fn}Nn=1, and annotated output Bezier
spline control points, B = {Bn}Nn=1.

3.2 Testing

During the real-time testing phase, we use the trained CNN and extra trees
model to predict the ego-lane location in an given input test image It, resized
to 256 × 256 × 3. First, the trained CNN is used to extract the complete feature
maps or the road features ft. The road features are then given as an input to
the trained extra trees, which outputs the ego-lane location in the image using
the Bezier spline control points Bt.

4 Experimental Results

The proposed algorithm was validated with the publically available Caltech
dataset [6] and an acquired dataset. We performed a comparative analysis with a
baseline algorithm and report a better lane detection accuracy even under occlu-
sion and absence of lane markers. Additionally, a detailed parameter analysis of
our algorithm is performed. In the experiments, we validate our proposed method
using the Caltech dataset and an acquired dataset. The Caltech dataset has 1224
images with annotated Bezier spline control points, while the acquired dataset
contains 2279 frames with manual annotation. The training and testing of our
proposed algorithm was done using a 5-fold cross validation scheme on both the
datasets. The algorithm is implemented on a Linux machine with Nvidia Geforce
GTX960 graphics card using Python and GPU-based Caffe software tool [14].
The scikit machine learning library was used to implement the extra trees.

4.1 Comparative Analysis

In this section, we report the results of a comparative analysis performed with
two baseline algorithms. The first baseline algorithm is based on the Hough



Real-Time Lane Estimation Using Deep Features and Extra Trees Regression 729

Table 1. Det. Accuracy Cal-
tech

Algorithm Lanes Det. rate

Proposed algo. 2450 98.9%

ROI-Hough-Ransac. 2450 94.2%

ROI-Hough. 2450 88.4%

Table 2. Det. Accuracy Acquired

Algorithm Lanes Det. rate

Proposed algo. 4560 99.3%

ROI-Hough-Ransac. 4560 96.8%

ROI-Hough. 4560 92.6%

transform-based lane detection framework [9]. In this algorithm, we first identify
the lane ROI in the image, and utilise a intensity and colour-based threshold
to identify the set of candidate lines. Following morphological operations, the
candidate lanes are pruned using the Hough transform. Finally, the two strongest
lanes are used to identify the ego-lane markers in the image. In the second
baseline, based on the work by Aly et al. [6], we utilise edge information to
identify candidate lanes within a lane ROI. The candidate lanes are further
pruned by the Hough transform, before estimating the ego-lane using Ransac.

To compare the algorithms, we use their respective lane detection accuracies.
An estimated lane marker is considered as a true positive, when the distance
between the estimated lane marker points and the ground truth lane marker
points is less than 20 pixels. Prior to calculating the Euclidean distance between
the lane marker points, a greedy nearest neighbour search is performed to match
the estimated spline points with their corresponding ground truth spline points.
The lane marker points for the proposed algorithm are derived from the Bezier
splines, which are in turn, interpolated from the predicted control points. A sim-
ilar technique is adopted to extract the ground-truth lane marker points. On the
other hand, the lane marker points of the baseline algorithm are directly gener-
ated from algorithm’s output. Since both our proposed and baseline algorithms
only estimates the ego-lane in the final output, every missed lane marker or false
negative also corresponds to a false positive. Consequently, we do not report the
false positive rate.

The lane detection accuracy between the proposed algorithm and the baseline
algorithm is evaluated using the testing subset of each round of the 5-fold cross
validation. As shown in Tables 1 and 2, it can be seen that the proposed algorithm
reports better lane detection algorithm than the baseline algorithm. Addition-
ally, as shown in Fig. 4, our proposed algorithm estimates the ego-lane for frames,
where the lane markers are either occluded or absent. The baseline algorithm fails
to detect the lane markers under these conditions. We report a computational time
of 45 ms per frame using the GPU, where the CNN-based feature extraction takes
an average 44 ms, while the extra trees regression takes 1 ms.

4.2 Parameter Analysis

Here we perform a detailed parameter analysis of our algorithm by reporting
the lane detection accuracy. For the parameter analysis, we first evaluate the
fine-tuning of the road-CNN model. Second, we evaluate the CNN-based features



730 V. John et al.

Table 3. Det Acc. Caltech

Feat-Reg Ext. trees Rand forest Lasso

Complete 98.9% 95.9% 95.3%

HOG 92.9% 90.3% 65.1%

SURF 93.2% 90.4% 65.2%

Table 4. Det Acc. Acquired

Feat-Reg Ext. trees Rand forest Lasso

Complete 99.3% 95.6% 94.8%

HOG 91.8% 90.7% 76.8%

SURF 92.6% 91.4% 76.7%

with different feature descriptors. Third, we evaluate the features used as the
regression input. Finally, we evaluate the regression models used for the lane
prediction.

Fine-Tuned Feature Extraction. In this experiment, we validate the need to fine-
tune the pre-trained Places-CNN. To perform the validation, we set-up a directly
trained (DT) road-CNN model, where we train all the layers of the road-CNN
model without any pre-initialisation using the pre-trained Places-CNN weights
and bias. On the other hand, in the fine-tuned road-CNN model we pre-initialise
the weights and bias for layers C1 − C5. The training for DT road-CNN models
is done using thee same binary dataset (100000 positive and 100000 negative
samples). Following the training, we evaluate the fine-tuned and directly-trained
CNN models on a separate test dataset of 10000 road scenes and 10000 negative
scenes and report the classification accuracies. Based on the experimental results,
we observe that the fine-tuned road-CNN model achieves a 100% classification
accuracy, while the DT CNN only achieves a 75% accuracy. This validates the
need to adopt a pre-trained network for fine-tuning, instead of directly training
the CNN. In Fig. 3, we present the filters and feature maps of the two CNN
networks. It can be clearly seen that the fine-tuned filters and feature maps are
well-trained, unlike the directly trained filters and features maps.

Different Features. To validate the lane detection accuracy due to the CNN-
based road features, we train the regression model with the HOG and SURF-
based road features [15] and report the lane detection accuracies. As shown in
Tables 3 and 4, the performance of the CNN-based road features is much better
than both the HOG and SURF-based features across different regression models.

CNN-Based Feature Descriptor. We perform an experiment by considering dif-
ferent feature descriptors to represent the CNN-based feature (complete). For
this experiment, we consider three different feature descriptors with reduced
dimensions, the mean, phist and bhist. In the mean descriptor the 256, 7 × 7,
feature maps in the original feature vector are averaged, resulting in a 49-dim
feature vector (1 × 7 × 7). In the phist, a 10-bin histogram is used to represent
the distribution of values across the 256 feature maps at each 7 × 7 map index
resulting in a 490-dim feature vector (10×7×7). Finally, in the bhist the 10-bin
histogram is used to represent the feature distribution across 3 disjoint blocks
of the 256 feature maps at each 7 × 7 index. This results in a 1470-dim feature
vector (30 × 7 × 7). Based on our experimental results, we observe that none of



Real-Time Lane Estimation Using Deep Features and Extra Trees Regression 731

Table 5. Det. Acc Caltech

Feat-Reg Ext. trees Rand forest Lasso

Complete 98.9% 95.9% 95.3%

Mean 94.2% 90.6% 65%

PHist 90.5% 87.0% 78.3%

BHist 89.6% 87.6% 82%

Table 6. Det. Acc Acquired

Feat-Reg Ext. trees Rand forest Lasso

Complete 99.3% 95.6% 94.8%

Mean 94.0% 91.1% 77.7%

PHist 91.4% 88.6% 83.9%

BHist 95.9% 94.8% 93.7%

the feature descriptors demonstrate an improved lane detection accuracy, inspite
of reducing the computational complexity of the regression model. This is shown
in Tables 5 and 6.

Different Regression Models. The performance of the extra trees is evaluated
in this section. Trained random forest and Lasso regression models are used to
predict the lanes for different features and feature descriptors. As observed in all
the tables above (Tables 1, 2, 3, 4, 5 and 6), the performance of the extra trees
is better than the random forest and the Lasso models, across different features

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Some lane detection examples of our proposed algorithm for challenges scenarios
where the ego-lane markers are (a–b) curved, (c) shadowed, (d) shadowed and absent,
(e–f) partially occluded, (g) partially occluded, absent with different coloured road
surface, (h) occluded and absent, (i–l) absent. The blue splines are the ground truths,
while the red splines are the predicted splines. The baseline algorithms fails to detect
the ego-lane markers under these conditions.



732 V. John et al.

Fig. 5. Missed lane marker detections by our algorithm, for a hard left turn and sud-
denly emerging left lanes.

and feature descriptors. Additionally, we can also observe that the performance
of the random forest is better than the Lasso model.

Discussion. Based on the experimental results, we observe that the proposed
algorithm demonstrates better lane detection accuracy. Additionally, the advan-
tage of the CNN-based road features and extra trees regression model is clearly
demonstrated. The algorithm is robust to lane marker occlusions and absent
lane markers. The few missed lane detections occur for lane marker scenes which
occur rarely, resulting in limited training samples for the extra trees regression.
Examples of missed lane detections classes are shown in Fig. 5. Note that this
can be addressed by increasing the training samples for the particular class.

5 Conclusion and Future Work

In this paper, a real-time learning-based lane detection is proposed using the con-
volutional neural network and extra tree regression model. The proposed learning
framework models the relationship between the input road image and annotated
lane markers, which are then used to perform ego-lane prediction. In the learning
framework, the pre-trained Places-convolutional neural network is fine-tuned to
extract features from the input road images. These extracted features are used
along with annotated ego-lane markers to train the extra trees regression model.
The trained extra trees are then used to predict the ego-lanes in real-time, during
the testing phase, using the convolutional neural network-based road features.
We validate the proposed algorithm on the publicly available Caltech dataset
and an acquired dataset, and perform a comparative analysis with baseline lane
detection algorithms. Based on our experimental results, we report better lane
detection accuracies. More importantly, our proposed approach is not affected by
either occlusions or the absence of lane markers. A detailed parameter analysis
of the proposed algorithm is also performed. In the future work, we will vali-
date the algorithm on a larger dataset and extend the algorithm to identifying
multiple lanes.



Real-Time Lane Estimation Using Deep Features and Extra Trees Regression 733

References

1. Choi, H., Park, J., Choi, W., Oh, S.: Vision-based fusion of robust lane tracking and
forward vehicle detection in a real driving environment. Int. J. Automot. Technol.
13(4), 653–669 (2012)

2. Andrew, H., Lai, S., Nelson, H., Yung, C.: Lane detection by orientation and length
discrimination. IEEE Trans. Syst. Man Cybern. Part B 30(4), 539–548 (2000)

3. Kowsari, T., Beauchemin, S.S., Bauer, M.A.: Map-based lane and obstacle-free
area detection. In: VISAPP (2014)

4. Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road, lane detection:
a survey. Mach. Vis. Appl. 25(3), 727–745 (2014)

5. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in Neural Information
Processing Systems (2014)

6. Aly, M.: Real time detection of lane markers in urban streets. In: Proceedings of
the Intelligent Vehicles Symposium (2008)

7. Yenikaya, S., Yenikaya, G., Düven, E.: Keeping the vehicle on the road: a survey
on on-road lane detection systems. ACM Comput. Surv. 46(1), 2:1–2:43 (2013)

8. Sehestedt, S., Kodagoda, S., Alempijevic, A., Dissanayake, G.: Efficient lane detec-
tion and tracking in urban environments. In: Proceedings of the European Confer-
ence on Mobile Robots (2007)

9. Arshad, N., Moon, K., Park, S., Kim, J.: Lane detection with moving vehicle using
colour information. In: World Congress on Engineering and Computer Science
(2011)

10. Kim, J., Lee, M.: Robust lane detection based on convolutional neural network
and random sample consensus. In: Yap, K.S., Wong, K.W., Teoh, A., Huang, K.,
Loo, C.K. (eds.) ICONIP 2014, Part I. LNCS, vol. 8834, pp. 454–461. Springer,
Heidelberg (2014)

11. Huang, A.S., Teller, S.: Probabilistic lane estimation for autonomous driving using
basis curves. Auton. Robots 31(2–3), 269–283 (2011)

12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006)

13. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object
detection, tracking, and action recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 33(11), 2188–2202 (2011)

14. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guaddarrame, S., Darrel, T.: Caffe: convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093 (2014)

15. Song, J., Ma, Y., Hu, F., Lao, S., Zhao, Y.: Scalable image retrieval based on
feature forest. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009, Part
III. LNCS, vol. 5996, pp. 506–515. Springer, Heidelberg (2010)

http://arxiv.org/abs/1408.5093

	Real-Time Lane Estimation Using Deep Features and Extra Trees Regression
	1 Introduction
	2 Literature Review
	3 Algorithm
	3.1 Training
	3.2 Testing

	4 Experimental Results
	4.1 Comparative Analysis
	4.2 Parameter Analysis

	5 Conclusion and Future Work
	References


