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Abstract. In recent years, X-ray screening systems have been used to
safeguard environments in which access control is of paramount impor-
tance. Security checkpoints have been placed at the entrances to many
public places to detect prohibited items such as handguns and explosives.
Human operators complete these tasks because automated recognition
in baggage inspection is far from perfect. Research and development on
X-ray testing is, however, ongoing into new approaches that can be used
to aid human operators. This paper attempts to make a contribution to
the field of object recognition by proposing a new approach called Adap-
tive Sparse Representation (XASR+). It consists of two stages: learning
and testing. In the learning stage, for each object of training dataset,
several random patches are extracted from its X-ray images in order
to construct representative dictionaries. A stop-list is used to remove
very common words of the dictionaries. In the testing stage, random
test patches of the query image are extracted, and for each test patch a
dictionary is built concatenating the ‘best’ representative dictionary of
each object. Using this adapted dictionary, each test patch is classified
following the Sparse Representation Classification (SRC) methodology.
Finally, the query image is classified by patch voting. Thus, our approach
is able to deal with less constrained conditions including some contrast
variability, pose, intra-class variability, size of the image and focal dis-
tance. We tested the effectiveness of our method for the detection of four
different objects. In our experiments, the recognition rate was more than
95 % in each class, and more than 85% if the object is occluded less than
15 %. Results show that XASR+ deals well with unconstrained condi-
tions, outperforming various representative methods in the literature.

1 Introduction

Baggage inspection using X-ray screening is a priority task that reduces the risk
of crime, terrorist attacks and propagation of pests and diseases [1]. Security and
safety screening with X-ray scanners has become an important process in public
spaces and at border checkpoints [2]. However, inspection is a complex task

c© Springer International Publishing Switzerland 2016
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because threat items are very difficult to detect when placed in closely packed
bags, occluded by other objects, or rotated, thus presenting an unrecognizable
view [3]. Manual detection of threat items by human inspectors is extremely
demanding [4]. It is tedious because very few bags actually contain threat items,
and it is stressful because the work of identifying a wide range of objects, shapes
and substances (metals, organic and inorganic substances) takes a great deal of
concentration. In addition, human inspectors receive only minimal technological
support. Furthermore, during rush hours, they have only a few seconds to decide
whether or not a bag contains a threat item [5]. Since each operator must screen
many bags, the likelihood of human error becomes considerable over a long
period of time even with intensive training. The literature suggests that detection
performance is only about 80–90 % [6]. In baggage inspection, automated X-ray
testing remains an open question due to: (i) loss of generality, which means
that approaches developed for one task may not transfer well to another; (ii)
deficient detection accuracy, which means that there is a fundamental tradeoff
between false alarms and missed detections; (iii) limited robustness given that
requirements for the use of a method are often met for simple structures only;
and (iv) low adaptiveness in that it may be very difficult to accommodate an
automated system to design modifications or different specimens.

There are some contributions in computer vision for X-ray testing such as
applications on inspection of castings, welds, food, cargos and baggage screening
[7]. For this research proposal, it is very interesting to review the advances in
baggage screening that have taken place over the course of this decade. They can
be summarized as follows: Some approaches attempt to recognize objects using a
single view of mono-energy X-ray images (e.g., the adapted implicit shape model
based on visual codebooks [8]) and dual-energy X-ray images (e.g., Gabor texture
features [9], bag of words based on SURF features [10] and pseudo-color, texture,
edge and shape features [11]). More complex approaches that deal with multiple
X-ray images have been developed as well. In the case of mono-energy imaging,
see for example the recognition of regular objects using data association in [12]
and active vision [13] where a second-best view is estimated. In the case of dual-
energy imaging, see the use of visual vocabularies and SVM classifiers in [14].
Progress also has been made in the area of computed tomography. For example,
in order to improve the quality of CT images, metal artifact reduction and de-
noising [15] techniques were suggested. Many methods based on 3D features
for 3D object recognition have been developed (see, for example, RIFT and
SIFT descriptors [16], 3D Visual Cortex Modeling 3D Zernike descriptors and
histogram of shape index [17]). There are contributions using known recognition
techniques (see, for example, bag of words [18] and random forest [19]). As
we can see, the progress in automated baggage inspection is modest and still
very limited compared to what is needed because X-ray screening systems are
still being manipulated by human inspectors. Automated recognition in baggage
inspection is far from being perfected given that the appearance of the object
of interest can become extremely difficult due to problems of (self-)occlusion,
noise, acquisition, clutter, etc.
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We believe that algorithms based on sparse representations can be used
for this general task because in many computer vision applications, under the
assumption that natural images can be represented using sparse decomposition,
state-of-the-art results have been significantly improved [20]. Thus, it is possible
to cast the problem of recognition into a supervised recognition form with X-ray
images images and class levels (e.g., objects to be recognized) using learned fea-
tures in a unsupervised way. In the sparse representation approach, a dictionary
is built from the training X-ray images, and matching is done by reconstructing
the query image using a sparse linear combination of the dictionary. Usually, the
query image is assigned to the class with the minimal reconstruction error.

Reflecting on the problems confronting recognition of objects, we believe
that there are some key ideas that should be present in new proposed solu-
tions. First, it is clear that certain parts of the objects are not providing any
information about the class to be recognized (for example occluded parts). For
this reason, such parts should be detected and should not be considered by the
recognition algorithm. Second, in recognizing any class, there are parts of the
object that are more relevant than other parts (for example the sharp parts when
recognizing sharp objects like knives). For this reason, relevant parts should be
class-dependent, and could be found using unsupervised learning. Third, in the
real-world environment, and given that X-ray images are not perfectly aligned
and the distance between detector and objects can vary from capture to cap-
ture, analysis of fixed parts can lead to misclassification. For this reason, feature
extraction should not be in fixed positions, and can be in several random posi-
tions. Moreover, it would be possible to use a selection criterion that enables
selection of the best regions. Fourth, an object that is present in a query image
can be subdivided into ‘sub-objects’, for different parts (e.g., in case of a hand-
gun there are trigger, muzzle, grip, etc.). For this reason, when searching for
images of the same class it would be helpful to search for image parts in all
images of the training images instead of similar training images.

Inspired by these key ideas, we propose a method for recognition of objects
using X-ray images1. Three main contributions of our approach are: (1) A new
general algorithm that is able to recognize regular objects: it has been evaluated
in the recognition of four different objects. (2) A new representation for the
classes to be recognized using random patches: this is based on representative
dictionaries learned for each class of the training images, which correspond to a
rich collection of representations of selected relevant parts that are particular to a
specific class. (3) A new representation for the query X-ray image: this is based
on (i) a discriminative criterion that selects the ‘best’ test patches extracted
randomly from the query image and (ii) and an ‘adaptive’ sparse representation
of the selected patches computed from the ‘best’ representative dictionary of
each class. Using these new representations, the proposed method (XASR+)
can achieve high recognition performance under many complex conditions, as
shown in our experiments.

1 A similar approach was developed by us for a biometric problem [21].
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2 Proposed Method

The proposed XASR+ method consists of two stages: learning and testing (see
Fig. 1). In the learning stage, for each object of the training, several random
patches are extracted and described from their images in order to built represen-
tative dictionaries. In the testing stage, random test patches of the query image
are extracted and described, and for each test patch a dictionary is built con-
catenating the ‘best’ representative dictionary of each object. Using this adapted
dictionary, each test patch is classified in accordance with the Sparse Representa-
tion Classification (SRC) methodology [22]. Afterwards, the patches are selected
according to a discriminative criterion. Finally, the query image is classified by
voting for the selected patches. Both stages will be explained in this section in
further detail.

2.1 Model Learning

In the training stage, a set of n object images of k objects is available, where Iij
denotes X-ray image j of object i (for i = 1 . . . k and j = 1 . . . n) as illustrated
in Fig. 2. In each image Iij , m patches Pi

jp of size w × w pixels (for p = 1 . . . m)
are randomly extracted. They are centered in (xi

jp, y
i
jp). In this work, a patch P

is defined as vector:

Fig. 1. Overview of the proposed method. The figure illustrates the recognition of three
different objects. The shown classes are three: clips, razor blades and springs. There
are two stages: Learning and Testing. The stop-list is used to filter out patches that
are not discriminating for these classes. The stopped patches are not considered in the
dictionaries of each class and in the testing stage.
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p = [ z ; αr] ∈ Rd+1 (1)

where z = g(P) ∈ Rd is a descriptor of patch P (i.e.,a local descriptor of
d elements extracted from the patch); r is the distance of the center of the
patch (xi

jp, y
i
jp) to the center of the image; and α is a weighting factor between

descriptor and location. Description z must be rotation invariant because the
orientation of the object can be anyone. Patch P is described using a vector that
has been normalized to unit length:

y = f(P) =
p

||p|| ∈ Rd+1 (2)

In order to eliminate non-discriminative patches, a stop-list is computed from
a visual vocabulary. The visual vocabulary is built using all descriptors Z =
{zijp} ∈ Rd×knm, for i = 1 . . . k, for j = 1 . . . n and for p = 1 . . . m. Array Z is
clustered using a k-means algorithm in Nv clusters. Thus, a visual vocabulary
containing Nv visual words is obtained. In order to construct the stop-list, the
term frequency ‘tf ’ is computed: tf (d, v) is defined as the number of occurrences
of word v in document d, for d = 1 . . . K, v = 1 . . . Nv. In our case, a document
corresponds to an X-ray image, and K = kn is the number of classes in the
training dataset. Afterwards, the document frequency ‘df ’ is computed: df (v) =∑

d{tf (d, v) > 0}, i.e., the number of images in the training dataset that contain
a word v, for v = 1 . . . Nv. The stop-list is built using words with highest and
smallest df values: On one hand, visual words with highest df values are not
discriminative because they occur in almost all images. On the other hand, visual
words with smallest df are so unusual that they correspond in most of the cases
to noise. Usually, the top 5 % and bottom 10 % are stopped [23]. Those patches

Fig. 2. Extraction and description of m patches of training image j of object i.
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of Z that belong to the stopped clusters are not considered in the following steps
of our algorithm.

Using (2) all extracted patches are described as yi
jp = f(Pi

jp). Thus, for
object i an array with the description of all patches is defined as Yi = {yi

jp} ∈
R(d+1)×nm (for j = 1 . . . n and p = 1 . . . m).

The description Yi of object i is clustered using k-means algorithm in Q
clusters that will be referred to as parent clusters:

ciq = kmeans(Yi, Q) (3)

for q = 1 . . . Q, where ciq ∈ R(d+1) is the centroid of parent cluster q of object i.
We define Yi

q as the array with all samples yi
jp that belong to the parent cluster

with centroid ciq. In order to select a reduced number of samples, each parent
cluster is clustered again in R child clusters:

ciqr = kmeans(Yi
q, R) (4)

for r = 1 . . . R, where ciqr ∈ R(d+1) is the centroid of child cluster r of parent
cluster q of object i. All centroids of child clusters of object i are arranged in an
array Di, and specifically for parent cluster q are arranged in a matrix:

Āi
q = [ciq1 . . . ciqr . . . ciqR]T ∈ R(d+1)×R (5)

Thus, this arrange contains R representative samples of parent cluster q of object
i as illustrated in Fig. 3. The set of all centroids of child clusters of object i
(Di), represents Q representative dictionaries with R descriptions {ciqr} for q =
1 . . . Q, r = 1 . . . R.

2.2 Testing

In the testing stage, the task is to determine the identity of the query image It

given the model learned in the previous section. From the test image, s selected

Fig. 3. Representative dictionaries of object i for Q = 32 (only for q = 1 . . . 7 is shown)
and R = 20. Left column shows the centroids ciq of parent clusters. Right columns
(orange rectangle called Di) shows the centroids ciqr of child clusters. Āi

q is row q of
Di, i.e., the centroids of child clusters of parent cluster q (Color figure online).
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Fig. 4. Adaptive dictionary A of patch y. In this example there are k = 4 objects in
the training dataset. For this patch only k′ = 3 objects are selected. Dictionary A is
built from those objects by selecting all child clusters (of a parent cluster -see blue
rectangles-) which has a child cluster with the smallest distance to the patch (see green
squares). In this example, object 2 does not have child clusters that are similar enough,
i.e., h2(y, q̂2) > θ (Color figure online).

test patches Pt
p of size w × w pixels are extracted and described using (2) as

yt
p = f(Pt

p) (for p = 1 . . . s). The selection criterion of a test patch will be
explained later in this section.

For each selected test patch with description y = yt
p, a distance to each

parent cluster q of each object i of the training dataset is measured:

hi(y, q) = distance(y, Āi
q). (6)

We tested with several distance metrics. The best performance, however, was
obtained by:

hi(y, q) = minr||y − ciqr|| for r = 1 . . . R, (7)

which is the smallest Euclidean distance to centroids of child clusters of parent
cluster q as illustrated in Fig. 4. For y and ciqr normalized to unit �2 norm, the
following distance can be used based on (7):

hi(y, q) = minr(1− < y, ciqr >) for r = 1 . . . R, (8)

where the term < • > corresponds to the scalar product that provides a simi-
larity (cosine of angle) between vectors y and ciqr. The parent cluster that has
the minimal distance is searched:

q̂i = argmin
q

hi(y, q), (9)

which minimal distance is hi(y, q̂i).
For patch y, we select those training objects that have a minimal distance

less than a threshold θ in order to ensure a similarity between the test patch and
representative object patches. If k′ objects fulfill the condition hi(y, q̂i) < θ for
i = 1 . . . k, with k′ ≤ k, we can build a new index vi′ that indicates the index
of the i′-th selected object for i′ = 1 . . . k′. For instance in a training dataset
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with k = 4 objects, if k′ = 3 objects are selected (e.g., objects 1, 3 and 4),
then the indices are v1 = 1, v2 = 3 and v3 = 4 as illustrated in Fig. 4. The
selected object i′ for patch y has its dictionary Dvi′ , and the corresponding
parent cluster is ui′ = q̂vi′ , in which child clusters are stored in row ui′ of Dvi′ ,
i.e., in Ai′ := Āvi′

ui′ .
Therefore, a dictionary for patch y is built using the best representative

patches as follows (see Fig. 4):

A(y) = [ A1 . . .Ai′ . . .Ak′
] ∈ R(d+1)×Rk′

(10)

With this adaptive dictionary A, built for patch y, we can use Sparse Rep-
resentation Classification (SRC) methodology [22]. That is, we look for a sparse
representation of y using the �1-minimization approach:

x̂ = argmin||x||1 object to Ax = y (11)

The residuals are calculated for the reconstruction for the selected objects
i′ = 1 . . . k′:

ri′(y) = ||y − Aδi′(x̂)|| (12)

where δi′(x̂) is a vector of the same size of x̂ whose only nonzero entries are the
entries in x̂ corresponding to class v(i′) = vi′ . Thus, the class of selected test
patch y will be the class that has the minimal residual, that is it will be

î(y) = v(î′) (13)

where î′ = argmini′ri′(y).
Finally, the identity of the query object will be the majority vote of the

classes assigned to the s selected test patches yt
p, for p = 1 . . . s:

identity(It) = mode(̂i(yt
1), . . . î(y

t
p), . . . î(y

t
s)) (14)

The selection of s patches of query image is as follows:

(i) From query image It, m patches are randomly extracted and described using
(2): yt

j , for j = 1 . . . m, with m ≥ s.
(ii) Each patch yt

j is represented by x̂t
j using the mentioned adaptive sparse

representation according to (11).
(iii) The sparsity concentration index (SCI) of each patch is computed in order

to evaluate how spread are its sparse coefficients [22]. SCI is defined by

Sj := SCI(yt
j) =

k max(||δi′(x̂t
j)||1)/||x̂t

j ||1 − 1
k − 1

(15)

If a patch is discriminative enough it is expected that its SCI is large. Note
that we use k instead of k′ because the concentration of the coefficients related
to k classes must be measured.

(iv) Array {S}mj=1 is sorted in a descended way.
(v) The first s patches in this sorted list in which SCI values are greater than a τ

threshold are then selected. If only s′ patches are selected, with s′ < s, then
the majority vote decision in (14) will be taken with the first s′ patches.
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3 Experiments

Our method was tested in the recognition of five classes in baggage screening:
handguns, shuriken (ninja stars), clips, razor blades and background (see some
samples in Fig. 5). In our experiments, there are 100 X-ray images per class. All
images were resized to 128 × 128 pixels. We defined the following protocol: from
each class, 50 images were randomly chosen for training and one for testing.
In order to obtain a better confidence level in the estimation of recognition
accuracy2, the test was repeated 100 times by randomly selecting new 51 images
per class each time (50 for training and 1 for testing). The reported accuracy in
all of our experiments is the average calculated over the 100 tests3.

The descriptor used by our method was LBPri
8,1, i.e.,Local Binary Pattern

rotation-invariant with 8 samples and radius 1 [25]. That yields a 36-bin descrip-
tor (d = 36). The size of the patch was 24 × 24 pixels (w = 24).

Table 1. Accuracy [%] of each experiment

Occlusion → 0 15×15 30×30 50×50 70×70
(0%) (1.4%) (5.5%) (15.3%) (29.9%)

Method ↓
XASR+ 97.0 96.5 95.0 89.5 82.3
XASR 92.0 92.0 85.5 31.5 20.5
SIFT 91.0 87.6 84.2 78.4 64.6
SRC 94.8 89.4 85.8 81.0 70.6
Vgoogle 87.2 83.6 82.8 70.4 54.6
BoW-KNN 88.6 84.4 82.6 73.8 55.0
BoW-RF 84.4 75.2 73.6 61.0 38.2

In order to evaluate the robustness against occlusion, we corrupted the test
images with a square of random gray value of size a×a pixels located randomly,
for a = 15, 30, 50, 70 (see example in Table 1). The obtained result is given in
first row of Table 1 (see XASR+’s row). We observe that the accuracy was more
than 95 % in each class when there is no occlusion, and more than 80 % if the
object is occluded less than 30 %.

In order to evaluate the effectiveness of the stop-list, we repeated the same
experiment without considering this step. The results are given in the second
row of Table 1 (see XASR’s row). We observe that the use of a stop-list can
increase the accuracy significantly.

2 Ratio of correctly classified samples to the total number of samples.
3 The code for the MATLAB implementation is available on our webpage http://

dmery.ing.puc.cl/index.php/material/. The X-ray images belong to GDXray data-
base [24].

http://dmery.ing.puc.cl/index.php/material/
http://dmery.ing.puc.cl/index.php/material/
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Fig. 5. Images used in our experiments. The five classes are: handguns, shuriken, razor
blades, clips and background.

In addition, we compared our method with four known methods that can
be used in object recognition: (i) SIFT [26], (ii) sparse representation classifica-
tion (SRC) [22] with SIFT descriptors, (iii) efficient visual search based on an
information retrieval approach (Vgoogle) [23], and (iv) bag of words [27] using
KNN (BoW-KNN) and random forest (BoW-RF) [28] with SIFT descriptors.
We coded these methods according to the specifications given by the authors in
their papers. The parameters were set so as to obtain the best performance. The
results are summarized in the corresponding rows of Table 1. Results show that
XASR+ deals well with unconstrained conditions in every experiment, achiev-
ing a high recognition performance in many conditions and obtaining similar
or better performance in comparison with other representative methods in the
literature.

The time computing depends on the size of the dictionary that is proportional
to the number of classes to be detected. In our experiments with 5 classes the
computational time is about 0.2 s per testing image (testing stage) on a Mac
Mini Server OS X 10.10.1, processor 2.6 GHz Intel Core i7 with 4 cores and
memory of 16GB RAM 1600 MHz DDR3.

4 Conclusions

In this paper, we have presented XASR+, an algorithm that is able to recog-
nize objects automatically in cases with less constrained conditions including
some contrast variability, pose, intra-class variability, size of the image and focal
distance. We tested the effectiveness of our method for the detection of four
different objects: razor blades, shuriken (ninja stars) handguns and clips. In
our experiments, the recognition rate was more than 95 % in every class. The
robustness of our algorithm is due to three reasons: (i) the dictionaries learned
for each class in the learning stage corresponded to a rich collection of repre-
sentations of relevant parts which were selected and clustered; (ii) the testing
stage was based on adaptive sparse representations of several random patches
using the dictionaries estimated in the previous stage which provided the best
match with the patches, and (iii) a visual vocabulary and a stop-list used to
reject non-discriminative patches in both learning and testing stage.

Acknowledgments. This work was supported by Fondecyt Grant No. 1130934 from
CONICYT, Chile.
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