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Abstract. This paper considers a robust direct homography tracking
that takes advantage of the known intrinsic parameters of the camera to
estimate its pose in real scale, to speed-up the convergence, and to drasti-
cally increase the robustness of the tracking. Indeed, our new formulation
for direct homography tracking allows us to explicitly solve a 6 Degrees
Of Freedom (DOF) rigid transformation between the plane and the cam-
era. Furthermore, it simplifies the integration of the Extended Kalman
Filter (EKF) which allows us to increase the computational speed and
deal with large motions. For the sake of robustness, our approach also
includes a pyramidal optimization using an Enhanced Correlation Coef-
ficient (ECC) based objective function. The experiments show the high
efficiency of our approach against state of the art methods and under
challenging conditions.
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1 Introduction

In the past decade, planar homography tracking has been extensively studied
in the field of computer vision since it is an essential tool for a large number of
applications, such as visual servoing, robotic navigation, augmented reality and
more.

The direct homography tracking pipeline is straightforward; a known image
template is tracked along a video sequence by iteratively solving a parametric
image alignment problem which minimize the photometric difference between
the template and the current image. The estimated parameters from the previ-
ous frame are then utilized as an initial guess for the current one. This process is
repeated for every new frame in the sequence. This mapping between the coor-
dinates of both images requires an appropriate geometric transformation. For
planar tracking using a pinhole camera, the perspective homography is consid-
ered to be the most suitable model for general cases [1].

This strategy is very efficient but relies on multiple assumptions, such as
a small and smooth inter-frame displacement. This first hypothesis is violated
when fast motions are performed, which limits the possible uses for this tech-
nique in many practical applications. Hence, many researches have focused on
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more efficient objective functions based on different performance criterions like
Mutual Information (MI) [2], NCC [3], etc. The goal of the previously men-
tioned approaches is to increase the robustness against illumination changes
and the range of convergence in order to handle larger motions than basic SSD
approaches [4]. Nonetheless, a large overlap - of the tracked plane between two
consecutive images - is still required to ensure correct tracking. The interested
reader can check the results obtained with different direct homography tracking
methods under fast motions in [3]. The first attempt specifically designed to deal
with fast motion is probably the work of Park et al. [8], where the well-known
Efficient Second Order Minimization (ESM) tracking [4] is modified to deal with
strongly blurred images.

Also, non-direct approaches using sparse features such as edges [5] or
points [6] exist but are usually very sensitive to motion blur and strong changes
in scale and appearance. Direct approaches tend to be more robust in such chal-
lenging conditions. However the feature-based methods are very useful for the
re-detection of the target and less prone to drift. In [7], the authors combine the
advantages from both approaches in a single hybrid scheme. In this paper, we
exclusively focused on the direct tracking approaches.

From the literatures, we acknowledge two facts. First, most of the existing
methods focused on uncalibrated camera configurations which consist of the res-
olution of an 8 degrees of freedom problem in order to solve a homography (up to
scale). When the camera pose is needed, the extrinsic parameters are extracted
afterwards using the intrinsic parameters of the camera [2]. This homography
decomposition does not ensure the orthogonality of the rotation matrix which
has to be enforce afterwards. This leads to a slightly biased estimation of the
motion. In this work, we propose to include the computation of the extrinsic
parameters directly in the tracking process through a reformulation of the prob-
lem. If the size of the template is known, the real scale pose estimation can be
determined by our method. Moreover, explicitly solving the orientation and posi-
tion of the camera leads to a more constrained problem less prone to divergence
than usual approaches.

Our second observation is that the existing methods are purely deterministic
and remains very sensitive to fast motions. In this paper, we propose to include
a probabilistic stage in the tracking process. Indeed, our reformulation of the
tracking problem allows for the use of the EKF [9,10] to predict the next pose
of the camera. Therefore, this prediction can be utilized as an initialization
for the next frame. With this approach, we are able to deal with larger inter-
frame motions than conventional methods since the predicted initial parameters
are closer to the optimal solution. This procedure also strongly increases the
convergence speed of the optimization step. To our best knowledge, it is the first
attempt to fuse the EKF to direct homography tracking, while the EKF has
been intensively adopted to many non-direct tracking methods [5,11].

Another strong assumption for direct homography tracking is the lightness
constancy. A large number of works dedicated to this particular problem are
available. For instance, in [12], Silveira et al. cope with generic illumination
changes using an efficient illumination model.
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Although it is not the main point of this paper, our approach also takes
the local and global illumination changes into consideration, thanks to a robust
objective function based on ECC [1]. The range of convergence as well as the
speed of the method have also been improved by a pyramidal optimization
scheme. However, it is clear that our approach is compatible with any perfor-
mance criterion. The advantages offered by our method are underlined through
multiple experiments where the tracking accuracy, robustness and speed are
evaluated.

This paper is organized in the following manner: in the Sect.2 we describe
both the reformulation of the homography under a 6DOF problem and the ECC-
based image alignment process. The next section is dedicated to the integration
of the Extended Kalman Filter in the tracking scheme. In the Sect. 4, we propose
a large number of results demonstrating the accuracy and the speed of our
method. Finally this paper ends with a short conclusion.

2 ECC-Based 6-DOF Direct Homography Tracking

In this section, our ECC-based 6-DOF direct homography tracking algorithm is
explained in twofold. Firstly, our homography from a 6-DOF pose is explained.
Compared to conventional approaches, our homography is modeled using the
6-DOF pose of the camera thanks to its known intrinsic parameters. This new
formulation enhances the convergence of the optimization and allows us to apply
the EKF. Secondly, our ECC-based tracking algorithm is described in detail. We
model the homography-based tracking of a planar object as an ECC-based non-
linear least squares problem with 6 unknown parameters which can be solved
using a gradient descent approach.

2.1 Homography from a 6-DOF Pose

In computer vision, projective homography is often referred to as a transforma-
tion between two images of the same planar object. It is geometrically modeled
by the normal direction of the plane, the intrinsic parameters and the poses of
the cameras. Practically, it is often utilized to estimate the relative pose of the
camera w.r.t. a plane. If we consider two cameras as a and b, the corresponding
image points x, and x; observed by a and b follow this homographic relationship:

o~ Ky -Hp_q - K};l * Tp, (1)

where Hy,_., is a 3x3 homography transformation matrix from b to a and K,,
K, are the intrinsic camera matrices of a and b.

In this work, we focus on a homography-based tracking scenario where we
have a single image for b (template) and a series of images for a (target). There-
fore, we use abbreviated notations tgt (target) and tmp (template) in place of
a and b respectively (Fig.1). We design our world coordinate to be centered
at the planar object of which the plane equation is Z = 0. If an image of
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Fig. 1. Our homography relationship between the planar object, template image and
the target image.

Himpotge = [Ttgt,l Ttgt,2 ttgt]

the planar object is captured by the target camera with an intrinsic camera
matrix K4 and a 6-DOF pose represented as [Rmyp, timyp], an arbitrary 3D point
X = [X,Y,0, 1}T on the planar object can be projected onto the target image
as X¢gr = Kigt [Rige|tige] X. By introducing a deprived form (X) = [X,Y 1]T to
reflect the zero z-value, the projection can be simplified as:

Xigt = tht [rtgt,la Tigt,2, ttgt] <X> (2)

The corresponding point in the template image can be calculated by a trans-
formation Ky, (like an intrinsic camera matrix) so that Xy, = Kimp(X) where
Kimp must be predefined w.r.t. the pizel/mm scale of the template image and
the position of the reference coordinate. For instance, if the template image con-
sists of w x h pixels and the actual size of the corresponding rectangle on the
planar object is W x H millimeters, then it can be expressed in the following
manner:

S 0t
K - 0 b=l Aot (3)
tmp H 2 )

0o 0 1

thereby enforcing the reference coordinate system to be located at the center of
the template image and the pose estimation in metric scale to be achieved.

From Egs. (1), (2) and (3), the homography from the template image to the
target image, Hypp—ige, can be described simply as follows:

Hippotgr = [T'tgt,l Tigt,2 ttgt} . (4)

2.2 ECC-based Direct Homography Tracking

ECC [1] is one of the image similarity measures which quantify the similarity
between two images. Hence, the alignment of the two images can be achieved by
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maximizing the ECC between them. Given a pair of pixel intensities Iy, (k)
and I (y;) for the template image and the target image (respectively at the
image coordinates x; and y,), the alignment problem consists of finding the
transformation vector p mapping vy, = ¢(xk;p). In our case, p is a vector of
length 6 composed of the rotation vector r4; and the translation vector #;4; of
the target camera. In this paper, the vector for pixels’ intensities of the template
image (Z¢mp) and the target image (4¢4¢) are defined as:

itmp = [Itmp (ml) P Itmp (332) [ 7Itmp (wK)]T ’ (5)
i191(P) = [Trgt (¥1(P))  Trgt (2(P)) s+ s Tugt (yxc(P))] - (6)

Thus, our ECC-based image alignment problem solving for the optimal vector
p* is defined as follows:

= - 2
p* = arg mmz ( tgt (Y (P)) — Gt Itn?p(wk) - ltmp> )

|"'tgt - ZtgtH Hztmp - "'tmpH

where 44, and 4.4 are the mean values of 4, and 4.4, while ||-|| stands for
the Euclidean distance.

To solve this non-linear least squares problem, we adopt the Levenberg-
Marquardt (LM) [13] algorithm, one of the most famous gradient descent meth-
ods. For an efficient use of the LM algorithm, it is essential to compute the
Jacobian matrix of the objective function.

Since the image intensity is not a continuous function, we consider its approx-
imation by applying the first-order Taylor expansion for p = p + Ap where Ap
is a vector of perturbations:

]T Jd¢p(x; p)

Ligt(y(p) = Lige(y(B)) + [V Ligt (¥ (D)) op

Ap, (®)
where <7, I14:(y(P)) is the vector of the gradient intensities of the image I, at
. A (z;p
y(p) and 2ZEE)
with respect to the parameters. Now, we rewrite Eq. (1) with vector normal-
ith t to th t N ite Eq. (1) with t 1
ization:

is the Jacobian matrix of the transformation vector mapping

§=¢(z;p) =K - H(p) - Ko, - T, (9)
o i)
y—¢<x,p>—[%,yg} , (10)

where x, y are the coordinates in the template and the target images, with Ky,
K4 as their intrinsic matrices. Here, H(p) and Kj,,, are expressed as defined
in Egs. (3) and (4). To consider the normalization of ¢ (Eq.(10)), the vector
function ¢ is divided into three scalar functions §; = qgl(w;p), Yo = qgg(w;p)
and 73 = gZA)g(a:; p). Then, the vector mapping function ¢ is represented by the
two components, ¢; (; p) = ¢1(x;p)/¢3(x; p) and ¢a(x; p) = da(x; p)/d3(x; p).
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The partial derivatives of ¢ with respect to p;, or the i-th element of p where

i=1,---,6, can be calculated as follows:
0g(z) _ [961(x) dgn(x)]’ 1)
Op; opi  Opi ’

) : (12)

()
()
() 13
2w

91 () _ 0 (x) 1 _ 0¢3(@) (6
Ipi opi  \ d3(x) i \ o
dpa(x) _ 9a(z) (1

where A
3%1(@
oh OH
dga(x) | _ KL
7@21” Z K . (14)
93 (x)
Op;

. . T . . .
Since we consider p = [rtTgt, t;t} , the partial derivative of H depends on the

rotation representation. In this paper, we use the Rodrigues’ rotation formula.
Finally, the Jacobian matrix J for Eq. (7) is computed as:

Jig Jiz2 - Jig
Jo1 Jog - Jog

= : (15)
J}.{,1 J[.(z R
where s
Tei = [V Tegt(yi)] [agi(w)] / gt — dege| s (16)
by assuming gyt (p) = drge (B) and [[érmp(P) = Gemp(P)[| = [|itmp(B) — G (B) |-

The LM method proceeds through successive iterations from an initial guess
(0)
P as

. —1 s
ptCtY =p) — (JTT + Adiag(J7J)) I £(p'¥) (17)

where f is a function (see Eq. (7)) returning a residual vector of length K, s is
the iteration step and A is the damping factor for the LM method.

3 Integration of Extended Kalman Filter

The Kalman Filter (KF) [14] is a method that uses a series of noisy measurements
to produce estimates of the state of a system. However, the basic KF is limited to
linear systems while many actual systems (such as the rotational motion model)
are inherently non-linear. To overcome this limitation, the Extended Kalman
Filter (EKF) [9,10] has been introduced as an extended version of the KF for non-
linear systems. To be compatible with non-linearity, the EKF takes advantage
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of the partial derivatives (Jacobian) of the non-linear system at each time step
under the assumption that it is locally linear. Though the EKF is imperfect for
estimating an optimal solution due to this hypothesis, it still provides a reliable
state prediction with very low computational cost, which is essential for various
real-time applications.

We adopt the EKF specifically to provide a well predicted initial pose for our
direct homography tracking algorithm instead of using only the previous pose
estimation. The EKF consist of three steps; prediction, tracking, and correction.
In the prediction step, the EKF produces estimates of the current state variables
regarding the camera motion along with their uncertainties. In the tracking
step, our ECC-based direct homography tracking algorithm is applied with the
predicted pose of the camera, and produces a refined camera pose which we call
the measurement. In the correction step, the estimates and the uncertainties are
updated based on the new measurement in a weighted averaging manner, where
a larger weight is attributed to the estimates with higher certainty.

In this work, we divide the motion model of the camera into two systems:
a linear system for the translational motion and a non-linear system for the
rotational motion. Even though the two systems can be modelled together in a
single EKF scheme, it is more efficient to separate them to reduce the computa-
tional cost since they can be regarded as being independent to each other. The
details of each model are explained in the following sections. (Please note that
the notations in this section are independent of those in Sect. 2.)

3.1 Translational Motion Model

The translational motion can be modeled by the following linear system:

1
te =ti_1 +vp_1 At + §ak,l(At)Q, (18)
VE = Vp_1 + ap_1 AL, (19)
ap = ai_1, (20)

where the subscript & denotes the time step, At is the time interval and ¢t =
[tz ty,tZ]T, v = [Ug, vy, v.]", a = ag, ay, a.]' are the vectors of the translation,
velocity, and acceleration, respectively.

Since it is a linear system, we can apply the basic KF for predicting the
current translational motion. The state vector is the concatenation of the trans-
lation, velocity and acceleration vectors. Hence, the state transition model can
be written as follows:

ti
xp = |V | = Frxp—1, (21)
ag

where xj, is the state vector of length 9 and Fy is the 9 x 9 state transition
matrix implying Egs. (18), (19) and (20). For the sake of clarity, we omit the
process noise in the model which is assumed to be a zero mean Gaussian white
noise.
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At time k, the measurement z; of the state xj is modeled as:

Z = kak, (22)
Hj, = [I5x3 O3x3 O3x3] , (23)

where z, is the measurement vector of length 3 and Hy, is the 3 X 9 measurement
matrix. Here, zy is the translation vector estimated by our direct homography
tracking which utilizes the predicted translation from Eq. (21) as the initial guess.
Again, for simplicity, we do not detail the measurement noise which is also
assumed to be zero mean Gaussian white noise.

3.2 Rotational Motion Model

We define the rotational motion model using the quaternions and an angu-
lar velocity vector which allow for a closed-form propagation of the rotational
motion:

g, = 2g, (24)
W = Wk—1, (25)

where k is the time step, q is the quaternion vector of length 4, w = [wy, w,, wz]T
is the angular velocity vector and Q(w) is defined as:

0 w, —wy wy
—w, 0  wy wy
wy —w,; 0 w,
—Wy —Wy —w, 0

Qw) = % (26)

Using the power series expansion, Eq. (24) can be reduced to:

2 .
g, = |cos (|lwg_1]| At/2) Iyxs + Tl sin (Jwg—1| At/2) Q(wr—1)| gj_1- (27)
-1
When we define the state vector as the concatenation of the quaternion and
the angular velocity vectors, we can apply the EKF on the following non-linear
system:

o = | 3] = flen) (28)
ZE = G:Bk, (29)
G = [Lix4 O4x3] , (30)

with f being the state transition function (which implies Eq. (24), (25), (26) and
(27)), zx the measured quaternion vector of length 4, and G the measurement
matrix.

For implementing the EKF, it is essential to use the Jacobian of f which
can be obtained by calculating the partial derivatives with respect to the state
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variables. For conciseness, the process noise and the measurement noise for the
EKF are also omitted in the equations, but were considered in the implemen-
tation with their covariance matrices. Please note that @, z are independent to
those in Sect. 3.1, where we only intend to follow the conventional notations of
the KF. Also, an inclusion of the angular acceleration in the rotation model may
improve the performance depending on the tracking scenario.

4 Results

In this section, we propose a large series of experiments with our own data but
also against multiple state of the art methods through a template-based tracking
benchmark [15].

For our experiments, we used a USB3 Pointgrey Flea3 camera with a 6 mm
lens acquiring images with a spatial resolution of 1328 x 1048 pixels at 25 frames
per second. Our method has been implemented on a computer with a 2 GHz
processor and 4 GB of RAM. The initialization of the first frame is done using
a simple rectangle detection algorithm.

Our tests focused on multiple aspects: the accuracy of the pose estimation
and the speed improvement offered by our approach. Moreover, a comparison
against multiple deterministic techniques is also proposed.

4.1 Pose Estimation

One important advantage of our approach is the direct computation of the cam-
era’s pose included in the optimization process itself. To highlight the accuracy
offered by our method, we developed a practical assessment process which con-
sists of capturing both the target image and a checkerboard - to accurately com-
pute a ground truth pose. Our experimental platform is depicted in Fig. 2. In such
a configuration, the coordinate system of the checkerboard and the target image
are different, so we propose to compare the displacement of the camera with
respect to its first position. The n'* camera motion M9} = [R3}|t9}] is nothing
but the composition of two transformations. From the checkerboard we compute
the ground truth transformation “7TM} = M9"(M2!)~!, while the estimated
motion from the tracking is computed as follow: M9} = M¢™(M¢1)~1. Thus, the
translational discrepancy can be calculated with: e; = /> (t57 — STt9}), and
the rotational error is computed as follow: e, = acos(5(tr((RS}) ™t “TROY)—1)).
As shown in Fig. 3, we acquired two sequences - Van Gogh (1500 images) and
Giiell (1200 images). In both videos a smooth and slow motion of the plane is
performed within a distance range between 30 cm and 0.9 m. The pose estima-
tion remains very accurate when the plane is close enough to the camera, as it is
the case for the first sequence where the maximum distance is only 45 cm away.
Indeed, for the Van Gogh sequence the maximum error is under 6 mm. Nonethe-
less, in the second sequence the distance is larger. In such circumstances the
target covers a very small portion of the image which leads to a higher error in
the pose estimation. Although the rotation remains accurate, the translational
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error is increasing up to 30 mm (for a distance of 0.9 m) which represents a per-
centile error of 3.3%. This error is low enough for many applications, such as
augmented reality.

Fig. 3. Pose estimation results, (first row) Template and image sample from both
sequences, (left column) Translational and rotational error of the Van Gogh sequence,
(right column) Translational and rotational error of the Giell sequence.

4.2 Speed Evaluation

As claimed previously in this paper, the use of a predictive approach allows
us to initialize the non-linear image alignment closer to the optimal minimum.
Consequently, the number of needed iterations is reduced, which leads to a signif-
icant speed improvement of the algorithm. To emphasize this effect, we acquired
a very challenging sequence called Jung Seop (which contains 1078 images).
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This sequence consists of very fast motions at different distances. Figure 4(b)
shows one representative tracking results obtained with our algorithm. On this
figure, the green bounding box is the obtained result for the current image and
the red bounding box is the previous position of the target which is usually uti-
lized as an initialization in common approaches. Finally, the blue bounding box
is the predicted pose from the EKF that we use to initialize our method. It is
qualitatively clear that the prediction is closer to the final solution. More results
are available in Fig. 5. We tried our algorithm with and without the EKF, and it
showed that when the EKF is activated the sequence is fully tracked. Without
this prediction step, the tracking failed after only 250 images due to very fast
motions. Thus, we compared the required number of iterations in both cases
only for the first 250 images of the sequence. For this test, the multi-resolution
step is not utilized. We fixed the maximum number of iterations to 100, while
the stopping criteria -the absolute difference between two successive updates
€ - was defined by ¢ < 107%. The results are available in Fig.6, it is obvious
that our method drastically reduced the number of iterations. For most of the
images only 2 iterations are performed with the EKF prediction. In fact, the
mean number of iterations with the EKF is 2.8 iterations per image while it is
increased to 7.1 iterations without it.

Furthermore, ensuring the initialization to be in the vicinity of convergence
leads to a more robust tracking. For instance, in Fig. 5, the warped images are
strongly affected by motion blur, but even under these difficult conditions our
method can efficiently track the target.

Fig.4. Jung Seop sequence, (a) template image, (b) sample image of the tracking
sequence

4.3 Benchmark Experiments

In order to compare our tracking approach against different state of the art
methods, in this section we propose a full evaluation using the template-based
tracking benchmark by Metaio GmbH [15]. This dataset consists of eight tem-
plate images (see Fig.7) with different characteristics: low, repetitive, normal
and highly textured. Along with each template image, five video sequences are
provided. The first sequence contains large angular motions and the second one
includes challenging scale changes. In the third and fourth videos, fast far and
fast close motions are performed. Finally, the last sequence is subject to strong
illumination changes. The outputs of the tracker are compared with a ground
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Fig. 5. Sample from the Jung Seop sequence, (first row) tracking results, (second row)
corresponding warped images

Number of iterations

Images

Fig. 6. Number of iterations per image with and without EKF

truth data; if the template position error is larger than 10 pixels, then the target
is considered as lost. Consequently, the results are expressed in the percentage
of successfully tracked frames.

We compare our method with three other approaches, the first being one of
the most common template-based trackers, ESM [4]. The other methods are more
recent and employ more efficient and robust objective functions, respectively,
based on NCC [3] and MI [2].

For these sequences, our algorithm is configured with 3 multi-scale levels
to increase the range of convergence, the EKF is activated and the stopping
criterion is fixed at ¢ < 10~* with a maximum of 20 iterations per scale level.
Furthermore, the template image is downscaled to a size of 320x240 pixels to
avoid oversampling.

Table 1 contains the results obtained from the algorithms where the high-
est scores are display in bold. The score difference below 5% are not taken
into account. According to this ranking, it is clear that our method signif-
icantly outperforms the compared deterministic approaches for almost every
“fast” sequences, which can be directly attributed to the use of a EKF. More-
over, our algorithm also leads to better results under challenging motions such
as large distance variations (“Range” sequences).
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Fig. 7. Set of templates utilized in the benchmark [15], (from left to right column) low,
repetitive, normal, high texturedness

Table 1. Ratio of successfully tracked images from the ESM [4], NCC [3], MI [2],
and ours

ESM Angle Range Fast Far Fast Close Illumination MI Angle Range Fast Far Fast Close [llumination
Low |/100-00% 92.33% 35.00%  21.58% 71.08% Low 100.0% 94.1% 752%  56.5% 99.5%
oW |l100.00% 64.17% 10.58%  26.83%  56.25% 100.0% 98.1% 69.9%  43.7% 93.0%
Repetitive|| 01-92% 50.42% 2250% 50.17%  34.50% Repotitivel| 70:9% 67.9% 228%  63.6% 100.0%
CPEUTVell 9.02% 11.33% 6.83%  35.83%  11.33% PEUVCl 91 39 67.1% 104%  70.5% 96.2%
. 95.42% 77.75% 7.50% 67.08%  76.75% 99.2% 99.3% 43.9%  86.7% 99.6%
Normal o e 0, R . Normal N
99.58% 99.00% 15.67% 86.75%  90.67% 100.0% 100.0% 14.8%  84.5% 100.0%
: 0.00% 0.00% 0.00%  0.00% 0.00% ) 1T1% 232% 712%  10.0% 50.6%
High High

100.00% 61.42% 22.83%  45.50% 79.67%
NCC Angle Range Fast Far Fast Close Illumination

100.0% 69.8% 20.8% 83.8% 100.0%

ECC + EKF|| Angle Range  Fast Far Fast Close Illumination

90.7% % 5270 X 07
Low li)()(]?()f gg'gé’ Zf (/,‘," ?Z g‘,“ 1188 (())1; Low 100.00% 100.00% 77.08% 83.33%  100.00%
70 T9070 0% .07 7% 100.00% 100.00% 100.00% 100.00%  93.00%
Repetitive|| .00-0% 57.7% 22.2%  (8.2%  100.0% Repetitive | 100007 100.00% 41.60% 85.40%  100.00%
T 100.0% 81.3% 12.2%  53.6% 100.0% P | 100.00% 78.12% 27.08% 68.75%  100.00%
. 100.0% 96.8% 58.2% 90.5% 100.0% Normal 100.00% 100.00% 93.75% 89.58%  100.00%
Normal 99.9% 99.9% 201%  80.5% 100.0% 100.00% 100.00% 54.16% 97.90%  100.00%
o o5 o0 ) 100.00% 45.83% 18.75% 41.60%  79.16%
High 93.6% 52.3% 92%  14.0% 98.9% High 100.0% 79.16% 56.25% 85.41%  100.00%

100.0% 51.5% 22.0% 75.0% 100.0%

5 Conclusion

In this paper we proposed an efficient direct homography tracking algorithm
able to deal with large motions. Our new formulation of the problem leads to
two major improvements. Firstly, the pose can be accurately estimated in the
tracking process itself, which reduces the number of DOF to 6. Secondly, this
reformulation of the problem facilitates the addition of a predictive approach
(the EKF) in the tracking process, while most of the state of the art method
are purely deterministic. The predicted pose provides better initialization to the
iterative image alignment process which allows the algorithm to cope with large
motions, it also drastically improves the general robustness of the algorithm.
Many experiments have been proposed in this paper to highlight the advan-
tages offered by our approach. Through these assessments it is clear that our
algorithm outperforms state of the art methods for fast motions and provides
a very accurate pose of the camera. Furthermore, the proposed method signifi-
cantly reduces the number of iterations for the non-linear image alignment step.
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