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Abstract. State-of-the-art ego-motion estimation approaches in the con-
text of visual odometry (VO) rely either on Kalman filters or bundle
adjustment. Recently proposed multi-frame feature integration (MFI [1])
techniques aim at finding a compromise between accuracy and computa-
tion efficiency. In this paper we generalise an MFI algorithm towards the
full use of multi-camera-based visual odometry for achieving more consis-
tent ego-motion estimation in a parallel scalable manner. A series of exper-
iments indicated that the generalised integration technique contributes to
an improvement of above 70 % over our direct VO implementation, and
further improved the monocular MFI technique by more than 20 %.
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1 Introduction

The development of visual odometry contributed not only to robotics, it is also of
growing importance for self-driving vehicles. The recovery of camera motion and
3D structures from video sequences has been studied since the early 80s [15]. The
vision-guided rovers on Mars defined one of the early milestones. They operate by
applying the framework of structure from motion (SfM). Since then, an extensive
amount of work has been added to theories and practice for solving the ego-
motion estimation problem in fields of visual odometry (VO) and simultaneous
localisation and mapping (SLAM).

Existing visual odometry algorithms include patch-based and feature-based
methods, depending on how inter-frame pixel correspondences are established.
Patch-based methods, e.g. by following common optical flow, deploy search win-
dows to track each pixel, while feature-based approaches perform a matching
in feature spaces where each feature vector encodes the regional characteris-
tics centering at the tracked pixel [6]. Feature-based approaches dominated the
development of visual odometry in the last decade [7].
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Although the tracking of features has been a well-studied topic in the field of
computer vision, for the use in visual odometry more strict conditions apply, and
hence a generic feature tracker can often fail. Some filtering mechanisms and tem-
poral constraints need to be considered in order to remove incorrect inter- frame
feature matches which could hazard the ego-motion estimation process [12].

The drift caused by the accumulation of ego-motion estimation is yet another
major concern [11]. Bundle adjustment (BA) is considered to be the “golden
standard” to solve this issue [5]. BA reduces the accumulated error by a global
optimisation process designed to converge to the maximum-likelihood estimate
that optimally fits the observed feature locations and their 3D coordinates. How-
ever, many BA approaches are implemented only in a local scale since it requires
a huge amount of computation involving the solution of large linear systems.

Multi-frame feature integration (MFI), proposed in [1], provides a cost-
effective yet comparable solution for drift suppression as well as for improving
the tracking process. By integrating multiple measurements of the same feature
at different times, the 3D measurement noise is canceled under certain condi-
tions. The integration of feature also implicitly introduces a dependency of the
ego-motion estimation between each frame. Such dependency is helpful in the
reduction of drift. Figure 1 shows an example of the growth of accumulated drift
and the suppression of the drift.

However, we noticed that the original MFI algorithm uses the right camera
of a stereo-vision system only for 3D calculation, while the feature detection and
tracking is done in a monocular manner. In this work we propose a generalisation
of a similar idea, which uses multi-camera data to enhance the robustness of
feature tracking, and to further reduce the drift.

The paper is organised as follows. In Sect. 2 we formulate the VO problem. In
Sect. 3 the MFI algorithm is described. In Sect. 4 we generalise the MFI algorithm
to make a full use of a multi-camera system. Experimental results are discussed in
Sect. 5 to study the improvement of the proposed method, while Sect. 6 concludes
this paper.

2 Feature-Based Visual Odometry

The pipeline of binocular visual odometry, as shown in Fig. 2, involves several
domains in computer vision. The input of the pipeline is a pair of images captured
time-synchronised by a left and right camera. It produces the estimated 3D
structure of tracked scene points and motion of the vision system relative to
the pose where the previous input images were taken. In this work we follow a
feature-based framework which derives the motion of the cameras by tracking
sparse features instead of coping with dense image patches. The advantage of
a binocular framework over a monocular one is that the 3D information can
be acquired using stereo matching and triangulation, hence it is preferable in
high-precision applications.

Motion estimation can be achieved in either Euclidean space, projective
space, or by means of both spaces. Solving the motion in Euclidean space is less
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Fig. 1. The accumulation of inter-frame estimation error grows in a super-linear man-
ner when a direct VO method is applied, as can be seen on the left plot, which also
shows that the drift is effectively suppressed when the proposed multi-camera multi-
frame feature integration (MMFI) method is used. By the introduction of inter-frame
dependency the drift slightly increases in a local scale as can be observed on the right.

Fig. 2. Pipeline of a stereo visual odometry system using 3D-to-2D correspondences

favourable due to the highly anisotropic error covariances in the case where the
3D structure is measured using a stereo-based disparity value. On the other hand,
the projective approach does not provide reliable metric information, hence the
3D-to-2D correspondences are considered as being a better choice for ego-motion
estimation [15].

Optimised motion is found by a minimisation of the re-projection error. Given
two sets of features F and F ′, and a mapping M ⊆ F × F ′. We also assume
defined 3D and 2D measurement functions g and ρ that transform a feature into
the Euclidean coordinates in R

3 or into the image coordinates in R
2, respec-

tively. Furthermore, consider the perspective projection function π : R3 → R
2.

Optimal motion is defined by the rotation matrix R and translation vector t
which minimise the sum of squares of the re-projection error, formally given by

φ(R, t) =
∑

∀(χ,χ′)∈M

‖π (Rg (χ) + t) − ρ (χ′) ‖2 (1)
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Equation (1) can be optimised by nonlinear optimisation. There is a variety of
linear closed-form solutions (e.g. efficient perspective-from-n-point (EPnP [14]),
or 5-point algorithms) which provide a good initial solution for the optimisation
process. In our work we applied the Levenberg-Marquardt algorithm to solve the
objective iteratively.

In such a framework, the accuracy entirely relies on two factors - the tracking
of features and the stereo matching algorithm, given that the system is well
calibrated. Without considering temporal consistency of the recovered motion
(i.e. the movements of the system at time slots j and j + 1 are considered to be
independent events), the drift grows in a super-linear manner as the inter-frame
ego-motion estimations are chained to derive the global trajectory of the system.
A state-of-the-art solution to suppress the drift is to use either Kalman filters
or a sliding-window bundle adjustment [16].

Recently, the multi-frame integration (MFI) technique has been proposed to
achieve drift suppression by introducing a dependency between the recovered
ego-motion at j, and feature tracking between frame j and j + 1, based on the
idea of iteratively and alternatively improving the ego-motion estimation and
feature tracking along the given video sequence.

3 Multi-frame Feature Integration

The 3D coordinates of a tracked feature, measured in multiple frames, can be
averaged to acquire a better estimate of the true position of the feature in the
Euclidean space, if the measurement function g follows a Gaussian error. Accord-
ing to this property, the integrated measurement function ḡ is defined recursively
as follows:

ḡ(χj
i ) =

α(χj
i ) · [Rj ḡ(χj−1

i ) + tj ] + g(χj
i )

α(χj
i ) + 1

(2)

where (Rj , tj) defines the rigid transformation from frame j − 1 to j, and α(χj
i )

denotes the accumulated number of measurements of feature χi at moment j. If
the feature χi is first discovered in frame j0, it is defined that ḡ(χj

i ) = 0� and
α(χj

i ) = 0 for all j < j0.
Before the states of features are updated by Eq. (2), the optimal ego-motion

(Rj , tj) is estimated first by minimising

φj(R, t) =
n∑

i=1

η · ε(χj
i , g;R, t) + (1 − η) · α(χj

i ) · ε(χj
i , ḡ;R, t) (3)

where η = [0, 1] controls the significance of the feature integration and ε measures
the deviation of the projection of feature χi in frame t versus its tracked position:

ε(χj
i , g;R, t) = ω(χj

i ) ·
∥∥∥π

(
Rg(χj−1

i ) + t
)

− ρ
(
χj

i

)∥∥∥
2

(4)

By ω we denote the weighting term of feature χi at moment j. If feature χi is
not discovered at that moment, we have ω(χj

i ) = 0 so that the feature is not
taken into account for the estimation of Rj and tj .
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The estimated motion can also be used to improve the tracking of features.
The prediction of a feature’s location in the current frame is calculated by pro-
jecting its previously integrated 3D coordinates into the current frame. The pro-
jection is then compared to the image coordinates obtained by feature matching.
The deviation between both is then used to denote the reliability of the mea-
surement, and taken into account to adjust the weighting term ω accordingly.
The MFI algorithm keeps tracking the mean of such deviations, every time a fea-
ture’s state is updated. When the cost of an update is higher than a predefined
threshold, then the tracking process for a feature is marked “lost”, and hence
terminated.

Instead of terminating the tracking immediately, an attempt to re-discover
the missing feature can be optionally carried out. The feature vector of the pixel,
at the projection of the integrated feature, is extracted and compared with the
feature being tracked. If a significantly high similarity is found, then the tracking
process is resumed.

4 Multi-camera Multi-frame Feature Integration

To maximise the robustness of the feature tracking mechanism, the MFI [1] is
extended in our work to use images taken by all cameras at moments j and j+1.
The four steps of the proposed algorithm, to be walked through in the rest of
this section, are as follows:

1. Feature detection and cross matching. Image features are detected, extracted
and then matched for all camera combinations in consecutive frames.

2. Ego-motion estimation. The optimal rotation and translation of the inter-
frame motion is calculated by minimising re-projection error subject to all
cameras.

3. Update of the integrated features. The states of all the actively tracked features
are updated to take into account the new observations based on the solved
ego-motion. Features having significantly different prediction and observation
locations are marked as lost. Attempts will be carried out to resume the
tracking of these features at a later stage.

4. Lost feature recovery. For those features, failed to update their states due to
missed matches, a prediction-and-check strategy is performed to re-discover
their corresponding image features.

4.1 Spatial-Temporal Feature Matching

Considering an m-camera visual odometry system, image features are initially
detected and extracted from images Ij

k and Ij+1
k for each camera k = 1, 2, ..,m.

Let F j
k and F j+1

k denote these features, respectively. The cross matching is initi-
ated in feature space for each pair of feature sets (F j

k , F j+1
k′ ), where 1 ≤ k, k′ ≤ m.

The mutual Euclidean distances between feature vectors are calculated, and
similar features are associated. For each feature χ ∈ F j

k , we have the distances
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Fig. 3. Illustration of the generalised multi-frame feature integration and ego-motion
estimation process

to its best match χ′
1 ∈ F j+1

k′ and its second best match χ′
2 ∈ F j+1

k′ . A differential
ratio is calculated as

δ(χ, χ′
1, χ

′
2) =

‖ν(χ) − ν(χ′
1)‖

‖ν(χ) − ν(χ′
2)‖

(5)

where ν transforms a feature to its vector representation in feature space. If the
ratio is lower than a defined threshold, say 0.8, then such matching is considered
ambiguous, hence rejected at this stage.

The initial matches are then verified in projective space for outlier rejection.
The fundamental matrix-based RANSAC strategy is typically carried out at this
stage to reject geometrically inconsistent correspondences [9]. In this work, we
instead use an LMeD estimator which is considered to be a more strict and
stable model for outlier identification [4]. The mislabeled inliers at this stage
will still have a chance to be amended later in the lost feature recovery stage.
The detected features and the matched correspondences are depicted in Fig. 3
as black circles and black solid lines, respectively.

It is worth a mention that, despite being developed independently, the
described cross matching mechanism shares a similar idea of the spatial-temporal
network implemented in the open source library LIBVISO2 [2]. In particular,
for each frame j the implementation maps features from F j

1 to F j+1
1 . For those

mapped features χ ∈ F j+1
1 the matching is performed again, but this time from
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F j+1
1 to F j+1

2 (i.e. doing a left-right feature matching in j-th frame.) After
repeating such process through F j+1

2 → F j
2 → F j

1 , in the way that χ finally
travels back to F j

1 , it checks if χ is mapped to itself in the end. Feature matches
failed to fulfill such circular consistency are rejected by LIBVISO2 to prevent
outliers being used in the ego-motion stage.

4.2 Ego-Motion Estimation

The direct 3D measurement function g is extended for also using the mean of
the measurements from all k cameras:

g(χj
i ) =

∑

1≤k≤m

1
m

· gk(χj
i ) (6)

Here, each component gk(χj
i ) denotes a 3D measurement made by the k-th

camera. The definition allows us to develop a generalised multi-camera version
of Eq. (3) such that, once minimised, a system-wide consistent solution is found.

4.3 Feature Integration and State Update

Initially as j = 0 only the direct measurement g(χ0
i ) is used in Eq. (3) to find

(R1, t1). After the first ego-motion estimation, (R1, t1) is taken into account to
compute the integration of feature χi at moment j = 1, which yields

ḡ(χ1
i ) =

[R1g(χ0
i ) + t1] + g(χ1

i )
2

(7)

according to Eq. (2). Such an update is performed for each tracked feature every
time when the ego-motion is solved between frames j and j + 1.

The magnitude of the update in Eq. (7) indicates the accuracy of the recov-
ered ego-motion as well as the reliability of the direct measurement, and can be
useful to take out unreliable 3D data in further ego-motion estimation. To this
purpose we also update the running covariance by

σ2(χj
i ) =

α(χj
i ) · σ2(χj−1

i ) + [ḡ(χj
i ) − g(χj

i )]
�[ḡ(χj

i ) − g(χj
i )]

α(χj
i ) + 1

(8)

and use it to adjust ω(χj
i ) accordingly to decrease the significance of features as

more unreliable measurements are integrated.
Projecting the integrated ḡ(χj

i ) to frame j+1 yields prediction of a previously
tracked feature χi; (depicted as blue triangles in Fig. 3.) The prediction is also
helpful to indicate problematic feature tracking. Let πk(·) be the projection
function of camera k and ρk(χj

i ) the observation of feature χi by camera k in
frame j. The prediction is defined as

ρ̄k(χj
i ) = πk

(
Rj+1ḡ(χj

i ) + tj+1

)
(9)
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The deviation ‖ρ̄k(χj
i ) − ρk(χj

i )‖ is checked before the update of an integrated
feature is actually performed. If the projection error (depicted as green thick
line in Fig. 3) is greater than a predefined threshold, then the feature is marked
as lost and the update of ḡ(χj

i ) will be set on hold for further investigation.

4.4 Lost Feature Recovery

A feature χj
i ∈ F j

k is lost in frame j + 1 between camera k and k′ if either there
exists no matched feature χ′ ∈ F j

k′ , or the difference between its prediction and
the observation ρk′(χ′) is not acceptable.

To resume the tracking of a lost feature, the feature vector is extracted from
the predicted location ρ̄(χj

i ). Then the Euclidean distance between the extracted
descriptor and νk(χj

i ) is checked against the statistics of successfully tracked
features. If the distance is within 1-σ then the feature is considered recovered.

Figure 4 shows some examples of re-discovery of lost features in the image
taken by another camera from frame j and j+1. Please note the matched patches
are not found by any means of explicit feature matching. Only the solved ego-
motion and integrated feature states are used to establish the correspondences
in sub-pixel accuracy.

5 Experimental Results

The proposed method is compared with direct VO and MFI approaches. We
use the KITTI dataset [8], with the stereo monochrome images as input data,

Fig. 4. Four lost features (always in the left image) recovered in another frame taken
by another camera (see the right image of each pair) using the multi-camera multi-
frame integration technique. The image patches are enlarged 5 times to illustrate the
sub-pixel accuracy of the feature recovery algorithm
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Fig. 5. Visual odometry of KITTI sequence 0005

Table 1. Ego-motion estimation errors and improvements

Sequence Component Unit Direct MFI MMFI

0005 Rotation deg/m 0.22 0.07 (68 %) 0.06 (72 %)

Translation % 9.42 6.10 (35 %) 4.49 (52 %)

0027 Rotation deg/m 0.06 0.02 (67 %) 0.01 (83 %)

Translation % 13.2 5.79 (59 %) 2.74 (79 %)

and the GPS/IMU data as ground truth. The direct VO implementation uses
only inter-frame feature matching of the left camera to solve ego-motion. The
MFI method uses the same camera while the tracked features are integrated over
time. The MMFI makes a full use of images taken from both cameras.

Table 2. Averaged time profile per frame

MFI MMFI

Feature matching 8.04 ms 38.61 ms

Feature integration 3.70 ms 11.49 ms

Ego-motion estimation 28.12 ms 26.34 ms

Lost feature recovery 5.83 ms 41.52 ms
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The SURF features and descriptors (see [3], or presentation in [13]) are used
for establishing inter-frame correspondences. The 3D data is acquired by means
of a semi-global matching algorithm (SGM, see [10], or presentation in [13]), and
stereo triangulation as implemented by OpenCV.

We illustrate results for the 2011 09 26 drive 0005 and 2011 09 26 drive 0027

sequences from the City and Road categories on KITTI. Each of these sequences
includes traffic signs, trees, and moving objects. The cameras traveled about
70 and 380 metres, respectively, in those two test sequences. The estimated
trajectories are drawn in Figs. 5 and 6. The ground truth is derived from the
GPS and IMU sensors.

The motion errors are measured by dividing the trajectory into all possible
subsequences of 10 %, 20 %, .., 100 % of the length of the sequence. The mean
errors among all the subsequences are calculated and tabulated in Table 1. The
errors are lower in the sequence 0005, which is shorter than 0027. The MFI
achieved improvements of 45 % and 62 % over the direct VO implementation,
respectively, in the sequences. The proposed MMFI method, on the other hand,
improved the MFI method further by about 20 % in both cases.

The runtime of MFI and MMFI are profiled to study the impact on the
efficiency when all the cameras are involved. Table 2 verifies that for most tasks
the computation time increased by a factor of four, as three more inter- frame
feature integrations are introduced by the MMFI. However, the computation
time of the nonlinear optimisation for ego-motion estimation remains at the same
level. This is a desired property as the stages of the original MFI, generalised in
our work, can be easily parallelised for optimising the procedure. It is therefore
possible to further improve the efficiency of MMFI by parallel implementation
to match the original MFI method.

Fig. 6. Visual odometry of KITTI sequence 0027
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6 Conclusions

In this paper we generalised the recently proposed multi-frame integration tech-
nique to make a full use of a multi-camera visual odometry system. The pro-
posed approach enhances the robustness of the feature integration algorithm
and achieves a better ego-motion estimation by taking into account multiple
observations.
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