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and Javier Ruiz-del-Solar

Department of Electrical Enginering, Advanced Mining Technology Center (AMTC),
Universidad de Chile, Av. Tupper 2007, Santiago, Chile

{mmattamala,jruizd}@ing.uchile.cl

Abstract. This paper presents an efficient active vision system which
controls the head of a humanoid soccer robot. The system explicitly sep-
arates static information obtained offline from the map, and dynamic
information from mobile objects, such as the ball and other players.
Both types of information are mapped and handled in a simplified struc-
ture called action space, which assigns scores to each possible action of
the robot’s head. Scores also consider the movement constraints of the
robot’s head. Due to its simplicity and efficient information handling,
the proposed active vision system is able to run in real-time in less than
1 ms. The performance of the system in a robot soccer environment is
tested via simulation and real experiments.
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1 Introduction

Achieving a goal and staying self-localized is a natural task for a human, but not
for a robot. This task is even more complex if the robot is in a highly dynamic
environment -as a soccer match-, where several landmarks must be considered
in order to have a good performance in both self-localization and playing during
the game. In this context, it is not recommended to use passive self-localization
systems based on predefined routines or heuristics because these are not related
with the real world; in fact, the number of possible configurations of the ball
and players on the field is huge. Then, it is necessary to use active localization
methodologies to cope with the environment dynamics. Active localization sys-
tems are frequently divided into two types: active navigation and active sensing.
Active navigation involves robot displacement in order to reduce self-localization
uncertainties; on the other hand, active sensing refers to the manipulation of the
robot’s sensor in order to get more information from the world. In particular, an
active vision system uses a camera as main sensor.

This work describes an active vision system for a humanoid soccer robot
which aims to choose a head pose that maximizes a score in the so-called action
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space. The space is updated during the game using a priori information from
the map, and dynamic information obtained from the ball and other players’
positions. The proposed system also takes into account the movement constraints
of the robot’s head. This approach allows not only to control the robot’s head
but also to calculate the action to be performed using minimum computational
resources in real-time.

The paper is organized as follows: relevant related work is presented in Sect. 2.
The active vision system proposed is described in detail in Sect. 3. Finally,
Sect. 4 presents the experimental results obtained, and Sect. 5 ends with the
main conclusions.

2 Related Work

Active vision is a field mainly related to computer vision which origins date
back to late 80’s under the name of active perception [2], animate vision [3] and
active vision [1]. These paradigms, despite having different backgrounds and
motivations, are based on the same principle: in order to get better and most
valuable information from the environment it is necessary to control the camera
gaze, such as humans do with their vision system. This idea establishes a direct
relation between perception and action, reason for which not only robotics have
been involved in its development, but also neurosciences and cognitive sciences.

In this work we are concerned about applications of active vision systems in
mobile robotics. Active vision has developed a strong relation with the problem
of robot self-localization, currently one of the most important topics in robotics.
For instance, Burgard [4] introduced an entropy minimization criteria to actively
explore the environment. Davison [6] presented the first active vision approach
to the SLAM problem using a stereo head, then Vidal-Calleja extended it to the
monocular case [14]. Seara [10] introduced an intelligent gaze control system for
a walking robot.

In the RoboCup context, several works have been published for the Aibo
quadruped robots, such as Fukase [7], Mitsunaga [9], Stronger [12] and Guer-
rero [8]. Regarding NAO humanoid robots, currently used in the Standard Plat-
form League, Seekircher et al. [11] presented an entropy minimization approach
which handles both self-localization and ball uncertainty as well as the costs of
choosing among them by using a camera control policy. Czarnetzki et al. [5] pro-
posed another entropy minimization approach using a particle filter and testing
the method in static and dynamic environments. However, neither the ball nor
other mobiles objects are considered in that systems. Both approaches rely on
an expensive modified particle filter to determine the target to gaze, requiring
several optimizations that reduce the accuracy of the system. These modifica-
tions allow both systems to run in 5 ms in average. In contrast, our approach
not only avoids online state estimations but it also considers the information of
the ball and other players, achieving self-localization improvements and running
in less than 1 ms.
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3 Active Vision

3.1 General View

This work describes an efficient active vision system for robot soccer applications.
It is based on an explicit division between the a priori information that can be
obtained off-game from the known-map using its inherent landmarks, and the
dynamic information provided by the moving ball and other robots in play. Our
approach maps all information sources into an action space which modify certain
scores associated to each possible head action. Then, the next target to be seen
is selected as the action with highest score.

3.2 Action Space

Before describing the active vision system it is necessary to introduce a major
concept for this work: the action space. The action space A of an end-effector is
defined as follows:

A := {(a, ω) : a ∈ R
N , ω ∈ [0, 1]} (1)

where N is the number of degrees of freedom given by the effector’s joints,
a is an action which denotes a possible state of the effector, and ω is the score
of the action a. Then, every possible state of the effector has a score assigned
according to a criteria that depends on the application. The idea is to perform
decision making over the next effector’s actions just by selecting the highest
score.

In this work we are concerned about controlling the robot’s head, so the set of
actions a will be reduced to reachable head poses a = (φpan, φtilt) ∈ Φpan ×Φtilt,
where Φpan and Φtilt denotes the set of allowed angles for each joint. Since the
robot will move its head in order to improve its self-localization, each action
a is associated with real world observations that affect the robot’s localization
system. Hence, the criteria that defines ω will be to quantify the accuracy of the
self-localization given a determined action a.

The next sections present a methodology to assign scores to each possible
action, using a discrete representation of the action space. In a first formulation
only prior information obtained from the known map is considered. Later, the
static model is improved by adding some robot’s physical constraints as well as
dynamic information from the environment.

3.3 Obtaining a Priori Information

Most of the active vision systems presented in the Sect. 2 modify a state estimator
using simulated perceptions in order to find the optimal action to be performed
by the robot’s head. Guerrero [8] proposed a probabilistic framework to infer
which landmarks could be gazed depending on the current head pose. On the
other hand, Seekircher [11] used a learned model for each perceptor (goal posts,
lines, corners) to perform a Monte Carlo Exploration [13].
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In order to avoid expensive online calculations using simulated perceptions,
we rather propose to exploit the prior information of the map by sampling a
measure of self-localization improvement while executing different actions, i.e.
observing different landmarks. This process avoids calculating accurate sensor
models because it fuses their localization improvements. Then, the collected data
can be stored in a look-up-table, facilitating access during execution.

We develop an offline routine which uses the particle filter self-localization,
and samples the particles’ weighting sum for each possible robot pose (x, y, θ)
and head pose (φpan, φtilt). In order to make the data acquisition tractable, we
run the algorithm in a predefined discrete grid for the x, y, θ and φtilt dimensions,
using the grid pose as input of the particle filter estimation. We did not consider
the φpan dimension into the sampling process because this information can be
approximated from poses with the same orientation θ while the active vision
system runs.

Algorithm 1 presents the main procedure of the sampling process, which is
run via simulation. We create a high dimensional table according to the sampling
setup (the init table function). Then, the system iterates moving the robot over
the field, changing its pose and head tilt. The robot executes the particle filter
localization system but we modified it to use the ground truth pose as the
resulting motion update, resetting the previous frame estimation. Afterwards,
the sensor update is executed using the exact observations expected for the
current pose, which should provide the best possible response of the observation
models. We also modified the output of the particle filter in order to extract the
particles’ weighting sum ω as a measure of self-localization accuracy; this is the
score that will be assigned to the action performed.

Algorithm 1. Algorithm to sample the Particle Filter result over the field.
Generate Field Table()
init table(T )
for all x̄ in xgrid do

for all ȳ in ygrid do
for all θ̄ in θgrid do

move to pose(x̄,ȳ,θ̄)
for all φ̄ in φpgrid do

set head tilt(φ̄)
ω ← sensor update(x̄, ȳ, θ̄)
save in table(T, x̄, ȳ, θ̄, φ̄, ω)

end for
end for

end for
end for

The results obtained for the sampling process are shown in Fig. 1. Please
notice that every position on field has a white ring assigned which represents the
pan-tilt action space for each pose.
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Fig. 1. Left: Example of field scores obtained for each grid position (x, y) after sam-
pling. Each white ring denotes a set of pan-tilt actions. Right: A zoom of field area,
marked in red. White rings are formed by small circles which denote the possible
actions. The radius of each circle indicates the score assigned to the action (only the
highest score is shown). In this case, we can notice that if we are close to the right
penalty cross, the best action to perform in order to improve self-localization is to point
at the center circle (Color figure online).

Using this approach, the action space for a determined pose in the field is
obtained directly from the look-up-table. The action space changes while the
robot navigates, allowing it to perform different head movements. Nevertheless,
it works only in an empty field, because no other objects are being considered;
that is why we call it a static action space. Next section will cover how to solve
this problem by adjusting the scores dynamically.

3.4 Dynamic Information

In the previous section we sampled data from the field to determine a set of
possible targets to gaze for each field position, each one having an assigned
score. However, this information is not enough to cope with the environment
dynamics because it only considers the map information. We have to improve
the action space in order to deal with this issue, using dynamic models to modify
the data. This section presents three adjustments to the static action space
using the variable information of the field during a game. These are modeled by
2-dimensional functions that weight the scores ω.

Head Limits Constraints. A first improvement consist of adding the head
limits information to the model. A humanoid robot has a limited range for the
pan and tilt head angles, so this information must be considered. Denoting by
Φlimit the set of actions inside the constrained range, we can define a head-
limiting function as:

flimits(φpan, φtilt) = 1Φlimit
(φpan, φtilt) (2)
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Where 1Φlimit
denotes the indicator or characteristic function. Then, every

score of actions out of the pan or tilt ranges defined by the robot head is set
to zero.

Head Movement Penalization. In general, we are concerned about choosing
the best action in the next frame of execution, so we are interested in choosing
an action that provides the most information at the lower angular cost for the
head. According to this fact, it is necessary to consider a penalization function
which reduces the score of the actions further away from the actual pose of the
head. Assuming independence between coordinates in the action space, we can
model the penalization function as follows:

fhead(φpan, φtilt) = vh
μ,κ(φpan)gh

μ,σ(φtilt) (3)

where vh
μ,κ(φ) corresponds to the von Mises function or circular gaussian function

(see (4)), whereas gh
μ,σ(φ) denotes a gaussian function (see (5)). The election of

von Mises function is related with the periodicity of the action space with respect
to pan angle as shown in Fig. 1.

vh
μ,κ(φ) = V eκ cos (φ−μ) (4)

gh
μ,σ(φ) = Ge− (φ−μ)2

2σ2 (5)

In this case, the means of both functions are set at the current head pose.
The dispersion κ and variance σ are parameters set by-hand. The constants V
and G are chosen so as to normalize the peak of each function to 1.

Avoiding Obstacles in the Field of View. Obstacles occlude the information
obtained from the map and affect the observations expected by the robot, so we
would like to avoid gazing in those directions. This does not affect the obstacle
detection, because the robot keeps moving the head during the active vision
execution. In addition, obstacle detections are shared among the player of the
same team. We model each obstacle using the same one-dimensional functions
as before but with different parameters:

fobstacle(φpan, φtilt, r) = k(r)(1 − vo
μ,κ(φpan))go

μ,σ(φtilt) (6)

The function shown in Eq. 6 further reduces the score of the actions closer
to an obstacle on the action space. However, it also includes a correction func-
tion k(r) which weights the score reduction depending on the obstacle distance,
denoted by r. This function is estimated using real data. The means (μpan, μtilt)
associated to the von Mises function vo

μ,κ and the Gaussian function go
μ,σ, respec-

tively, are estimated by projecting the obstacle center onto the action space,
using the inverse kinematics of the robot camera (Fig. 2 left). The von Mises’
dispersion κ and the Gaussian variance σ are estimated in a similar way, by
projecting the vertices of the obstacle bounding box onto the action space, and
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calculating the midpoint for each dimension ppan and qtilt. Using these points
and the previously estimated mean, it is possible to estimate κ and σ as follows:

κ̂pan =
1

κ0|ppan − μpan| (7)

σ̂2
tilt = σ2

0 |qtilt − μtilt|2 (8)

where κ0 and σ0 are compensation factors to adjust the parameter estimation
empirically.

)tilt, µpanµ(

Obstacle’s bounding box

Action Space

panp

tiltq

Fig. 2. Left: fobstacle parameter estimation using the bounding box vertices projected
onto the action space. Right: Actions in which the ball appears in the Field of View
define a region in the ball action space (Color figure online).

Updating Static Information. Finally, the localization action space can be
updated using the information described anteriorly. The previous functions are
evaluated in each action a = (φpan, φtilt) of the current static action space, and
used to weight and, therefore, update its scores:

ωloc(a) = ω(a) · flimits(a) · fhead(a) · fobstacle(a) (9)

3.5 Adding the Ball to the Model

The model presented shows a clear strategy to cope with both static and dynamic
field information. This allows the robot to keep self-localized despite having
several obstacles and to choose the best target under the principles previously
exposed. This strategy, however, cannot handle the most important element in
the game: the ball.

In order to have a good game performance, all players must maintain self-
localized and track the ball frequently. This can be achieve in a simple form by
using the same principles used to update the action space. Let Φball be a set
of actions where the ball appears inside the robot’s field of view. This can be
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calculated by using inverse kinematics as we did for the obstacles. We define
a complementary ball action space as an action space which handles the ball
gazing scores. The scores ωball are set to 1 if the action is in Φball, and 0 if not.
This defines a subset of actions where the ball can be seen (Fig. 2 right). This
information will be included into the active vision model.

3.6 Action Space-Based Decision Making

Finally, we merge the localization information handled in the localization action
space with the ball information (Eq. 10). This is done by defining a cost func-
tion which provides a new score for each action. In order to cope with the
localization and ball gazing trade-off, a factor α is introduced to determine ball
importance. This factor is modified by the robot’s running behaviors depending
on the player’s role or the game state. A graphical 3D visualization of the final
action space is shown in Fig. 3.

Ω(φpan, φtilt) = ωloc(φpan, φtilt) + αωball(φpan, φtilt) (10)

Afterwards, the best action is selected as the action with the maximum fused
score associated, as is shown in (11).

φ∗
pan, φ∗

tilt = arg max
φpan,φtilt

Ω(φpan, φtilt) (11)

Fig. 3. Resulting action space after information fusion. A red circle denotes the selected
target. Orange circles show actions with highest score for each pan angle where the
ball can be observed (Color figure online).

4 Experimental Results

In order to test the proposed methodology, we prepared two different experi-
mental settings: the first one is a simulated setup considering ten robots on a
RoboCup SPL field, whereas the second one is a real experiment using the robot
in a reduced field.
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4.1 Simulated Full Field Experiment

The use of simulations allow to carry out repeatable experiments and to explore
the use of different sets of parameters. For this reason, the simulated setup
was used to analyze the proposed active vision system. Besides the robot under
analysis, i.e. the one that uses the robot’s vision system, nine other robots were
added on the field to represent a real game setup. The robots were located
arbitrarily following a common team formation. The ball was located at position
(0, 1900) as shown in Fig. 4 left.

y

x
z

y

x

z

Fig. 4. Left: Simulated experiment configuration. 9 robots were added to represent a
real game. The ball was located at position (0, 1900). The robot using the active vision
system, indicated with a yellow circle, had to walk 10 times over the shown in the right
side. Right: Path followed by the robot in the experiment (Color figure online).

This experiment consisted of following a rectangular path over the full field
(Fig. 4 right). The proposed active vision system was compared with a passive
one. When using the passive vision system the robot followed a predefined head
control routine. It pointed the camera at the estimated ball position for 3 s, and
to the other landmarks such as goals and corners for 1 s.

The active vision system used the targets calculated using the scores. The
look-up table that stores the results of the particle filters used 40 and 24 bins
for the x and y dimensions, whereas 64 and 6 bins where used for the pan and
tilt angles respectively. Head pan penalization parameter κ was set to 2 [rads],
whereas tilt penalization parameter σ was fixed to 5 [rads]. Obstacle compen-
sation factors κ0 and σ0 were set to 1 and 0.05 [rads] respectively, according to
experimental observations. The ball importance factor α was varied in several
tests.

Translational and rotational errors as well as ball seen percentage were mea-
sured for both systems. Main results obtained for several ball importance factor
values are shown in Table 1. A graphical comparison of the paths walked using
both approaches is shown in Fig. 5.
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Table 1. Self-localization errors and ball seen percentage for the simulated setup

Self-localization Ball

Head control system Error (mean, mm) Error (std, mm) Error (rad) Seen (%)

Passive 96.8 139.2 0.18 36.8

Active, α = 0.5 44.927 23.926 0.08 22.9

Active, α = 1 57.2 35.5 0.11 31.9

Active, α = 2 59.4 40.3 0.11 32.8

This quantitative results show that the active vision systems outperforms
the passive one with respect to translational and rotational error, in both mean
and standard deviation. The proposed active vision method reduced the pose
estimation errors in 40 % in average, with respect to the passive system’s errors.
However, the ball seen percentage depends strongly of the ball importance factor
α chosen, being slightly reduced in a 10 % from 36.8 % in the passive case, to
32.8 % for the active system with α = 2. Translational and rotational errors are
also affected by the ball importance as is expected.
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Fig. 5. Left: Comparison of the trajectory followed by the robot while using the passive
vision system (in red) and the estimated ground truth position (shown in blue). Erratic
behavior is mainly caused by field side ambiguities as well as by obstacle occlusion.
Right: Same path using the active system with α = 2 (Color figure online).

Most of the errors before changing the robot path direction. Passive vision
systems assume full landmark observation and do not consider neither occlusions
nor current robot position. Several errors are caused by wrong observations that
affect the state estimator, inducing systematic errors in the system. The pro-
posed active vision system can cope with the environment dynamics, choosing a
target strongly related with the current robot position. Nevertheless, ball gaze
frequency is reduced at the same time, according to the ball importance factor
selected.
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4.2 Real Robot Experiment

A second test was performed in a half field using a real robot, by utilizing the
ground truth system of the RoboCup Small Size League, just as in [11]. The robot
was configured with the same parameters as the simulated experiment, using a
ball importance factor of 2, and had to follow a straight path between the points
(1000,−1000) and (1000, 1000). The ball was positioned at the center of the
field. The aim of this experiment was to test the system in both self-localization
and ball gazing, as well as to measure the time required for its execution. Main
results are shown in Table 2.

Time execution measurements show that the system uses minimal compu-
tational resources to run, requiring less than 1 ms. These results were obtained
while executing other modules required for a soccer robot, such as perception,
self-localization and decision making.

Table 2. Self-localization errors and ball seen percentage for the real setup

Self-localization Ball

Head control system Error (mean, mm) Error (std, mm) Error (rad) Seen (%)

Passive 151.4 86.9 0.58 52.2

Active, α = 2 86.6 56.1 0.32 51.9

5 Conclusions and Future Work

In this paper we present a dynamic and efficient approach to the active vision
problem focused on robot soccer applications. The method explicitly separates
static and dynamic information from the environment, allowing the system to run
in real-time by calculating offline expensive procedures, such as simulations of
the resulting state estimation for each action candidate. In addition, information
representation by the action space allows us to choose a head pose considering
different information sources such as the position of other robots and the ball,
as well as movement constraints of the robot’s head. The proposed system could
considerably improve the accuracy of the self-localization estimation process
by reducing both translation and rotational errors, using low computational
resources.

Further developments include an extension of the action space to the real
case, which would require a replacement of the particle filter discrete look-up-
table used for the static action space by an interpolated model or learned model.
Since we are coping with the particle filter results, this should not increment the
computational cost considerably during the game. In addition, parameter estima-
tion could also be improved through learning algorithms, such as reinforcement
learning.
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