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Abstract. An important area of research in humanoid robots is energy
consumption, as it limits autonomy, and can harm task performance.
This work focuses on power aware motion planning. Its principal aim is
to find joint trajectories to allow for a humanoid robot to go from crouch
to stand position while minimizing power consumption. Q-Learning (QL)
is used to search for optimal joint paths subject to angular position
and torque restrictions. A planar model of the humanoid is used, which
interacts with QL during a simulated offline learning phase. The best
joint trajectories found during learning are then executed by a physical
humanoid robot, the Aldebaran NAO. Position, velocity, acceleration,
and current of the humanoid system are measured to evaluate energy,
mechanical power, and Center of Mass (CoM) in order to estimate the
performance of the new trajectory which yield a considerable reduction
in power consumption.

Keywords: Humanoid · Dynamic modeling · Energy analysis · Opti-
mization · Q-learning

1 Introduction

Energy efficiency is a significant challenge of humanoid robots, and mobile
robots in general. These robots contain many different components that con-
sume energy, but a great portion is consumed by DC motors that transform
direct current to mechanical energy to drive them. While all components should
be analyzed for energy efficiency, DC motor activation and control consume most
of the energy required by many dynamic and static motion tasks.
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NAO robots are used in the Standard Platform League (SPL) of RoboCup. It
is known that battery duration is one of the main constraints for longer humanoid
robot autonomous performance. In order to use the SPL Robots for extended
time, it is necessary to recharge batteries at least once during a single game.

Humanoids body weight, power needs and consumption of individual com-
ponents play a significant role in energy utilization, balance and stability [1].

In terms of humanoid tasks, different approaches have been used to address
the problem of stability. In [2], a humanoid robot stands up from sitting on
a chair by using data previously collected from human demonstrations, where
stable humanoid motion is accomplished by emulating human-like movements
and speed. In [3], a three link simulated inverted pendulum learns to stand
up using a tiered reinforcement learning method. A hierarchical architecture is
applied on a three links two joints single legged robot during learning to stand
up by trial and error. Our approach is dealing with a multiple goal settings; the
robot has to learn the motion task while minimizing energy consumption. The
study presented in [4] used a genetic algorithm fitness function to analyze the
relationship between walking distance and energy consumption while keeping the
knee joint on the supporting leg straight. In [5] a trajectory generation method
for humanoid robots is proposed to achieve stable movement by using consumed
energy as a condition, and generating a series of joint motions with a feedback
technique to increase its stability. Reinforcement learning algorithms have been
widely applied to other legged motions tasks [6]. Most of such work involves
learning how to walk using biped robots [7–10]. Other related work includes
learning to perform a penalty kick with a biped robot and learning to keep
robot balance with an inverted pendulum model [11]. The work by Kuindersma
et al. [12] had energy consumption optimization explicitly coded as a learning
goal. Their work focused on moving the robot arms to compensate for balance
disturbances and coded for the energy utilization of their movements in the
cost function. Our model however, deals with the energy required to accelerate
the whole robot body upwards, which requires a dynamic humanoid model of
motions of the produced torque at each joint.

The motion of standing up from crouch position seems like a simple and
common motion for humans, but it is quite complex, dynamic, and can become
challenging for biped robots. Calderon et al. [13], present a joint stiffness control
algorithm with the aim of reducing energy usage during the standing up proce-
dure of a NAO robot. The goal of our new research is to optimize the standing up
motion focusing on energy usage. In order to reduce energy consumption, a sim-
ulated kinematic and dynamic model uses Q-Learning to improve joint angular
trajectories and implement an optimized route on a physical robot.

The rest of the paper is composed of Sect. 2 - Humanoid Modeling, Sect. 3 -
Q-Learning Power Optimization, Sect. 4 - Energy and Power Performance Eval-
uation, Sect. 5 - Experimental Setup, Sect. 6 - Results, and Sect. 7 - Conclusions.
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2 Humanoid Modeling

For humanoid modeling we used a NAO robot having 25 degrees of freedom
(DoF), including two legs, two arms, a trunk, and a head, as shown in Fig. 1.

Fig. 1. Robot model and Humanoid Robot (NAO) in the sagittal plane.

A three DoF model in the x-z plane is used with the objective of reducing
the complexity of the humanoid mathematical model (Fig. 1). The model has
three joints and four links. The joints are ankle, knee, and hip pitch. The links
represent foot, lower leg, thigh and trunk. The reduced dimensionality model is
provided by the nature of the treated movement. This means that in a jumping
movement both legs (left and right) are performing same action. The model is
using the first two degrees of freedom (ankle and knee for both legs) and the last
one corresponds to hip attached to the trunk. At the same time trunk is taken
as a one mass, which includes arms, chest, and head.

Kinematic Model. The kinematical model is used to estimate the position of
each joint and CoM for every link and the whole robot, see Fig. 1. Li denotes the
length of link i, θi is the absolute rotation of joint i, and Lic shows the position
of CoM for the corresponding link i.

Dynamic Model. The dynamic model is obtained using the Lagrangian formu-
lation with the physical parameters of the NAO robot. The dynamic formulation
has the following form in Eq. (1):

D(θ)θ̈ + H(θ, θ̇)θ̇ + G(θ) = Tθ (1)

D(θ) is a 3 × 3 inertial matrix, H(θ, θ̇) is a 3 × 1 vector of Coriolis and
centrifugal forces, G(θ) is a 3 × 1 gravitational forces matrix. Tθ represents the
torque vector and external applied forces at the joint. Finally the vectors θ, θ̇, θ̈
represent rotational position, velocity, and acceleration of each joint.
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Motor Model. The joint DC motor model used in simulations was estimated
from collected actual motor responses to produce an approximation of each joint
motor response during standup motions. A dynamic robot model used in sim-
ulations consists of three DoF. This simulation uses three different models, one
for each joint. The transfer function model is shown in Eq. (2), parameters for
the ankle are: ω = 0.0098 rad/sec, ζ = 1.4, for the knee are: ω = 0.0097 rad/sec,
ζ = 0.9 and for the hip are ω = 0.0021 rad/sec, ζ = 4.95.

G(s) =
1

ω2s + 2ωζs + 1
(2)

A second order system is used as the process model and the Predicting-
Error Minimization (PEM) algorithm [14] is used as the estimation method.
In order to increase the accuracy of the information given to the estimation
algorithm, joint position and target position from the each joint motor was
recorded previously while performing Aldebaran version of the stand-up process.
The data was applied to PEM estimation method and the humanoid dynamic
model to obtain an individual joint model as close to the real behavior of each
motor as possible for the standing up motion.

3 Q-Learning Power Optimization

Q-Learning is a machine learning algorithm capable of learning a policy based
solely in spurious feedback [15]. We used the canonical tabular version, in which
the Q-value is updated according to Eq. (3), where α is a learning rate parameter.

Q(s, a) = Q(s, a) + α
(
r + maxa′Q(s′, a′) − Q(s, a)

)
(3)

A policy Π of which action to perform at each state can be derived from the
Q table, as shown in Eq. (4).

Π : s → a ::Π(s) = argmaxaQ(s, a) (4)

The fact that this algorithm does not rely on a labeled training set, and does
not rely on a model of action outcomes, make it suitable for its application to
robotics. In fact, reinforcement learning algorithms including Q-Learning have
been widely applied to robotics [6].

3.1 Power Aware Stand up Learning Algorithm

The proposed solution to the problem of learning to stand up with the mini-
mum possible energy consumption is implemented as a QL algorithm. A planar
humanoid robot is modeled with three joints: ankle, knee and heap, as explained
in Sect. 2. The QL algorithm controls the ankle and knee joints only, whereas
the hip joint position was set so the robot remains with the torso vertical to the
ground.
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The angular velocities and positions of the ankle and knee joints determine
the state. Each joint state-space was discretized using a fixed length discretiza-
tion step of π/20 rad. The same fixed length discretization was performed for
velocities, with a discretization step of 0.1 rad/s.

The agent was allowed to perform one of three possible actions. Each of
them performed a change on the ankle and knee velocities: decrement it, leave
it unmodified or increment it. The decrements and increments were done by a
fixed predefined value. Eq. (5) shows how the reward is computed. A negative
reward is given whenever the humanoid performs a motion that leaves a joint in
an invalid position (jointOutOfConstraints), according to the NAO robot limits.
A negative reward is also given if the humanoid falls down (robotFell). It is
considered to have fallen when the hip displacement along the sagittal plane is
beyond a non-return point.

A positive reward is given if the humanoid reaches a target stand up position
within some error tolerance (standingUp) and all joint angular velocities are
below a threshold (notMoving). The position requirement is necessary for the
humanoid to learn the task of standing up. The velocity constraints, on the other
hand, ensures that the final inertia of the standup motion does not make the
robot fall or force it to make a big energy effort to lower it. The average torque
produced is subtracted from the positive reward value. This promotes solutions
that minimize torque application, which in turn minimizes energy consumption.
Only one non-zero reward is given in each episode, right at episode termination.

r =

⎧
⎪⎨

⎪⎩

−10, if jointOutOfConstraints or robotFell
3 − averageTorque, if standingUp and notMoving
0, otherwise

(5)

Calibration. The ability of the learning algorithm to find a good solution
depends on the value of a set of initial parameters. It was decided to perform a
calibration process for the three parameters which we considered are the most
important and they are: the learning rate α, the eligibility traces decay parame-
ter γ and the exploration half-life decay parameter ε (ε-greedy with exponential
decay). A coarse parameter sweep of 5 different values per parameter was per-
formed. For each set of parameters, the algorithm was executed 5 times and the
average reward was taken as a score. The set of parameters with the highest
score was picked as the definitive set of parameter values.

4 Energy and Power Performance Evaluation

In order to evaluate power performance, we are assessing the average mechanical
power, standard deviation and energy lost in every joint. Given joint j of the leg
i, the mechanical power is the product of the motor torque τ and the angular
velocity θ̇. The overall average power is obtained by averaging the mechanical
absolute power delivered over a period T for all joints by Eq. (6):

Pavm =
1
T

∑

i,j

∫ T

0

|τij θ̇ij |dt (6)
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For some dynamic motions performed by humanoid robots, a sudden very
high power demand can occur at the joints. Even though the average value of
power usage can be small, the peak can actually be very high. The standard
deviation measure is used to evaluate the distribution of power around the mean
absolute power as seen in Eqs. (7) and (8):

Psd =

√√
√
√ 1

T

∫ T

0

( ∑

i

τij θ̇ij − Pavm

)2
dt (7)

For a humanoid robot, it is also necessary to consider the energy lost in the
electric motors [16]. This can be defined as shown in Eq. (8):

ELost =
1
T

∫ T

0

τᵀτdt (8)

5 Experimental Setup

5.1 Learning Cycle

In order to be able to perform offline learning, a simulator was programmed
using the motor model and the humanoids kinematic and dynamic models pre-
viously described in Sect. 3. Figure 2 shows the flow of events of a single itera-
tion of Q-Learning episode. First, an action is selected by determining the state
and querying the Q-Value table. Then, the motor models are used to compute
the motor response to the required velocities. After that, kinematic models are
applied to find joint positions, velocities and accelerations. This data is used
by the dynamic model to compute the performed torques. Those torques, along
with the kinematic information, are in turn used to compute the reward and
update the Q-Value table.

A decision process is carried out to determine whether the episode has failed,
succeeded, or it should continue. In the latter case, the cycle starts all over again.

Finally, the best standing routine was obtained by executing the calibrated
algorithm 50 times. Then, the route with the highest reward was chosen.

5.2 Robot Execution

The obtained route was interpolated to a 4 second routine. This was done in order
to be able to compare it with Aldebaran’s stand-up routine, which was also set so
as it would stand-up in 4 seconds. Figure 3 shows the robot at different points of
the standing up routine. Then, the angleInterpolation function of the naoqi API
was used. Twenty-five repetitions of the experiment were carried out for each
routine. A custom made NAO local module mllofriu/getSensorValues (available
in Github) was used to sample position and electric current values. The sample
time was set to 10ms, which is the minimum loop latency allowed by the robot.
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Fig. 2. The flow of events of a single iteration inside an episode.

Fig. 3. The robot performing a stand up motion using the data obtained from Q-
Learning.

6 Results

In this section, the results of both routines (Aldebaran routine and Q-Learning
routine) are presented and discussed. The discussion is mainly based on the elec-
tric current consumption and position of each joint (ankle, knee, and hip), since
the greater power consumption is located on these joints as discussed by Elibol
et al. in [17]. The current consumption will be used to calculate electrical perfor-
mance (motor input power) and the position will be used to calculate the location
of Center of Mass, angular velocity, acceleration, produced torque, mechanical
power and energy lost due to produced torque. The trajectories followed by joints
in each routine are shown in Fig. 4. The Q-Learning trajectory is very different
from Aldebaran’s, which partially explains the difference in performance, as it
will be discussed later in this section.

Figure 5 shows the humanoid robot executing the Aldebaran routine and the
Q-Learning one. In this figure, the difference between the trajectories can be seen
more clearly. Notice how Aldebaran trajectory tends to keep the body on top of
the middle of the foot, while the Q-Learning trajectory leans all weight directly
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Fig. 4. Trajectories followed by every joint, Q-Learning trajectories follow different
paths to reach the target positions.
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Fig. 5. Planar humanoid model shows Aldebaran (a) and Q-Learning (b) routines.
Both routines show the initial and final position. Green circle is knee, blue circle is hip,
and orange circle is head (Color figure online).

on top of the ankle joint. See also videos 1 (https://youtu.be/qsdiczXCBSQ)
and 2 (https://youtu.be/YbnB6dx9cII) of the additional multimedia material
for a sample learning iteration and a real robot testing iteration, respectively.

Because these trajectories are different, different current consumption are
expected for each joint. Figure 6 shows the comparison of current profile between
both routines for each joint.

The current required by ankle joint is far less for the Q-Learning routine
than Aldebaran routine as shown by Fig. 6 and Table 1. This current saving is
because of the decreased demand of produced torque at the ankle joint, which
is effected by hip vertical position. A similar result is found when analyzing the
hip current. Hip position is kept vertically during QL routine. The reduction of
current of the hip and ankle joints responds to the Q-Learning reward schema,
where lower torques are considered better. The knee, on the other hand, shows
a slight increase in current consumption. Since hip position is moved to vertical
position quicker in standing up motion (see Fig. 6b), this creates an increase
torque consumption on the knee joints, which demands more current.

https://youtu.be/qsdiczXCBSQ
https://youtu.be/YbnB6dx9cII
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Fig. 6. Current consumption results averaged over 25 trials.

Table 1. Electrical current and power consumption comparison.

Joints Average current Electrical input power

Amp Watt

QL Aldebaran QL Aldebaran Saved energy per link

Ankle 0.193 0.425 4.7864 10.54 54.59 %

Knee 0.401 0.348 9.9448 8.6304 −15.23 %

Hip 0.084 0.167 2.0832 4.1416 49.70 %

Total 16.814 23.312 27.87 %

Table 1 shows the average current consumption for each joint. A decrease
of 54.59 % and 49.7 % in current consumption was achieved for the ankle and
hip joints respectively. Also, it can be seen that the increase of the knee current
consumption (15.23 %) is not as high as the amount saved by the other two joints
together. This is also aligned with the Q-Learning reward schema, in which the
overall torque is used, as opposed to minimizing each joint separately. By doing
so, the algorithm was able to find a better tradeoff point between ankle, knee and
hip joints applied torques minimizing current consumption. Other two important
aspects of link movement are velocity and acceleration, since they directly affect
the humanoids dynamics. This is shown in Eq. (3), where inertial matrix D and
Coriolis and centrifugal matrix H depend directly on these variables.

Figure 7 shows the angular velocity and acceleration profile for each joint.
The Q-Learning routine shows higher values of velocity and acceleration at the
beginning of the movement. This increase is producing different effects on the
performance of the routine. First, the trajectories of the joints were affected,
which in turn affected the required torques needed to accomplish the routine.
Secondly, the dynamics of the system were affected by quickly building up more
inertia at the beginning and then reducing current and torque later. Figure 8
shows the required torque by each joint. The torque is reduced in the ankle and
hip joints and slightly increased in the knee joint, which is in accordance with
our analysis and supported by the experimental results.
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Fig. 7. Comparison of velocity and acceleration for: ankle(a), Knee(b), and Hip(c).
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Fig. 8. Produced joint torque comparison between Aldebaran and Q-Learning routines.

The trajectories of Centers of Mass of both routines are shown in Fig. 9.
The difference between them is highlighted. The Q-Learning location of CoM is
causing a reduction of ankle and hip torques and an increase in knee torque as
shown in Fig. 9. The mean and standard deviation of the CoM for both routines
were calculated to have an idea about CoM Performance. The mean in the x axis
for Aldebaran routine is 11.8 mm and 3.3 mm for QL. This means that the QL
route kept the Center of Mass closer to the ankle joint than Aldebaran route.
This is one of the reasons why this QL trajectory is saving energy. The standard
deviation is 16.8 mm for Aldebaran and 11.8 mm for QL. This result suggests
that QL is better at keeping balance.

The mechanical power performance of both routines was evaluated by calcu-
lating mechanical average power, standard deviation of mechanical power and
lost energy due to required torque. Those parameters are shown in Table 2. The
QL routine is producing less mechanical power and at the same time is losing
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Fig. 9. CoM trajectories, x(t) &y(t), comparison between Aldebaran (blue), Q-L
(green) routines (a), and spatial, y(t) vs. x(t), trajectory (b) (Color figure online).

Table 2. Produced mechanical power.

Joints Mechanical power
average

Mechanical power stan-
dard deviation

Lost energy
Joule

Changes in
lost energy

N.m. rad
s

N.m. rad
s

QL Aldebaran QL Aldebaran QL Aldebaran

Ankle 0.133 0.204 0.233 0.195 0.614 0.86 −28.6 %

Knee 0.555 0.421 1.26 0.888 0.963 0.955 +0.8 %

Hip 0.012 0.0237 0.012 0.05 0.065 0.147 −55.7 %

less energy according with Eqs. (6, 7 and 8) previously presented. These results
are consistent with the torque and velocity reduction shown above.

7 Conclusions

A dynamic model for a planar 4 link 3 joint robot is used with a Q-learning
algorithm to learn how to stand up while reducing power consumption. Good
quantitative and qualitative results are shown. The electrical power consumption
was reduced for the ankle and hip joints, while the knee joint power consumption
increased slightly. Mechanical energy loss is shown using different performance
metrics as average mechanical power, standard deviation of mechanical power
and energy lost due to required torque. By using new trajectories found by
Q-learning for each joint, 28 % of the electrical input power is saved for a single
standing up routine. The Q-Learning strategy showed a better placement of the
CoM over the ankle joint, greatly reducing the torque applied to it. In addi-
tion, a better management of inertia was observed, as the Q-Learning routine
performed higher accelerations at the initial phases of the routine, lowering the
torque required by both the hip and ankle joints later on. Additionally, a learn-
ing simulation platform was developed by integrating a motor model, dynamic
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and kinetic model of robot with a Q-Learning algorithm. Future work includes
the use of this platform to optimize power consumption on more complex move-
ments such as walking or jumping, which would increase the learning problem
dimensionality.
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