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{polceanu,buche}@enib.fr

Abstract. We investigate the decision-making and behavior of robotic
biped goalkeepers, applied to the RoboCup 3D Soccer Simulation
League. We introduce two approaches to the goalkeeper’s behavior: first a
heuristics-based approach that uses linear regression and Kalman filters
for improved perception, and another based on mental models which uses
nonlinear regression for ball trajectory filtering. Our experiments consist
of 30,000 kick-and-save tests, using 100 random angle and distance kicks
from six distance categories and four angle categories repeated 30 times.
Our benchmark results show that both proposed approaches bring sig-
nificant improvements for the goalkeeper’s save success rates (>200 %)
and validate the applicability of the novel mental model based decision-
making process.

1 Introduction

The RoboCup 3D simulation league soccer is an international contest promoting
artificial intelligence and autonomous robotics. Virtual replicas of the Aldebaran
NAO robot make teams of 11 players and compete against each other in a virtual
game of soccer.

With the aim to improve our team’s performance in upcoming contests, the
work presented in this paper focuses on an important challenge: the goalkeeper.
The agent playing this role relies greatly on anticipation techniques. The first,
most important step is to accurately track the ball and be able to predict its
trajectory. This prediction should account for the time needed by the agent to
perform a correct set of actions that would deflect the ball from the goal gate.
Second, performance of attackers has improved such that the ball can be shot
towards the goal with high velocities that force available reaction time below
one second. This leaves little time to react and thus the goalkeeper must take
advantage of every available millisecond in order to save the goal. Finally, noisy
perception contributes to difficulties in accurate action planning. Therefore, the
goalkeeper should begin moving to intercept the predicted ball trajectory while
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also constantly improving its plan using recent perceptions. In the ideal case, it
should also be able to perform last-moment adjustments using fast hand or foot
movements to save goals.

The use of scripted behavior in the NAO goalkeeper, as well as in agents
in general, can be highly efficient in many scenarios where a certain solution
can be applied directly to the context at hand. For example, in this case, one
can instruct the robot to position itself on the “goalkeeper’s arc” (an imaginary
arc 2–6 yards from the goal) to maximize its range, or that it should move to
a future location of the ball as soon as it is launched. However, in the cases
where a decision has to be made along the way such as whether or not to dive,
extend arms or feet in order to block the ball, scripted behavior becomes difficult,
especially without the knowledge of whether or not it is necessary to do so and
which action would give the best results.

The contributions of this paper consist in the description and evaluation of
two approaches to improve the anticipation and decision performance of the
goalkeeper agent, an important aspect of the RoboCup competition which has
been relatively under-represented in research. We first discuss relevant work in
the next section and describe the two approaches to goalie anticipation in Sect. 3.
Our experimental setup and the conducted robot tests are explained in Sect. 4.
Finally we discuss the pros and cons of our results and outline future work in
the remaining Sect. 5.

2 Related Work

Multi-behavior goalkeepers have been studied in the realm of the RoboCup mid
sized league. Although the Standard Platform League (SPL) and simulation
league face unique challenges that are not present in the mid sized league,
the study of behavior control within the mid sized league is still applicable.
Menegatti et al. [13] were the first to create an ad hoc model for behavior and
motion control. Their goalkeeper sweeps an arc in front of the goal and tries to
intercept shots coming towards the goal. This work was furthered and refined
by Lausen et al. [9]. Their goalkeeper is implemented by a 2-level hierarchical
state machine that coordinates primitive tasks and behaviors. Complex motion
within a task is carried out by a non-linear control algorithm.

Garcia et al. [7] implemented an ethological inspired architecture to generate
autonomous behaviors, and focused on modeling a humanoid goalkeeper accord-
ing to the rules of the SPL. The architecture implements the goalkeeper behavior
using a deliberative structure for planning (self-positioning) and a reactive con-
trol mechanism for goal saving. They report being able to track the ball 100 %
of the time, positioning itself properly 84 % of the time, and saving goals from
62 % of the trajectories tested.

Bozinovski et al. [3] have presented an approach for an evolving behavior
model for the role of a goalkeeper. Using an emotion based self-reinforcement
learning algorithm, they present a learning curve as result from training experi-
ments.
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Birbach et al. [2] have implemented a realtime perception system for catching
flying balls with DLR’s humanoid Rollin’ Justin. The system tracks and predicts
the trajectory of balls thrown towards the agent using a Multiple Hypothesis
Tracker that uses Unscented Kalman Filters to track the different hypotheses
for different balls. We expand upon the use of Kalman filters for state estimation
and introduce regression methods for trajectory fitting.

Adorni et al. [1] used the current ball positions obtained from images frame
by frame, then used a look-up table mechanism for an internal local representa-
tion of where the ball is relative to the agent and which eases computation and
then compared two subsequent frames to estimate ball position, motion direc-
tion and speed. This straight-forward method worked on a Middle-Size League
(MSL) agent in the beginning of RoboCup. Since then, research in soccer agents
and robots has focused on several critical aspects of gameplay such as efficient
omnidirectional movement [10,11] and accurate perception [16].

Human goalkeepers have been shown to use visual cues in the shooter’s body
posture to predict the direction of the ball [5], before the shot has been performed.
However, in the context of the RoboCup 3D soccer competition, goalkeeper agents
rely solely on the ball trajectory after shooting due to the constraints (ex. noisy
perception, limited computational resources) posed by perceiving the opponent
robot’s posture.

Despite abundant research into the various challenges posed by the robot
soccer context, work on the goalkeeper agent is limited to simple rules that are
acceptable for increasing chances of saving a goal. Moreover, goalkeepers use the
same perception methods as field player agents, although they require a much
more precise, three-dimensional ball localization for brief periods of time.

Goalkeepers also require special skills as they are the only player agents which
are allowed to intentionally dive and use their hands to block the ball. Diving
is the most popular goalkeeper skill present in the competition, but deciding to
activate this skill relies on handcrafted rules. Such rules include instructing the
goalie to move towards the position where the ball will be found before entering
the goal and if the distance between the goalie and the ball is too large for a
direct block, the goalie would perform a dive [12]. However, there are exceptions
where after the dive the ball bounces over the fallen goalie resulting in a goal.
Another example is when diving happens too slowly to block the ball and a slight
leg movement would be more efficient instead.

3 Approach

We investigate two approaches to improve goalkeeper efficiency in the RoboCup
3D simulation competition. First, a rule-based approach which uses linear regres-
sion and Kalman filters to filter the ball trajectory. Second, a novel approach
to decision-making that utilizes nonlinear regression for ball perception. In the
following, we discuss the details of each approach and provide insight into their
strengths and drawbacks.
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3.1 Thiel-Sen and Kalman-Filter

In our first approach, we filter the ball position and velocity using linear regres-
sion, to estimate the location where the ball will pass the goal line. Based on
this prediction, the goalie employs a deterministic behavior in order to improve
its success in obstructing the ball. In the following we describe the logic behind
this behavior and how the filtering has been implemented.

Behavior Logic. We describe the rational stages of behavior of the goalkeeper
agent, first actions for the initial positioning of the agent, moving to obstruct
the ball, final actions including decisions and diving and other auxiliary checks
and behavior to maintain stable execution of the agent.

The agent acting as the goalkeeper first analyzes how to position itself in
the goal based on the initial ball position of the free kick to be taken. The
goalkeeper has one of five positions on the goal line to choose from. The rational
for making these options available for the goalkeeper are motivated from human
soccer, watching various free kicks and observing the behavior of professional
goalkeepers. The options in initial position are as follows: (a) the center of the
goal if the kicker is directly in front of the goal. (b) between the center and
the right goal post if the kick is coming from the right and is a short kick. (c)
between the center and the left post if the kick is coming from the left and is a
short kick. (d) close to the right post if the kick is coming from the right and is
a long kick. (e) close to the left post if the kick is coming from the left and is a
long kick. A “short” vs. “long” kick is determined by a distance threshold.

The goalkeeper, based on perceptions of his own position and the position
of the ball, calculates the distance between himself and the ball as well as the
angle between the vector from goalkeeper to ball and the center line. This first
perception indicates the predicted direction of the free kick, the vector from the
opponent to the center of the goal.

The goalkeeper uses the calculated angle to access a set of behaviors followed
by the calculated distance to decide on a specific behavior within this set. (e.g. -
an angle θ ∈ [π

3 , π
2 ] is indicative of a kick coming from the left side, and a distance

d < threshold indicates a short kick.)
The goalkeeper receives filtered perceptions of the balls position and velocity

from a provider module, the details of which are discussed later. The goalkeeper
projects the ball along the velocity vector onto the goal line to determine the
position at which it crosses the goal line. The goalkeeper characterizes a kick by
observing the velocity and detecting when it accelerates past a certain threshold
(i.e. - a kick has been performed). This sets off the rational actions to obstruct
the path to goal. Once the kick has been taken, the goalkeeper uses the predicted
goal line crossing to move towards that position.

Once the predicted ETA of the ball on the goaline becomes less than the
estimated time needed to perform a dive action, the goalkeeper makes its final
decisions. (1) If he is close enough to the predicted goal line crossing, he will
remain in place to obstruct the ball (2) If he is too far from the crossing to
obstruct with his feet, he will dive in the direction of the goal line crossing.
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Diving is actuated by a predetermined and hand tuned motion defined by an
interpolated sequence of joint angle values, for each actuated joint in the agent.

Methods and Implementation. Upon initial analysis of the accuracy of the
existing ball position in the software, we decided that the first and most ele-
mentary method to predicting the ball velocity would be to compute a simple
linear regression on the existing ball positions. This method operates under a
few assumptions that are not accurate in the realm of the simulator:

1. |v| �= 0, for v the velocity of the ball
2. ∀ δt ∈ R, x′([t, t + δt]) = c, c ∈ R (i.e. - constant velocity)

This model does not take into account the complex motion of the ball, but it
does serve as a starting point for an efficient way to model the ball velocity. In
order to do the initial regression, the Thiel-Sen algorithm was used. This method
for calculating the linear trend of a set of points is not as sensitive to outliers as
other methods [17]. The full algorithm for determining the velocity follows:

function Linear Regression(S ← [(x1, y1), ..., (xn, yn)])

M ← median of all unique slopes m =
yj−yi
xj−xi

| i �= j

v ← (1,M) or (−1,−M) depending on the rough direction of the samples.
v ← unitized v scaled by distance between pn and p1 divided by tn − t1
return v

end function

While the first method succeeded in giving an estimate of the ball velocity
accurate enough to predict the goal line crossing and ETA, a second, more
complex and contemporary method (Kalman Filter) was used for comparison.
This decision was made with the additional foresight that the success of the
linear regression model might be dependent on the magnitude of error realized
in the simulation. Thus, a method robust enough to predict the state of the ball
for a real world environment would then be integral. The Kalman Filter is a
well known and studied method of estimating variables that cannot be directly
measured through a series of noisy measurements, observed over time [6]. We
formulate the Kalman Filter matrices as follows:

X =

⎡
⎢⎢⎣

x
y
x′

y′

⎤
⎥⎥⎦ F =

⎡
⎢⎢⎣

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ P =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 1000

⎤
⎥⎥⎦

Q =

⎡
⎢⎢⎣

0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

⎤
⎥⎥⎦ H =

[
1 0 0 0
0 1 0 0

]
R =

[
0.95 0
0 0.95

]

P is the a posteriori error covariance matrix (a measure of the estimated
accuracy of the state estimate); F is the state transition matrix; Q is the covari-
ance of the process noise; H is the observation model; R is the covariance of the
observation noise; X is the state vector.
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The state transition matrix based on the kinematic equations:

xi+1 = xi + vixδt yi+1 = yi + viyδt
v(i+1),x = vix v(i+1),x = viy

Here we see some simplifications that will inevitably affect the accuracy of
this estimation. The velocity is assumed to be constant between small time steps,
as in the regression model. If we assume deceleration due to friction is negligible,
especially during a hard kick or a kick that spends a considerable amount of its
trajectory in the air, the accuracy will be acceptable for the duration of a kick.
Another simplification is that this model neglects the z movement of the ball.
The dynamics of the ball are drastically different in the air vs. on the ground
and if the goalie decides to dive when the ball enters the goal at a high position
he will miss the ball.

3.2 Nonlinear Regression and Experimental Anticipation

Our second approach consists of enhancing the goalkeeper with a mental model
of itself that it can simulate ahead of time to anticipate the efficiency of its
current actions and eventual changes to current behavior. We first give a brief
introduction to the concepts of this approach, the requirement of more precise
velocity estimation and finally how the goalkeeper can use this cognitive layer
to improve its results.

Orpheus, a Generic Mental Simulation Framework. To enable the goal-
keeper agent to predict its environment, itself included, we use a generic open
source framework for mental simulation entitled Orpheus1 which has been suc-
cessfully applied in different contexts requiring anticipative agents [14,15].

The Orpheus architecture provides an agent with an “imaginary world”
which can be used to evaluate the outcomes of its actions in accordance with
other objects (e.g. ball) and agents that populate the environment it is placed
in. To clarify, the goalkeeper has its own functional representation of itself and
the ball, and is able to manipulate it towards improving its behavior in the
game. Providing the agent with models of itself and its environment enables it
to evolve and evaluate various courses of actions in its imagination, based on
which it can make decisions. This cognitive layer functions in parallel to the
main agent behaviors, which makes it well suited in the context of robot soccer
agents where interruptions in sending motor instructions cause unwanted results.

Two important aspects lead to a successful use of the mental simulation
paradigm: perception and mental model accuracy. Specifically, the position and
velocity of the ball and robot as well as the models of environment physics and
the robot’s own body motion must be accurate enough so that future events can
be successfully predicted. Hence our focus is on improving velocity estimation
and constructing the mental models for the robot.

1 Orpheus source code: https://bitbucket.org/polceanum/orpheus.

https://bitbucket.org/polceanum/orpheus
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Nonlinear Regression for Ball Position and Velocity. In the robot soccer
simulation contest, as well as for real settings, the trajectory of the ball is shaped
by damping factors. However, we can safely assume that, as long as the ball does
not collide with any object as it’s traveling, it will describe a smooth non-linear
trajectory. Unlike linear models, using a curve to approximate the trajectory,
even on the X and Y axes where gravity does not intervene, can account for the
damping factors.

In this approach, we use the Levenberg-Marquardt algorithm as implemented
in Dlib-ml [8] to fit a curve on the raw online perception data. The choice of
algorithm was based on its good performance in practice, efficiency on small
input datasets and that it allows describing the curve model, as is the case
for the goalie’s perception of the ball trajectory. We develop the damped motion
equations xn = xn−1+vn−1δt and vn = ζvn−1 over multiple time steps, resulting
in the model to be used in the algorithm:

p1δt(1 − ζn)
1 − ζ

+ p0

where δt is the time difference between two perception frames, ζ is the damping
factor, n is the step number, p0 and p1 are the position and velocity parameters
respectively. With this approach, we store the ball perception frames after the
kick and refit the model parameters at each step to gradually improve accuracy.
For the Z axis, we extend the model to account for gravitational acceleration:

p2δt
2(n − 1 − ζn

1 − ζ
) +

p1δt(1 − ζn)
1 − ζ

+ p0

The obtained velocity estimation enables more accurate prediction of the ball for
default behavior such as walking towards the ball but also for prediction using
mental simulations.

Learning Body Movement Models and Imaginary Reenactment. Once
the ball can be predicted, the second step in this approach is to have the robot
learn the effects of its actions and be able to reenact them in its imaginary world.
This produces a set of mental models which are then used to perform mental
simulations.

To this end, we rely on querying the location of each of the robot’s body parts
which are represented with primitives in the imaginary world. Various actions
can be learned by having the robot perform it, while a model training module
provided by the Orpheus framework distributes the data to the models which
are being trained. For the goalkeeper’s actions, we use the K-Nearest Neighbors
(KNN) algorithm as implemented in MLPack [4]. The dataset is constructed
with the position, velocity and rotation in function of time, of each body part
at each time step, relative to the goalie’s location at time zero.

Reenactment of each learned action with KNN uses the time and position
of the robot’s body parts and finds the closest corresponding velocities and
rotations. From this point forward, Orpheus can perform mental simulations
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on demand, using the learned models through the process briefly described in
the following. Perception data (robot, body part and ball position, velocity and
rotation) at a given moment in time is submitted to the cognitive layer. From
this data, the mental simulation process constructs subsequent mental images by
employing the available mental models. This process leads to obtaining a future
state of the environment, to a certain accuracy, ahead of time. By evaluating
this future state, the robot can make a range of decisions, as detailed in the
following.

Self Monitoring and Deciding to Change Behavior. There are limiting
factors on how the goalkeeper agent can behave to deflect the ball. The main
such factor is the high ball velocity achieved by other teams in the RoboCup 3D
Simulation League, which gives little time to react. Moreover, the robot does not
have the ability to move fast enough to reach the ball in many situations. There
are however situations when extending its limbs or diving may help deflecting
the ball.

The goalie can assesses whether or not to perform an action and if so, which
one is more favorable, by running mental simulations where it approximates
the ball trajectory and its own movements and evaluate the results. Testing
showed that simply moving towards the predicted position of the ball when it
would reach the defense zone performs well, given satisfactory estimations of the
ball position and velocity. Therefore, starting from a reactive decision to move
towards this location of interest, we use mental simulations to predict whether
or not simply walking would enable the robot deflect the ball. As soon as the
kick is detected, a coarse future location of the ball is computed and the robot
starts moving towards that location. In parallel, it uses perceptual information
to imagine the success or failure of this strategy.

We studied outcome prediction accuracy (Table 1) with a set of 100 penalty
shots from random locations, 5 to 10 meters away from the goal gate. This
resulted in an average of ∼0.5 s in which the goalie could apply a different
decision, after subtracting the time required to obtain reasonable ball veloc-
ity accuracy (∼0.1 s) and the time required for mental simulations to finish; in
our implementation, mental simulation speed ratio is ∼3x, i.e. the robot can
simulate 1 s of real events in ∼0.33 s.

As shown in Table 1, the accuracy of predicting the outcome of a set of
actions rises above 50 % (random choice) as soon as valid data is acquired from
the environment, and improves with time. Prediction failure is caused by the
difference between mental models and reality, which could be later improved by
learning more accurate models.

Concurrently with self monitoring, the goalkeeper also imagines and evaluates
a set of actions that can be performed. This results in a set of solutions in the case
in which it decides the current set of actions will not be effective. If a failure
is predicted, the goalkeeper is able to choose one of the previously imagined
solutions that may result in a last-moment save.
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Table 1. Outcome prediction accuracy (% correct predictions) based on mental sim-
ulation, in function of the time before the ball passes the goalie’s location.

Time left 0.5 s 0.4 s 0.3 s 0.2 s 0.1 s

Correctly predicted outcome 69.1 % 80.1 % 84.8 % 89.5 % 93.2 %

This experimental approach is limited by the set of possible actions that
the robot can perform, and the time available to evaluate the outcomes of these
actions. However, more efficient actions can be later added to increase the success
rate. We investigate whether this approach is feasible for full integration in the
goalkeeper. Therefore, during the tests we enable the complete reasoning process
to verify that no negative effects are introduced.

4 Results

13-15m

11-13m

9-11m

3-5m
5-7m

7-9m

20

Fig. 1. Setup for our experiments: six
distance categories, 4 × 2 angle cate-
gories, 100 random kicks repeated 30
times on five agents.

We empirically evaluated the two appro-
aches – with Linear Regression/Kalman-
Filter (LR/KF) and Nonlinear Regres-
sion (NLR) – on a range of kick distance
intervals. For the second approach, we
developed two versions so that the exper-
imental mental model based prediction
(Orpheus) can be evaluated separately
(Fig. 1).

4.1 Experiment Setup

The evaluation consisted in running a
goalkeeper with an attacker that will kick
the ball from a random distance within
a specified interval, at a given angle. As
a benchmark, we tested the naive goal-
keeper behavior, used so far by the Robo-
Canes team in previous competitions.

There would be a large variance in the
kicks of the striker, even if the striker kicks from the same distance and angle.
Therefore, we reproduce the exact same kicks by assigning a velocity to the ball
in the beginning of the kick. Thus, we are able to create a random sequence
of kicks and repeat the exact same kicks multiple times using different goalies.
Variances in the results are only caused by variance in the goalkeepers behavior,
but not by variances in the kicks.

To better estimate the relationship between distance, shot angle and perfor-
mance, we devised 2 m intervals starting from 3 m away (which is roughly the
margin of the goalkeeper’s area) to 15 m away (midfield). The obtained results
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for each interval (Table 2) are the success rates for 100 different kicks repeated
30 times and averaged out (3,000 kicks per interval).

The experiment has been performed on an Intel Core i7-5930K machine with
6 cores. Results were also verified on two less powerful machines – a Quad Core
Intel Xeon and a Dual Core Intel Pentium – and replicate the main experiment.

4.2 Goalkeeper Performance

Results of distance-based evaluation (Table 2) show that both approaches bring
significant improvements over Naive goalkeeper which was used by the Robo-
Canes team in previous competitions.

Table 2. Goalkeeper success rates for 100 random kicks from different distances. The
kick angles are chosen randomly from −45 to 45◦. Each rate is averaged over 30 repe-
titions of the 100 kicks (standard deviation shown in parentheses).

Distance Naive goalie Kalman Filter LR NLR Orpheus

3–5m 29.8 % (2.2) 35.8 % (3.6) 35.6 % (3.4) 46.1 % (2.8) 45.8 % (2.3)

5–7m 22.0 % (1.9) 31.8 % (3.4) 31.7 % (4.0) 50.4 % (2.9) 50.2 % (2.3)

7–9m 19.5 % (1.9) 31.8 % (4.6) 30.1 % (3.0) 48.6 % (3.0) 48.0 % (3.0)

9–11m 17.8 % (1.9) 23.9 % (3.5) 23.4 % (2.9) 47.5 % (3.4) 46.9 % (3.6)

11–13m 17.0 % (2.4) 21.5 % (3.3) 22.1 % (2.9) 45.0 % (3.5) 45.1 % (3.8)

13–15m 14.8 % (2.0) 18.6 % (2.7) 19.5 % (2.8) 43.9 % (3.5) 44.8 % (3.4)

The first important difference between the naive goalkeeper and the two
approaches presented in this paper is that previously, the naive keeper was
instructed to place itself at the middle between the ball position and the goal,
while the proposed goalkeeper’s behavior uses the goalkeeper’s arc. Midway posi-
tioning can be exploited by shooting the ball over the goalkeeper, resulting in
easy scoring, illustrated by the constant drop in success rates with respect to
distance. This effect is significantly less prominent in the LR/KF and NLR
approaches, due to superior initial positioning of the goalkeeper.

The increased success rates obtained by the LR/KF and NLR approaches
are also attributed to the improvements in ball tracking (Fig. 2). In the context
of the RoboCup 3D soccer simulation league, the ball does not have an ideal
trajectory due to the realistic simulation performed by the physics engine which
includes friction and damping. This leads to better results with NLR caused by
a better fit of the damped trajectory.

Results of the experimental Orpheus version of the goalie do not vary in
a statistically significant manner from the NLR version, which shows that it is
feasible to integrate prediction in the goalkeeper without suffering a trade-off.

In order to more extensively evaluate our goalies’ performance, we also varied
the angle from which the ball is shot and measured success rates (Table 3).
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Fig. 2. Comparison of ball velocity values for Y axis over time since the kick (left) and
2D velocity perception during kicks (right).

Table 3. Average goalkeeper success rates for 100 random kicks as in Table 2, here
grouped by angle (using the distance 5–7 m)

Angle ◦ Naive goalie Kalman Filter LR NLR Orpheus

0–20 18.3 % (2.1) 26.8 % (3.7) 26.1 % (3.8) 43.6 % (3.3) 43.4 % (2.8)

20–40 21.5 % (2.0) 31.9 % (3.5) 30.0 % (3.1) 50.0 % (2.9) 49.8 % (2.7)

40–60 33.1 % (2.7) 38.4 % (3.7) 38.7 % (4.5) 65.0 % (3.3) 64.7 % (3.1)

60–80 63.3 % (3.6) 32.1 % (2.9) 37.0 % (3.3) 76.0 % (3.5) 78.1 % (3.5)

Results show that the increase in success rates is directly proportional with the
shooting angle for the Naive, LR, NLR and Orpheus versions.

5 Conclusion and Future Work

We have presented two approaches to improving the goalkeeper agent of the
RoboCanes team: one based on linear regression, Kalman Filter and scripted
decision making, and another based on nonlinear regression and an experimental
prediction capability based on internal mental models. The proposed approaches
have been extensively evaluated along with the naive version used in previous
competitions as benchmark, showing significant improvements over all kicking
conditions (distance intervals and angles from the goal).

Design features of each approach were correlated with the results they
obtained, and concluded the importance of accurate perception and fast reac-
tion in the goalkeeper’s efficiency. We have also provided a novel mechanism for
the goalkeeper to perform auto-evaluation which has the potential to further
improvement of our goalkeeper’s performance.
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We intend to continue the improvement of the goalkeeper agent by further
studying the behavior of the proposed approaches in exceptional cases such as
collisions of the ball with the ground or other objects. Future work will also
include efforts on improving the prediction ability of the Orpheus version by
learning better models and integrating it into the decision process of the goal-
keeper. The aim of this approach is to enable the goalkeeper to adjust its scripted
motion to save more seldom and more difficult shots.
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