Language-Based Sensing Descriptors for Robot
Object Grounding

Guglielmo Gemignani!®), Manuela Veloso?, and Daniele Nardi'

! Department of Computer, Control, and Management Engineering
“Antonio Ruberti”, Sapienza University of Rome, Rome, Italy
{gemignani,nardi}@dis.uniromal.it
2 Computer Science Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
veloso@cmu.edu

Abstract. In this work, we consider an autonomous robot that is
required to understand commands given by a human through natural
language. Specifically, we assume that this robot is provided with an
internal representation of the environment. However, such a represen-
tation is unknown to the user. In this context, we address the prob-
lem of allowing a human to understand the robot internal representation
through dialog. To this end, we introduce the concept of sensing descrip-
tors. Such representations are used by the robot to recognize unknown
object properties in the given commands and warn the user about them.
Additionally, we show how these properties can be learned over time by
leveraging past interactions in order to enhance the grounding capabili-
ties of the robot.

Keywords: Sensing descriptors -+ Human-robot interaction - Natural
language processing

1 Introduction

One of the main goals of RoboCup@Home is to develop an assistant and com-
panion for humans in domestic settings. The idea is to allow robots to naturally
interact with non-expert users in these environments. However, when first inter-
acting with an unknown robot, users may be able to imagine its capabilities,
while not knowing how to instruct it. For example, when seeing a manipulator
in front of multiple blocks, a user might assume that the robot is able to manipu-
late them, while being unaware of the commands understood. To this end, several
approaches have been proposed to enable untrained users to interact with robots
through either constrained or unconstrained natural language.

In this paper, we consider the scenario in which a human needs to instruct
an autonomous robot through a natural language interface. We assume that
this robot is provided with a specific internal representation of the environment
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that is unknown to the user. For example, a robot might be able to understand
colors but not orderings. Also, it may be able to recognize shapes but may not
be able to resolve spatial referring expressions. In this scenario, we address the
problem of allowing a robot to recognize what object properties can or cannot be
grounded with its current sensing capabilities. Moreover, we address the problem
of learning new object attributes by exploiting past interactions with the user.
While addressing these problems, our goal is to enable an untrained user to
understand, through the interaction with the system, which object properties
the robot can understand. These interactions can then be used to enhance the
grounding capabilities of our robots. Note that in this paper, we will use the term
grounding to refer to the concept of “physical symbol grounding” as defined by
Vogt [1].

To this end, we contribute a novel approach that enables the robot to recog-
nize unknown objects properties contained in the received commands and warn
the user about them. We note that the majority of the techniques proposed in
literature make the implicit assumption that if a robot can semantically parse an
utterance, then it will be able to ground it. We believe that this assumption may
not always hold, since while a robot may be able to correctly parse a sentence and
extract its semantics, it may not be able to ground it due to a missing sensing
capability. Hence, we internally represent sensing capabilities through sensing
descriptors and use them to recognize unknown object properties. At this point,
the robot can notify the user and request an alternative command. In addition,
the robot can learn new object properties by leveraging these interactions with
the user. After learning, the robot is able to execute the natural language com-
mands, as in Fig. 1. Our contribution has been used to instruct several robots,
including a Baxter manipulator able to perform complex manipulation tasks. In
this paper, we describe all the components of our approach along with in depth
illustrative examples with the Baxter manipulator robot.

Commands
- pick up the cubic block

- grab the yellow block
- touch the second block

- point at the left block

» ‘_ = 1 ] - take the narrow block

Fig. 1. Baxter manipulator robot used in our experiments and examples of commands
that our approach is able to successfully execute.

In the remainder of the paper, we first present an overview of related work,
focusing on past research on natural language processing applied to robotic
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systems. Next, we provide an overview of our natural language approach describ-
ing all of our contributions thoroughly. Then, we present an application of the
approach to the case of a Baxter manipulator. This setting is then used to quan-
titatively evaluate the proposed approach. Finally, we conclude with a discussion
of our contribution and remarks on future work.

2 Related Work

Our research topic is mostly related to the literature on natural language human-
robot interaction. Initial studies on natural language understanding can be traced
back to SHRDLU [2], a system able to process natural language instructions
to perform actions in a virtual environment. Inspired by this system, multiple
researchers extended SHRDLU'’s capabilities into real-world scenarios, soon start-
ing to tackle related problems, including natural language on robotics systems.

Research has applied speech-based approaches to deploy robotic systems in a
wide variety of environments. For example, these approaches have been used in
manipulators [7-9], aerial vehicles [10], and wheeled platforms [11,12]. Moreover,
several prototypes have been developed for social robots carrying out special-
ized tasks, such as attending as a waiter [13], as a receptionist [15] or as a
bartender [14]. Some of these specialized tasks target industrial goals, such as
assembly [16], or moving objects [17]. Dialog has also been used to teach robots
how to accomplish a given task, such as giving a tour [18], delivering objects [19],
or manipulating them [20]. Finally, other related works have combined speech-
based approaches with other types of interactions [21,22]. Specifically, in the
former work the authors have developed a theory of mind for the interacting
user, built upon perspective taking, multi-modal communication, and a symbol
grounding capability. Instead, in the latter case, the authors present a multi-
modal approach for building on-line a semantic map of the environment.

More recently, several domain-specific systems that allow users to instruct
robots through natural language have been presented in literature. For example,
Kollar et al. [3] and MacMahon et al. [4] present different methods for following
natural language route instructions by decoupling the semantic parsing problem
from the grounding problem. In these works, the input sentences are first trans-
lated to intermediate representations, which are then grounded into the available
knowledge base. Instead, Chernova et al. [5] show how to enable natural language
human-robot interaction in a scenario of collaborative human-robot tasks, by
data-mining past interactions between humans. Dzifcak et al. [6] address the
problem of translating natural language instructions into goal descriptions and
actions by exploiting A—calculus. However, these approaches are not able to
incrementally enhance their natural language understanding from the continu-
ous interaction with the user.

Such a problem has been faced by Kollar et al. [23]. By exploiting the dialog
with the user, in this work the authors present a probabilistic approach able to
learn referring expressions for robot primitives and physical locations in a map.
Our approach is inspired to this latter work. However, we make an additional
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step forward, assuming the user to be unaware of the capabilities and the inter-
nal representation of the robot. With this assumption, we propose an approach
for allowing a robot to recognize unknown object properties contained in the
received commands and warn the user about them. With this approach, on one
hand the user is able to understand over time what a robot can and cannot
ground. On the other hand, the robot can leverage past interactions to learn
new object properties. The next section describes how our approach can achieve
these goals.

3 Approach

In this section, first we motivate and introduce the concept of sensing descriptors.
Next, we present our approach for human-robot natural language interaction
based on such a concept. Finally, we show how the system can leverage previous
interactions with users to learn previously unknown referring expressions for the
objects perceived.

3.1 Sensing Descriptors

Usually, when dealing with robots and natural language user commands, a stan-
dard processing chain is adopted to decouple the semantic parsing problem
from the grounding problem [3,4,19,23]. First, the natural language utterances
are converted into text through an automatic speech recognition (ASR) sys-
tem. Next, the text is converted into a specific representation that captures
the semantic meaning of the uttered command. This conversion is carried out
either through grammars or probabilistic approaches. The obtained representa-
tion is then “contextualized” in the operational environment through a ground-
ing process. The final result is an executable function and a set of parameters
passed as input.

In general, during this process each natural language command is grounded
through a combination of sensing actions and queries to a given knowledge base.
However, this approach does not take into account the sensing capabilities of the
robot. In fact, we note that approaches proposed in literature often assume that
if the robot can semantically parse an utterance, then it will be able to ground
it. However, a robot may be able to correctly parse a sentence and extract its
semantics without being able to ground the command due to a missing sensing
capability. Hence, we propose to explicitly represent in the knowledge base these
capabilities and use them to recognize parts of the commands that could only
be grounded through a sensing ability not available to the robot. To this end,
we introduce the concept of sensing descriptor.

Each sensing operation carried out by a robot can be defined as a function
that takes as input a particular type of sensed data and outputs a value expressed
in the internal representation of the robot. This value will be an instance of a
sensing descriptor. Formally, a sensing operation can be defined as:

fsensing D — SD
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were D is the particular type of data sensed and SD is a specific sensing descrip-
tor. As an example, let’s consider the operation of sensing the color of a partic-
ular object. The input will be the RGB values of the pixels sensed by a camera.
The output will be one or more instances of the sensing descriptor color (e.g.,
[255,0,0] or red depending on the internal representation of the robot). These
sensing descriptors can be used to check if the utterances received from a user
can be grounded with the current capabilities of a robot. We perform this check
as an intermediate step between the semantic parsing and the grounding process,
as explained in the next section.

3.2 Human-Robot Natural Language Interaction

Figure 2 shows an overview of our processing chain. Specifically, this processing
approach is divided in four consecutive steps. First, speech is converted into text
using a free-form speech-to-text engine. Text from speech is confirmed by the
user. Thus, without loss of generality, the input of the system is established as
natural language text.

Speech-to-text Text-to-frame

Engine Sy Converter

Frame and
Frame Elements

Executable

Grounder o —

Knoiﬁédge
Base

Fig. 2. Overview of our natural language processing chain. Instead of directly ground-
ing the frames extracted from the commands, we perform an additional step that
analyzes the sensing descriptors included in the frame elements.

Next, the text is converted into a specific representation characterizing the
semantics of the sentence. This step is performed through the aid of specific
grammars that drive the recognition process by attaching a proper semantic
output to each grammar rule. The output has the form of a semantic frame
representing a “situation” in the world (typically an action) inspired by the
notion defined in the Frame Semantics linguistic theory [24]. The meaning of
each frame can be enriched by semantic arguments, called frame elements, that
are part of the input sentence. The output of the recognition process is then
converted to a parse tree that contains syntactic and semantic information.
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This information is used to instantiate a frame, similarly to [25]. As an example,
the command “pick up the red block” will be mapped to the GETTING frame.
The sub-phrase “the red block” will instead represent the specific frame element
THEME, which represents the target of the GETTING action.

At this point, instead of directly grounding the frames in the internal repre-
sentation of the robot we explicitly represent each sensing descriptor that can be
recognized and grounded by the robot, also defining the range of values that it
can assume. Formally, in our knowledge base we represent every sensing descrip-
tor SD; that can be handled by a robot, also representing all its possible known
instances sd; € SD;. We use these sensing descriptors to check if the obtained
frame elements can be grounded with the current sensing capabilities of the
robot. Hence, we define sensing descriptor extractor a function 1 able to extract
from each frame element all the contained instances of sensing descriptors. For-
mally, if we define FE the frame element type, the sensing descriptor extractor
can be specified as:

Y : FE — {SDy,SD,,...5D,}

where SD; is a specific sensing descriptor extracted from the given frame element.

There are many possible ways to implement this function. In our approach,
the sensing descriptor extractor is represented as a parser that exploit gram-
matical rules to carry out its task. In fact, we note that particular grammar
elements are associated to referring expressions that require sensing capabilities
to be grounded. Hence, for our specific case, we propose an heuristic rule that
selects all the adjectives found in the frame elements. This rule is used to handle
element frames such as “the big red and cylindric block” where the word “and”
may or may not be used and where the words “big”, “red”, and “cylindric” need
to be extracted. The words extracted represent the sensing descriptor instances
that will be checked in the knowledge base. If all the instances are found to
belong to a particular sensing descriptor expressed in the knowledge base, the
system will proceed to ground the command, otherwise we either leverage dialog
or adopt a probabilistic approach to resolve this issue.

3.3 Handling Unknown Sensing Descriptors

When an instance of a sensing descriptor is not found in the knowledge base two
different scenarios may occur:

— The referring expression belongs to an unknown sensor descriptor and it has
never been used by a user;

— The referring expression belongs to a sensor descriptor not available to the
robot but it has been previously used to refer to a particular object.

In the first case, the robot asks the user to provide an alternative referring
expression to the object, while keeping track of all the referring expressions
used in the different interactions. These expressions are in fact the unknown
sensing descriptors found in the frame elements that are not represented in
the knowledge base of the robot. Since there is a limited amount of sensing
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properties that can be expressed, eventually the user will refer to the object in
a way that the robot can understand, enabling the robot to associate all the
previously used referring expression to the grounding found. To this end, we
explicitly represent this association in the knowledge base by using the binary
logic predicate sd_grounding(X, Y). In this predicate, X represents the unknown
instance of a sensing descriptor, while Y represents the grounding found through
the multiple interactions with the user.

For example, let us consider a robot only able to recognize colors. Addition-
ally, let us assume that a user needs to refer to a cylindric red object. At a
first interaction a user might refer to the object as “the cylindric block”. When
warned by the robot that the term “cylindric” can not be understood, the user
will provide a command with an alternative referring expression. Eventually, the
user will refer to the object as “the red block”, enabling the robot to correctly
ground the expression and assert sd_grounding(cylindric, block-1) in his knowl-
edge base. Figure 3 shows an example of a dialog between a manipulator robot
and a user that our system is able to understand and the information that the
robot is able to extract and store in the knowledge base.

User: pick up the cylindric block.

Robot: I do not understand “cylindric”.
Are you referring to “blue”?

User: No.

Robot: Ok, please rephrase the command.

User: pick up the red block.

he_sd_assoc(cylindric, red)

User: pick up the cylindric block.
Robot: I do not understand what “cylindric” means.

Can you provide an alternative expression? Extracted
User: pick up the red block. Information
Robot: I am picking up the red block.

sd_ grounding(cylindric, block_ 1)

Fig. 3. Example of a dialog between the robot and a user that our system is able to
understand and the information extracted and stored in the knowledge base.

To each association instance in the knowledge base, a number is also attached
to keep track of how many times the referring expression has been used to refer
to a particular object. This counter is needed to handle the alternative scenario
that may occur. In this second scenario, a referring expression belonging to
an unknown sensor descriptor has been previously used to refer to a particular
object. In this case, we adopt a probabilistic approach to ground the expressions.
Specifically, if we define KB as the knowledge base available to the robot, R the
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referring expression being analyzed and G the possible groundings for it, we
can obtain the most probable grounding by selecting the one that maximizes
Bayes rule:

o(G11: Ky = PG KB) (G KB)

>_rP(R|G; KB) - p(G; KB)
Here, the prior over groundings p(G; KB) is computed by looking at the counts of
each element of G in the knowledge base. The other term p(R|G; KB) is instead
obtained by counting the number of times a particular referring expression has
been used to refer to a particular grounding, and dividing by the overall number
of referring expressions used for the same grounding. Formally, if we define count
the function that returns the number of times that a particular association has
been encountered, we can compute p(R|G; KB) as:

count(association(R, G))
;KB) = .
P(R|G; KB) > r count(association(R, G))

After having grounded the expressions, we allow the user to give a feedback to the
robot to update the counter attached to each association instance. Algorithm 1
reports the overall natural language processing approach. Specifically, the algo-
rithm takes as inputs the natural language command expressed as text and a
specific knowledge base. The command is first analyzed to obtain its representa-
tion in terms of frames and frame elements (line 3). Next, the sensing descriptor
instances are extracted from each frame elements through the sensing descrip-
tor extractor ¢ (line 5). Once extracted, the instances are checked against the

Algorithm 1. Ground Command

Input: Text command C, knowledge base KB

Data: Frame f, set of frame elements F'E, set of sensing descriptor instances SD,
set of unknown sensing descriptor instances USD

Output: Executable action function &

1 begin

2 // Extract frames and set of frame elements

3 f, FE « extractFramesAndFrameElements(C)

4 // Extract the set of sensing descriptor instances

6 // Select unknown sensing descriptor instances

7 USD «— selectUnknownlInstances(SD, KB)

8 if USD # {} then

9 ‘ // Exploit Dialog and Previous Experience to ground command

10 @ — handleUnknownSensingDescriptors(USD, SD, KB, f, FE)
11 else

12 // Otherwise normally ground command

13 @ — ground(f, FE)

14 return ¢
15 end
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available knowledge base to find any that cannot be grounded with the current
sensing capabilities of the robot (line 7). If an unknown instance is found, the
robot exploits dialog and the previous knowledge acquired to assign a grounding
to the referring expressions (line 10). Otherwise, the command is grounded into
the knowledge base available to the robot to obtain the final executable function
(line 13).

4 Experimental Evaluation

In this section we describe in detail how the presented approach has been
deployed on a Baxter manipulator robot able to manipulate a set of blocks
placed in front of it. This setting has been used to quantitatively evaluate our
proposed approach. Since the evaluation space of the experiment was large and
generating results with humans was extremely time consuming, the experiments
were conducted by using a simulator faithful to the chosen setting'. A represen-
tative sample of the scenarios described in the paper was successfully run on the
manipulator interacting with humans, achieving results that are consistent with
those reported in the following sections.

4.1 Setup

Baxter has two 7 degree of freedom arms, cameras on both arms, and a mounted
Microsoft Kinect. Baxter has been programmed to perform the actions touch,
grab, move, point to, and push. These primitives are used to manipulate a set
of blocks located on a table in front of the robot. The manipulated blocks have
different shapes and colors. Additionally, each block has a unique id, associated
with a specific QR code. Given this setting, we considered the sensing descriptors
shown in Table 1. Specifically, five different blocks were considered:

— A short, wide, triangular, blue block;

— A short, narrow, cubic, brown block;

— A short, wide, bridge-shaped, yellow block;
— A tall, narrow, rectangular, green block;

— A tall, narrow, cylindric, red block.

Additionally, these blocks were associated with the number one through five,
respectively. Figure 1 shows the described scenario.

Before accepting commands, the robot was allowed to analyze the scene in
order to accumulate knowledge about the operational environment. This knowl-
edge was stored in the form of logic predicates in a knowledge base. The spoken
commands given to the robot were converted into text through a free-form ASR?.
For this particular scenario, a dedicated grammar was developed to convert the
natural language commands to the previously described frame representation.

! https://github.com/RethinkRobotics/sdk-docs/wiki/Baxter-simulator.
2 The Google free-form ASR has been used.
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Table 1. Sensing descriptors considered in the chosen scenario and possible values.

Sensing descriptors | Possible values

color {blue, brown, yellow, green, red, orange, purple}

shape {triangular, cubic, bridge-shaped, rectangular, cylindric}
block id {first, second, ..., fifth}

height {short, tall}

width {narrow, wide}

spatial location {left, center, right}

To extract the sensing descriptors from the frame elements, a POS Tagger?
was used to grammatically analyze the words in the command. Particularly, we
adopted the heuristic of extracting the adjectives related to target objects, con-
sidering them instances of a specific sensing descriptor. With this approach we
were able to allow users to understand how to instruct the robot while interacting
with it.

4.2 Approach Evaluation

In order to show the effectiveness of our algorithm, we compared our approach
with an algorithm commonly used in literature. Specifically, the chosen two-step
approach first converts the received commands to frames exploiting grammars.
Then, it directly grounds the commands without exploiting any information
about sensing descriptors. When the algorithm receives a command that can be
grounded to multiple targets (e.g., “touch the narrow block” in this scenario), it
selects a random target between the possible ones.

The two approaches have been tested by first generating all the possible
commands that can be given to the robot in this setting. Figure 1 shows some
example commands generated. Next, 50 commands were randomly chosen and
incrementally given in input to the robot. When the robot wasn’t able to under-
stand an object attribute, the property was changed with another one not yet
used. This process was repeated until the robot understood the command. Such
an operation has been carried out for both approaches and averaged for 100
times by varying the number of sensing descriptors known by the robot. For
each run we measured the cumulative number of interactions needed to execute
all the 50 commands. Figure 4 shows the results obtained in the experiment.

From the graph, it can be noticed that on average our algorithm required sig-
nificantly less interactions to ground the randomly chosen commands. Moreover,
it is worth noticing the effects of the different available levels of information on
the two approaches. In fact, when the two robots were capable of understanding
and grounding most of the used sensing descriptors, the two approaches had a

3 We exploited the Stanford POS Tagger to extract the sensing descriptor instances
from the frame elements.
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M Baseline M Proposed Approach

200

150

Cumulative Number of Interactions

1 2 3 4 5 6
Sensing Descriptors Known

Fig. 4. Results for the experiment performed on both processing chains averaged for
100 times by varying the number of sensing descriptors known by the robot.

comparable result. Instead, when a lower amount of information was available,
our approach greatly outperformed the other one, leading to a decrease in inter-
actions needed to understand the command, up to approximately 50 % in the
chosen scenario.

5 Conclusion

In this paper, we considered an autonomous robot provided with an internal rep-
resentation of the environment, unknown to a user interacting with it through
natural language. In this setting, we addressed the problem of allowing humans
to understand the internal representation of the robot through dialog. Moreover,
we enabled our robot to learn previously unknown object properties leveraging
the past interactions with the user. We successfully deployed our approach on
a Baxter manipulator robot able to carry out tasks assigned by several users
through natural language. Specifically, our experiments report in-detail the per-
formance of our algorithm in this scenario, suggesting an improvement in the
grounding effectiveness compared to another commonly used approach.

As a future work, we are studying extensions of the proposed approach. In
fact, as a long term goal, we would like to generalize the approach allowing our
robots to not only recognize unknown object properties but also every unknown
concept contained in the received commands.
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