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Abstract. k-median and k-center are two well-known problems in facil-
ity location which play an important role in operation research, manage-
ment science, clustering and computational geometry. To the best of our
knowledge, although these problems have lots of applications, they have
never been studied together simultaneously as a multi objective optimiza-
tion problem. Multi-objective optimization has been applied in many
fields of science where optimal decisions need to be taken in the presence
of trade-offs between two or more conflicting objectives. In this paper
we consider 1-median and 1-center two-objective optimization problem.
We prove that 2(nlogn) is a lower bound for proposed problem in one
and two dimensions in Manhattan metric. Also, by using the proper-
ties of farthest point Voronoi diagram, we present a deterministic algo-
rithm which output the Pareto Front and Pareto Optimal Solutions in
O(nlogn) time.

Keywords: Computational geometry - Pareto optimal solutions
1-center - 1-median - Multi-objective optimization

1 Introduction

When evaluating different solutions from a design space, it is often the case that
more than one criterion comes into play. For example, when choosing a route to
drive from one point to another, we may care about the time it takes, the distance
traveled and the complexity of the route (e.g. number of turns). When designing a
(wired or wireless) network, we may consider its cost, capacity and coverage. Such
problems are known as Multi-Objective Optimization Problems (MOOP). Multi-
objective optimization can be described in mathematical terms as follows:

S ={xeR: h(z)=0,9(zx) >0}
min [fl(x)va(x)a e 7fN(x)]

T €S,

where N > 1, f; is a scalar function for 1 <4 < N and S is the set of constraints.
The space in which the objective vector belongs is called objective space. The

scalar concept of optimality does not apply directly in the multi-objective setting.
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Here the notion of Pareto optimality and dominance has to be introduced. In a
multi-objective minimization problem, a solution s; € S dominates a solution
s2 € S, denoted by s1 < so, if fi(s1) < fi(s2) for all ¢ € {1,..., N}, with at
least one strict inequality. A point s* is said to be a Pareto optimum or a Pareto
optimal solution for the multi-objective problem if and only if there is no s € S
such that s < s*. The image of such an efficient set, i.e., the image of all the
efficient solutions in the objective space are called Pareto optimal front or Pareto
curve.

One of the common approaches for such problems is evolutionary algo-
rithms [7]. These algorithms are iterative and converge to Pareto front. However
they need more time as the complexity of the Pareto front increases. Moreover,
all of these approaches have major problems with local optimums. On the other
hand there are some classical approaches like weighted sum and e-constraint
which can apply on MOOPs. Although these approaches guarantee finding solu-
tions on the entire Pareto optimal set for problems having a convex Pareto front,
they are largely depend on chosen weight and e vectors respectively. Moreover,
these approaches require some information from user about the solution space.
Furthermore, in most nonlinear MOOPs, a uniformly distributed set of weight
vectors wont necessarily find a uniformly distributed set of Pareto optimal solu-
tions. Also there may exist multiple minimum solutions for a specific weight
vector [8]. However we find the Pareto front of a MOOP with deterministic algo-
rithm. Here we consider two famous propounded facility location problems [17].

k-median: In this problem the goal is to minimize summation of distances
between each demand point and its nearest center. Charikar et al. proposed
the first constant time approximation algorithm which its outputs is 6% times
the optimal [5]. This improved upon the best previously known result of
O(log ploglogp), which was obtained by refining and derandomizing a ran-
domized O(lognloglogn)-approximation algorithm of Bartal [4]. The currently
best known approximation ratio is 3 + e achieved by a local search heuris-
tic of Arya et al. [1]. Moreover, Jain et al. proved that the k-median prob-
lem cannot be approximated within a factor strictly less than 1 + 2/e, unless
NP C DTIME[n®Uoglogn)] [12]. This was an improvement over a lower bound of
1+ 1/e [16]. Using sampling technique Meyerson, et al. presented an algorithm
with running time O(p(é log p)?log(2log p)). This was the first k-median algo-
rithm with fully polynomial running time that was independent of n, the size
of the data set. It presented a solution that is, with high probability, an O(1)-

approximation, if each cluster in some optimal solution has £2(*:¢) points [14].

Har-Peled and Kushal presented a (p, €)-coreset of size O(p?/e?) for k-median
clustering of n points in RY, which its size was independent of n [9]. Also, Har-
Peled and Mazumdar showed that there exist small coresets of size O(pe~%logn)
for the problems of computing k-median clustering for points in low dimension
with (1 + ¢)-approximation. Their algorithm has linear running time for a fixed
p and ¢ [10]. Moreover, using random sampling for k-median problem Badoiu

)W jo)

et al. proposed a (14 ¢)-approximation algorithm with 2(P/¢ nlog®® p

expected time [3].
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k-center: In this problem the goal is to minimize the maximum distance between
each demand point from its nearest center. Megiddo and Supowit proved that
k-center and k-median are NP-hard even to approximate the k-center problems
sufficiently closely [13]. Hochbaum and Shmoys proposed the first constant factor
approximation algorithm which its output is 2 times the optimal. It is the best
possible algorithm unless P # NP [11]. It is shown that there is an algorithm
with O(d®@n) time for 1-center problem [6]. In the high dimension, Badoiu
and Clarkson presented a (1 + €)-approximation algorithm which find a solu-
tion in [2/€] passes using O(nd/e + (1/€)°) total time and O(d/e) space [2].
Also, for problem of 1-center with outliers, Zarrabi-Zadeh and Mukhopadhyay
proposed a 2-approximation one pass streaming algorithm in high dimension
which for z, as the number of outliers, needs O(zd?) space [19]. Moreover,
Zarrabi-Zadeh and Chan presented an streaming one pass 3/2-approximation
algorithm for 1-center [18]. Badoiu et al. for 1-center problem, extracted a core-
set of size O(1/€?) which its solution is (1 + €)-approximation set of points in
R? [3]. Also, for k-center they presented a 2°((P1082)/€*) dn time algorithm with
(1 + e)-approximation solution using previous result.

1-median and 1-center are practical problems which have not been considered
as a two-objective optimization problem yet. Imagine mayor of a small city wants
to build a fire station in a way that minimizes the distance between farthest
building to the station, also since the number of fire engines is limited and each
fire engine must return to the station after a service, it has to minimizes the total
distance of station from all other buildings. As an another example, consider
power distribution network. Due to the dependency of energy leakage to wire
length, minimizing of the longest wire in the network would be regarded as an
essential factor. Also, any decrement in total wire length of network considered
as a second objective. The first objective is 1-median, M (u), the summation of
distances of demand points from center u and the second objective is 1-center,
C(u), the farthest input point from center p. It can be described in mathematical
terms as follow:

Definition 1. 1-Median 1-Center Two-Objective Optimization Prob-
lem: Let P = {p1,...pn} be a set of demand points in R%. Consider functions
M(u) = 3", D(u,p;) and C(u) = maxi<ij<n, D(u,p;) are the values of point
u € R? as a center for 1-median and 1-center objectives respectively for a certain
distance function D. The goal is finding u* to minimize the objectives.

We study this problem in one and two dimensions in Manhattan metric. We
assume no input points have the same x or y coordinate.

This is a convex combinatorial multi-objective optimization problem which
has been studied with a different approach called e-Pareto. In [15] it is shown
that this approximate Pareto curve can be constructed in time polynomial in
the size of the instance and 1/€, but here we propose a deterministic algorithm
for computing the exact Pareto curve because of specifying the problem.

This paper starts with considering 1-median and 1-center as two-objective of
MOOP in one dimension. We will find the optimal of objectives and in terms of
placement of optimums we will also find the Pareto set in time O(n) (Lemmal).
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Fig. 1. 1-median optimal.

We continue with a proof for convexity of Pareto set. At the end of second section
we give an algorithm to compute Pareto optimal front of 1-median 1-center
two-objective optimization problem and prove the optimality of the algorithm.
In section three the same problem considered in two dimensional space. First
we find optimums of 1-median objective. After that by using the properties of
farthest point Voronoi diagram we determine the optimum of 1-center. Finally
after limiting the solution space to regions which Pareto set lies on, we specifically
present Pareto solutions. Convexity of Pareto front is proven in Theorem 2.

2 One Dimensional

Let P = {z1,x9,...2,} be a set of input points in one dimension, the goal is
to minimize M(z) = Y"1 | |x — ;| and C(z) = maxi<;<n |z — z;|. According
to the properties of the absolute value function and some simple calculations,
it is easy to see that M (x) is a continuous piecewise linear function which its
minimum depends on n. The minimum can either be one point or an interval
which we denote by M, in the rest of the paper. Also without loss of generality
we assume that input points are sorted increasingly. In one dimensional space,
Mope = [my,m;] C R for 1 < 4,j < n such that m; = x;, m; = x;. For odd
n we have j = ¢ and for even n, j = i + 1. Moreover, the function is strictly
decreasing before its minimum and is strictly increasing after it (Fig.1). For
C(z) suppose copt € R denote the point which C(cope) is minimum. Obviously
Copt = (X1 +2p)/2. Similarly to M(z), C(x) is strictly decreasing before optimal
point and strictly increasing after that.

Lemma 1. Pareto optimal set in one dimensional 1-median 1-center two-
objective optimization problem is the smallest interval consisting of a solution
with 1-center optimal and a solution with 1-median optimal.

Proof. Suppose that n is even (the proof is similar for odd n). As shown in Fig. 2,
there are three different cases:



168 V. Roostapour et al.

Moy Moyt Pareto set
m; Copt M5 m; m; Copt
Pm‘c&o set A T \_*C/—
(a) copt and Mop: have intersection. (b) copt is on the right side of Mopt.
Parcto set Moy

Copt m; m;

—_— ——
A B C

(¢) copt is on the left side of Mopt.

Fig. 2. Pareto set computation in one dimension.

First consider the case that cop; and M,y have an intersection (Fig.2a). In
this case the intersection point is the only member of Pareto optimal solutions.
Because not only it is optimal in both objectives, but also it is the only point
where C(x) is optimal. So it dominates all the other solutions and no solution
dominates it.

As shown in Fig.2b there are three regions in the second case. In region
C both functions are strictly increasing. Therefore, c,p; has the best value in
both objectives. It dominates all solutions of this region. In A, C(z) is strictly
decreasing, thus C(my) is strictly smaller than 1-center objective of all the other
solutions. Moreover, M (m;) is smaller than or equal with 1-median objective
of the other solutions. Hence m; dominates all solutions of A. Finally we claim
that B is Pareto set. By contradiction, suppose it is not true, then there must be
a point p which dominates g € B. It has to be on the left side or right side of g.
Let p be on the right side, we know that M (z) is strictly increasing in this side.
Hence M (q) < M(p) and it contradicts with dominance of p. Similarly there is
a contradiction if p lies on the left side of ¢, because C(z) is strictly decreasing
in this side, i.e. C(q) < C(p). This implies that all the solutions that lie on B
are Pareto set.

The proof is similar for the third case which ¢, is on the left side of M,
(Fig. 2¢). O

Lemma 2. Pareto optimal front of one dimensional 1-median 1-center two-
objective optimization problem forms a continuous, conver and piecewise linear
function.

Proof. If there is an intersection between c,p: and Moy the lemma is held. Now
suppose there is no such intersection and consider c,p: is on the right side of
Moypi (resp. on the left side of M,,;). From Lemmal for Pareto solutions we
have Py = [mj, copt) (resp. Ps = [copt, m;]). Since C(x) derivation is constant and
M (z) is piecewise linear in Ps, the diagram of M (z)-C(x) is piecewise linear and
break points are (C(azi), M(ml)) such that m; < z; < copr (vesp. Copr < x; < my;).
The absolute value of slope of M(z) increases on each linear piece in Ps;. Thus
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Fig. 3. One dimensional 1-median 1-center two-objective Pareto optimal front.

Pareto optimal front is convex (Fig. 3). Also we can conclude that piecewise linear
Pareto front is one-to-one and invertible corresponding to Pareto solutions. O

Lemma 3. Computing Pareto front of one dimensional 1-median 1-center two-
objective optimization problem requires 2(nlogn) time.

Proof. The proof is based on reduction from sorting problem. By contradic-
tion assume there is an algorithm which return set O = {(C(a1), M(a))---,
(C(eum), M(cuy,))} —lexicographical ordered break points of the piecewise lin-
ear Pareto front function— besides the Pareto solutions interval in o(nlogn)

running time. Let A = {a1,...,a,} is the set of input values of sorting prob-
lem, [ = argmin;<;<pa; and h = argmaxi<i<n @;. Suppose bq,...,by41 and
t are values such that by < --- < bpy1 < ay and t = 2 ap — by + 1, then

B = AUA{by, -+ ,bpt1,t} is defined in O(n). For the set B as input points of
one dimensional 1-median 1-center two-objective optimization, 1-median optimal
interval is [b,+1, a;] and 1-center optimal point is between ap, and ¢. Using lemma
2 we conclude that m=n+land oy =a; < - < Q-1 = ap < @y, = (bﬁt)

Therefore, we can sort input points by given algorlthm which implies that no
algorithms with o(nlogn) running time can compute Pareto front of one dimen-

sional 1-median 1-center two-objective optimization problem. a

Note 1. If the algorithm output the Pareto optimal
front as O = {(C(Oél), M(Oél)) — (C(OZQ), M(O&g)), ey, (O(a2m_1)7 M(O&gm_l)) —
(C’(cmm), M(azm)) }, start points and end points of m segments, since the slope
of each segment is an integer of O(n), the segments can be sorted in O(n).
Therefore, we can have sorted break points of Pareto front function and the
above proof holds.

Theorem 1. Algorithm 1 compute one dimensional 1-median 1-center two-
objective Pareto front and Pareto solutions interval in O(n -logn).
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Proof. C(z) can be computed easily in constant time and M (z) can be computed
in O(logn) using binary search, we obtain that line 13 is O(logn) running time.
Therefore, we can conclude that Algorithm 1 is O(n - logn). a

Corollary 1. Pareto front of one dimensional 1-median 1-center two-objective
optimization problem can be computed in 0(nlogn).

Algorithm 1. COMPUTE PARETO OPTIMAL FRONT
Input: Set I s.t. |[I|=n

Output: P,(Pareto solutions), P¢(Pareto front)

1: Sort I increasingly to {z1,z2,...,Zn}

2: if n is even then
3 b=75+1
4: else
5. b=1nfl
6

7
8

: end if ’

Py = [on, (01 + 20) /2]

: Pp=9®
9: Add (C(xb), M(l‘b)) to Py
10: i=0
11: while z;4+1 < (z1 + z»)/2 do
12: i=i+1
13:  Add (C(zi), M(x:)) to Py
14: end while
15: Add (C(x(zl+zn>/2),M(m(m1+m”)/2)) to Py
16: return P, Py

Due to space limitation, Algorithm 1 is just for the case that copt is on the right
side of M,y:. The case that cop: is on the left side is similar. If there is an
intersection, solution is obviously the intersection point.

3 Two Dimensional

In this section we consider the problem in R2. The aim is to find the Pareto
front and Pareto solutions in terms of M,y and Cgpy.

3.1 1-Median Objective

For each point p € R? we have:

n

M) = llu— pill

i=1

n n
=D lue = pigl + Y luy —piy (1)
i=1 i=1
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Fig. 4. 1-median optimal and equation of M(p) in middle cells (Color figure online).

We can observe that we need O(n) time to deterministically minimize Eq. 1.
Moreover, because of the assumption that no points have same coordinate the
optimal of M,,; may be just a point or area of a rectangle.

In the rest of this paper we assume that n is even (all proofs and discussions
are similar when n is odd.). Consider lines y = p;, and 2 = p;, such that
1 < i < n which partition the wy-plane into (n + 1)? cells where boundary
cells are unbounded. The equation of M (p) for points in each cell is the same
because of the absolute value function. Furthermore, for points in a column
(resp. row) equation of Y, |z — p;, | (resp. D7 |y — p;,|) do not change but
for transformation to upper (resp. right) cell coefficient of y (resp. x) increases
by 2 (Fig.4).

3.2 1-Center Objective

Let FVD be the farthest point Voronoi diagram of input points in Manhattan
metric, also let Rzyp(p) denote the region of FVD which consist of p and
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N

(a) Farthest point Voronoi diagram re- (b) Possible region for site of C is A\ .
gions in Manhattan metric.

Fig. 5. Farthest point Voronoi diagram properties.

Sryp(R) denote the site of region R. According to the definition of 1-center
objective, C(p) is ||p — SFryp(R7yvp(p))]l1. Besides the FVD partition the plane
into at least two and at most four regions (Fig. 5a).

According to the structure of FVD, it is impossible for regions A and C to
have a common site. However, either B (resp. D) can merge with A (resp. C)
or B (resp. D) can merge with C (resp. A), i.e. B and D cannot merge with a
common region simultaneously.

Proposition 1. Site of region C is in A\ E. Otherwise distances between points
on segment ab and Sxyp(C) are not equal and ab is not an edge of FVD (Fig. 5b).

From Proposition 1 it can be concluded that C(p) for p € C is equal to distance
of p from segment ab add up to distance between segment ab and Szyp(C).

Proposition 2. As shown in Fig. 6a distances of mi,mo € A from line {1 is
equal to their distances from segment ab. For point my both distances are obvi-
ously the same and are equal to ||my1 —m/||1. For point ma we have Apgm} and
Agmba as equal isosceles triangles. Therefore, segments qm!, and qa are equal.
Hence ||mg — mb||1 = ||me — al|1.

The following two propositions determine the equation of C(p) in the plane and
proof that it depends on which region of FVD includes p.

Proposition 3. For pointp € C (resp. p € A), C(p) = kopt + ¢ — px — Dy (resp.
C(p) = kopt — ¢+ pz + py) where ¢ is y-intercept of {1 (Fig. 6b).

Proof. Suppose equation of line ¢; is y = —z + ¢ and distance between site
of C and segment ab is kop, then projection of point p = (z,y) on ¢y is p’ =
(e=4tz cty=t) Using Propositions 1 and 2 can obtain that:

b

C(p) = kOPt+||p_p/||1 = kopt +C—pPr—Dy- O
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(a) Property of 1-center optimal seg- (b) Projection of points to line ¢;.
ment in Manhattan metric.

Fig. 6. Property of 1-center optimal segment in Manhattan metric.

Proposition 4. In Fig. 7a since site of D is in hatched region or on its border,
for point ¢ € D we have C(q) as the distance of point a from Sryp(D) add
up to distance between point a and point q. Also since point a is an FVD wverter,
we know that distance of point a from SzFyp(D) is equal to its distance from
Sryp(C) and as equal to kopi, hence:

C(q) = kopt + [la = ally = kopr —¢1 = ¢z + gy

€1 =0y — Gy
Similarly it can be proven that for q € B:

C(Q) = kopt + ||b - QHI = kopt + o+ qr — qy
Coy = by — bx

Corollary 2. According to Propositions 3 and/j we can conclude that points in
A and C which are on segments parallel to segment ab have the same 1-center
objective value. Also for B and D these points are on segments perpendicular to
ab. Moreover, points on ab are optimal of 1-center objective (Fig. 7b).

3.3 Pareto Optimal Solutions

Suppose M, and C,p,: are calculated. Obviously if they have intersection, it is
the set of Pareto solutions. Hence in the rest of this section we assume that M,
and C,p; have no intersection.

Possible Region for Pareto Optimal Set. Here the goal is to find the region
‘P such that its boundary points dominate all points of the plane, i.e. Pareto set
is definitely in P.
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(a) Possible region for site of D. (b) Points with the same 1-center
value.

Fig. 7. Possible region for site of D.

According to the optimal of M (p) and C(p), three cases are possible. In the
first case Mop: is in regions A or C, in the second case Moy is in regions B or
D and in the third case M,,; intersects with the axis aligned the edges of FVD.
For the first case (Fig. 8a) let e be the lower left point of M, and let ef and ed
be the vertical and horizontal segments hitting the edges of FVD. For all points
w on line of ed and w on half-line segment ¢; perpendicular to £eq, C(u) < C(w)
and M (u) < M(w). Thus v dominates all points on ¢;. Similarly for point ¢ on
ley and w on half-line segment f3, ¢ < w. There are similar results for other
edges of ade fb which make us able to conclude that polygon adefb is P.

Second and third cases are similar and we consider them simultaneously
(Fig.8b and c). Let bede be in region B. Obviously above discussion holds for
points p, g, r, s and half-line segments ¢1, {5, ¢35 and ¢, respectively. Moreover, a
dominates all points of D, any point ¢ on ab dominates all points on horizontal
(resp. vertical) half-line segment which starts from ¢ and pass through C (resp. A)
and b dominates all points on ab. Therefore, we can conclude that points on the
border of bede dominate all points outside of it and bede is P. It is the same
when bede is in D.

Pareto Optimal Solutions. We have shown that M (p) partitions the plane
to cells in which equation of M (p) is known. According to this partitioning and
Copt, seven cases are possible. First three cases happen when M, is in A or C
of FVD. Next three cases occur when M, is in B or D. Last case occurs when
M,y and axis aligned edges of VD have intersection.

The claim is that cells in P whose equations are M (p) = ap, + Op, + ¢ such
that a = (3, are part of Pareto set.
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Fig. 8. Mopt is in A.

Proposition 5. Let P be in A. For each cell with M(p) = ap, + Bpy + ¢ where
a/B > 1, points on the right and bottom edges dominate other points of the cell.

Proof. For each point p in the cell, points with the same 1-median values are
on a line which is parallel to y = —a;/3. This line will hit the border of the cell
in points p’ and p” such that p,, > p, i.e. p’ is on bottom or right edge. Since
a/B > 1 we have C(p') < C(p) < C(p”) and p’ dominates p and p”. O

Proposition 6. Suppose P isin A (resp. C). In P let q be a point in a cell with
equation M(q) = agy + ag, + ¢ such that a < 0 (resp. a > 0). Suppose ¢ be the
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line passing through q with equation y = —x + ¢’. By extending Proposition b,
for all p on € or bellow (resp. on € or above) we have M(q) < M(p). The same
result holds for B and D when £ is y = x + .

The following lemma introduces special cells in P which are part of Pareto set.
In the rest of this paper we refer to them as Pareto cells.

Lemma 4. Suppose P is in A (resp. C). All points like p of cells with M(p) =
apg + Bpy + ¢ such that o = § and o < 0 (resp. a > 0), are all or part of
Pareto set.

Proof. Here we assume P C A but the proof is similar when P C C. Consider
p € P such that M(p) = apy + ap, + ¢ and « < 0. Suppose ¢ dominates p and
£ be a line passing through p with y = —x + ¢/ equation. if ¢ is above £ then
C(q) is greater than C(p). Therefore, ¢ is on or bellow £. By Proposition 6, if ¢ is
bellow ¢ it means M (p) < M(q) otherwise ¢ is on ¢; but if both are in the same
cell it concludes that C(p) = C(q) and M (p) = M(q), otherwise M (p) < M(q).
We can obtain from these contradictions that no point dominates p. a

Similar to Lemmad4, cells with M (p) = ap, + Op, + ¢ such that § = —a and
a > 0 (resp. a < 0) are Pareto cells in region B (resp. D).

For intersection of a Pareto cell with edges of FVD several cases are possible.
If the Pareto cell intersects with a horizontal (resp. vertical) edge, segment from
b (resp. a) to border of the Pareto cell will be the rest of Pareto solutions, we
refer to this segment as Pareto segment. Suppose point ¢ dominates p € Pareto
segment and let ¢ be the line passing through p and parallel to y = —z, then ¢
must be on or below this line, otherwise C(q) > C(p). But if ¢ is on or below £,
since p is in a cell that /8 > 1, M (p) < M(q). If Pareto cell intersects with ab,
the part of cell which is in P is also Pareto cell (Fig.9).

Lemma 5. Points of a Pareto cell in solution space are a segment in objective
space.

Proof. In a Pareto cell M(p) = apy + apy + ¢ (a < 0) and C(p) = p, +py + .
Therefore, M (p) —aC(p) = ¢”’. This implies that Pareto cell in solution space is
a segment with Y — aX = ¢’ equation in objective space. It is easy to see that
this holds for Pareto segments. ad

Theorem 2. Pareto Front of two dimensional 1-median 1-center two-objective
optimization problem is continuous, convex and piecewise linear function.

Proof. By Lemma 5 we can conclude that Pareto optimal front is piecewise linear.
Since in the sequence of Pareto cells from Myt to C,p each cell have a common
point with the next cell, the sequence of segments of Pareto front is continuous.
Moreover, since in each cell the coordinate of x and y in M (p) is smaller than
the previous ones, slope of segment of that cell in objective space will be bigger
than segments of previous cells which guarantees convexity of Pareto front. 0O

Corollary 3. Finding Pareto front and Pareto Solution set of two dimensional
1-median 1-center two-objective optimization problem is (nlogn).
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Fig. 9. Intersection of Pareto cells with edges of FVD

4 Conclusion and Future Work

In this paper we introduced an important and useful multi-objective optimization
problem with 1-median and 1-center in Manhattan metric as its objectives. We
considered the problem in one and two dimensional space. We also determined
the Pareto optimal front and Pareto set simultaneously. Furthermore we proved
finding Pareto front and Pareto solution set of proposed problem is 6(nlogn).

In higher dimensions, considering Manhattan metric, similar to two dimen-
sional space we can show that optimal of 1-median, i.e. M (z), will be a d dimen-
sional hypercube. Also, it can be computed in O(dn). For optimal of 1-center,
i.e. C(z), the propositions are not straight forward. However finding the small-
est circumferential hypercube drives us to the hyperplane which is the locus
of cube’s center (optimal of 1-center). Moreover, it seems that farthest point
Voronoi diagram has the most 2d regions. Thus we guess the Pareto optimal set
is very similar to two dimensional space; i.e. smallest interval of hypercubes from
M (z) to C(x) which are connected by their corners in direction perpendicular
to locus of optimal of C(x).

In Euclidean metric, we think this problem will be much harder and the
Pareto solutions cannot be computed exactly. In this case we have to approximate
Pareto solutions and Pareto front. Moreover, this approximation can be followed
for harder objectives such as 2-median and 2-center.
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