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3.1 Introduction

The global food system recently showed exceptional developments in international
commodity prices. In 2007–2008, the nominal prices of almost all food commodities
increased by more than 50 %. Three years after the 2007–2008 global food price
spikes, food prices surged again in 2010–2011 (Fig. 3.1). Though the two events
were different in terms of the commodities affected,1 a strong correlation was found
among most food prices. More importantly, prices of all food commodities soared
above the long-term average, with an adverse impact on poor people in developing
countries (Conforti 2004; Dawe 2008; Dorosh et al. 2009; Hernandez et al. 2011).
Indeed, the sudden increase in international food prices and its transmission to
domestic prices led to rising inflation rates, which mainly affect the poor because
they spend a large share of their income on staple foods. Volatility causes economic
uncertainty and may result in lower investment, especially in small businesses which

This chapter is a language-edited version of our open-access article published in 2014 in the journal
Food Policy, 47, 117–128
1The sugar price index was lower than its historical average during the first food price crisis (2007–
2008) but reached a historic high in 2010–2011. Rice prices were the highest during the first high
price episode but were lower than most other cereals during the second crisis.
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Fig. 3.1 FAO food price indices from January 2004 to November 2011. Source: FAO (2011)

lack access to credit. Although food grains are regarded mainly as commodities on
the global market, they constitute the basic food of the poor and the “currency” of
the poorest two billion people in the world.

Faced with rising food insecurity, social unrest, and accelerated inflation driven
by food prices, developing and advanced countries as well as the international
community began responding with a new sense of urgency. For instance, the G20
agenda of 2011 addressed food security. Nonetheless, although the price crises in
2007–2008 and 2010–2011 have led to some policy changes, the sense of urgency
about preventing human suffering has not yet translated into comprehensive actions
to stabilize world food supply and demand.

Unstable food prices at national and regional levels are not a new phenomenon.
Some consider the 2007–2008 price spike part of normal price instability caused by
temporary shocks (Díaz-Bonilla and Ron 2010). In fact, average price volatility did
not differ significantly between the 1970s and the late 2000s, but the nature of the
volatility and its causes may be different. Traditional market fundamentals—that is,
supply and demand factors—were found to be inadequate to explain the extreme
price spikes in 2007–2008 and 2010–2011.

In the past few years, many studies have investigated the causes of and solutions
to soaring food prices (Abbott et al. 2009, 2011; Gilbert 2010; Roache 2010). They
have identified a set of drivers of food price upsurges, including biofuel demand,
speculation in commodity futures markets, countries’ aggressive stockpiling poli-
cies, trade restrictions, macroeconomic shocks to money supply, exchange rates,
and economic growth. The relative importance and actual impact of these causes
have been widely discussed. While there is a certain consensus regarding how
weather, biofuel production, and export restrictions affect food commodity markets,
the dispute surrounding speculation on the commodity food markets is far from
settled. Most of the empirical studies focus primarily on using the Granger-causality
test to explain the role of speculation in price returns or volatility (Irwin et al. 2009;
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Robles et al. 2009; Gilbert 2010). Another strand of research seeks to identify bubble
behavior—that is, explosive increases in prices—in commodity markets during
the period 2007–2008 (Gilbert 2009; Phillips and Yu 2011; Shi and Arora 2012).
The Granger-causality test, however, has been criticized for presuming a time-lag
structure that might be too long to allow any reaction on the liquid financial market
to be observed (Gilbert and Pfuderer 2012; Grosche 2012). Analyzing bubbles may
be useful for identifying abnormal price behavior, but it does not explain the causes
of the observed price increase.

This study goes a step further by examining the impact of speculation and
agricultural fundamentals on price spikes and volatility. Price spikes are the short-
term ups and downs of prices following short-term shocks, and volatility is the
variability of price around its trend. From a welfare perspective, the distinction
between price spikes and volatility is more important than trends in overall price
levels. This is because price spikes and volatility are the primary indicators of food
crises.2 Furthermore, this distinction is also essential for differentiating between
factors that cause risks to poor consumers and those that cause uncertainties to
agricultural investors. We argue that a food crisis is more closely related to extreme
price spikes, while long-term volatility is more strongly connected to general price
risks.

In particular, this study provides empirical evidence about the quantitative
importance of widely discussed determinants of commodity prices. In our empirical
analysis, we consider agricultural supply shocks, stock-to-use ratios, demand shocks
[energy prices and gross domestic product (GDP)], and futures market shocks (spec-
ulative activity in commodity futures trading and financial crises). The empirical
analysis is carried out using three models: (1) a price spike model in which monthly
food price returns (spikes) are estimated against oil prices, supply shocks, stock-
to-use ratios, demand shocks, and the volume of speculative futures trading; (2) a
volatility model in which annualized monthly variability of food prices is estimated
against yearly observable variables, such as supply shocks, stock-to-use ratios,
economic growth, the volume of speculative futures trading, oil price volatility, and
a financial crisis index; and (3) a trigger model that estimates the extreme values
of price spikes and volatility using quantile regression. The methodology will allow
us to shed light on the formation of price spikes and price risks, rather than simply
considering the so-called high food prices. The food commodities whose prices are
investigated are wheat, maize, and soybeans.3 The rest of the paper is organized as
follows: Sect. 3.2 presents the conceptual framework of the approach. Sections 3.3
and 3.4 describe the setup of the adopted models and the variables included in
the empirical analysis. Section 3.5 discusses the econometric results. Section 3.6
presents the conclusion of this study.

2Although there is no universal definition of “food crisis,” here it is understood as an abrupt and
unanticipated change that affects people severely and negatively.
3We do not include rice because of its different international market patterns.
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3.2 Conceptual Framework

Recent literature has identified the determinants of food price hikes as biofuel
demand, speculation in commodity futures markets, and macroeconomic shocks.
These determinants represent both the demand and the supply side of the world food
equation. In an attempt to distinguish how different factors affect price changes,
three groups of potential causes have been singled out: exogenous shocks, also
called “root” causes; “conditional” causes; and “internal” drivers (Fig. 3.2). Root
causes, such as extreme weather events, oil price shocks, production shocks, and
demand shocks, are independent core factors affecting food price fluctuations. They
are exogenous because the possibility of a causal relationship between the agricul-
tural sector and root causes is minimal. Exogenous shocks are expected to generate
food price spikes and volatility, and the magnitude of their impacts depends partly on
the political and economic environment of a given country. In other words, a second
group of factors related to specific political and economic conditions—labeled
here as conditional drivers—can dampen or exacerbate exogenous shocks. Some
of these factors (such as a high concentration of production or low transparency
in commodity markets) are time invariant and rather difficult to measure; they are

Fig. 3.2 Stylized framework of the causes of global food price volatility and spikes. Source:
authors’ elaboration. Note: Exogenous shocks are the “root” causes of price volatility and price
spikes. The extent to which exogenous shocks translate to food price changes depends on the
market conditions and political environment of a given country (“conditional” causes). Food price
shocks can further be amplified by nonlinear endogenous responses (“internal” causes) to food
price shocks. The factors in italics are not considered in our econometric analysis as they are time
invariant or as there is no appropriate quantitative indicator available
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therefore not considered in the empirical analysis in this chapter. The third group of
causes consists of factors that are triggered by the same price dynamics, and these
internal causes are endogenous shock amplifiers and include discretionary trade
policies, speculative activities (driven by price expectations), and declines in world
food stocks. The present study focuses primarily on exogenous shocks because they
may be the major root cause that stimulates the emergence of the other factors. At
the same time, special attention is given to speculation and food stocks, which are
(partly) endogenous factors.

This categorization of drivers comes with a caveat: the line between endogenous
and exogenous causes is very subtle. There are multiple and complex interactions
between the factors, and the drivers influence each other through various linkages
and feedback loops. For example, restrictive trade policies induced by price
increases have further contributed to price surges. Likewise, low US stock-to-use
ratios have been considered an important factor in increasing price volatility. Low
stock levels are, however, caused by reduced government activities in public storage
(exogenous) as well as current supply and price expectations (endogenous), as
highlighted by Piesse and Thirtle (2009). Furthermore, the UNCTAD 2011 Report
on Trade and Development (UNCTAD 2011) indicated that there could be some
correlations among different factors. For example, extreme weather may render
financial investment in commodity futures more attractive. However, empirical
evidence suggests that the correlation among these variables is not strong.

Figure 3.2 shows that extreme weather events such as droughts and floods—
exacerbated by global warming—are considered a root cause of global food price
fluctuations because they cause crop failure and reduce global food supply, which
consequently causes food prices to increase. In this analysis, we used short-term
global food supply fluctuation and its projection as an indicator of extreme weather
changes.

Another root cause consists of oil price shocks, which affect grain commodity
prices in a number of ways. On the supply side, a rise in oil prices exerts upward
pressure on input costs such as fertilizer, irrigation, and transportation costs. The rise
in costs in turn leads to a decline in profitability and production, with a consequent
rise in commodity prices. On the demand side, higher crude oil prices induce a
higher derived demand for grains destined for biofuel production—maize, soybeans,
and other grains such as wheat—thus resulting in higher prices of these grains. The
demand for biofuels has been further facilitated by indirect and direct subsidies and
biofuel mandates.

Both the United States and the European Union, for instance, have adopted
mandatory blending policies that require a sharp increase in biofuel usage. Studies
have shown that higher biofuel demand and energy mandates have a large impact on
food prices (Mitchel 2008; Chen et al. 2010; Chakravorty et al. 2011). A further
linkage between oil and agricultural prices operates through index investments.
Tang and Xiong (2012) found an increasing correlation between futures prices of
agricultural commodities and oil after 2004, when significant index investments
started to flow into commodity markets. The two authors highlighted that the
correlation with oil prices was significantly stronger for indexed commodities than
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off-index commodities because oil is an important index constituent (Basak and
Pavlova 2013).

The third root cause is the high demand for food crops coming mainly from
emerging markets, primarily China and India. Krugman (2010) noted that rising
commodity prices are a sign that “we are living in a finite world, in which the
rapid growth of emerging economies is placing pressure on limited supplies of raw
materials, pushing up their prices.” In addition, economic development and income
growth are changing not only the quantity of food demanded but also the structure
of demand for food commodities. As dietary patterns move away from starchy foods
toward meat and dairy products, there is an intensifying demand for feed grains that
drives their prices up (von Braun 2011).

One of the other root causes of price increases is economic shocks, such as
the depreciation of the US dollar, the currency of choice for most international
commodity transactions. These shocks put upward pressure on demand from
commodity consumers and producers not trading in US dollars.

While there is a certain consensus on the impact of some root causes (such as
oil prices and extreme weather conditions) on food prices, the debate about some
internal causes is still open. In particular, it is highly debatable whether speculation
has exacerbated food price volatility. Two conflicting hypotheses prevail: the perfect
market hypothesis and the speculative bubble hypothesis. The first, sometimes
referred to as the “traditional speculation” hypothesis, argues that speculation helps
to stabilize prices by facilitating increased liquidity and improving price discovery
in the market. The second hypothesis claims that speculation tends to generate
spikes and instabilities because of a herd mentality in commodity exchanges. The
UNCTAD (2011) report elaborated the different types of herd behavior in detail
and explained how they can drive prices far away from their fundamentals. The
basic mechanism is that traders base their decisions on past price trends rather than
new information on market fundamentals. This situation makes it difficult for other
market participants to distinguish between fundamental causes of price increases
and the causes driven by herd behavior, thereby impeding the role of speculation
in price formation. Even informed traders may not be willing or able to intervene
to correct prices if they can benefit from a potential bubble or if their arbitrage
possibilities are limited. Herd behavior can therefore reinforce price increases,
which may also lead to excess correlation if bubbles spill over to related markets.

Despite some arguments against the importance of speculation in causing the
2007–2008 food price hikes (Irwin et al. 2009; Wright 2011), empirical evidence
shows the possibility of the speculative bubble hypothesis (Robles et al. 2009).
An increase in speculative activities raises the volume of futures trading, with a
consequent increase in futures prices and inventory accumulation. This will then
translate into an increase in spot prices. However, skepticism remains about the
link between volume of futures trading and futures prices. According to some
economists (such as Krugman 2008), speculation is a random bet, whereby traders’
buying and selling futures cancel each other out and hence do not have a significant
impact on futures prices. This theoretical skepticism is supported by a lack of
empirical evidence on the accumulation of inventory, especially in 2007–2008,
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when prices increased steeply. If speculative actions were responsible for the rise
in food prices, private inventories should have accumulated. On the contrary, a
substantial decline in global food stocks was registered. This fact has been used
to justify the assumption that speculation plays an insignificant role in causing
food price spikes (Krugman 2008). However, wheat and maize reserves in the
United States did not decline substantially during the 2007–2008 crisis (they
declined substantially after the crisis). And even when stocks decline because of
supply shortages and high prices, grain releases could have been higher without
speculation. This can be answered only by conducting an econometric analysis and
not simply by comparing stocks over time.

Another aspect of financialization refers to investors’ increasing use of
commodity futures contracts as part of their portfolio diversification strategy,
particularly when other asset classes become less attractive. This has produced rapid
growth in commodity index investments in recent years. According to the capital
asset pricing model, an optimal portfolio should include assets with low or negative
correlation with riskier high-return assets (such as equity). This strategy reduces the
overall portfolio risk. Hence, investors may choose commodity futures not because
they expect increasing commodity prices, but because commodity futures have the
potential to reduce their overall portfolio risk. In this view, commodities become
attractive if alternative assets (such as real estate, bonds, metals, and gold) become
too risky or expensive. This process can have significant economic consequences
for food commodity markets. On the one hand, the presence of commodity index
investors can facilitate the sharing of commodity price risk; on the other hand, their
portfolio rebalancing can spill price volatility across commodity markets (Tang and
Xiong 2012).

Both the theoretical and empirical skepticism require further explanations and
empirical analysis. The existing literature uses different approaches for identifying
empirical evidence. For instance, storage modeling and price threshold analyses
have been used to evaluate accumulation of stocks motivated by speculation
(Tadesse and Guttormsen 2011); Granger-causality analyses have been adopted to
investigate the relations between futures prices and spot prices (Robles et al. 2009).
In this study, we explore the price effects of (1) an “excessive” volume of futures
contracts based on the disaggregated position of futures traders and (2) a financial
crisis index developed by Reinhart and Rogoff (2009). The two financial variables,
together with a set of other fundamental drivers, may shed light on how different sets
of exogenous and endogenous variables affect price spikes and volatility. Our study
differs from other existing studies because it considers fundamental-based drivers
and financial market-based factors of price changes.

Other internal factors are (1) restrictive trade policies and (2) declining world
food stocks. A host of authors (Yang et al. 2008; Headey 2011; Martin and Anderson
2012) have shown that a sequence of export restrictions and bans implemented by
countries such as India, Thailand, China, and Russia caused panics in international
markets and exacerbated price increases. Trade restrictions are designed to curtail
the effects of higher global prices on domestic prices and to protect consumers.
From a country’s perspective, restrictive policies seem to have the desired effect:
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Domestic prices are shielded from the full impact of a steep price increase. However,
restrictive policies affect the world market negatively. When many countries restrict
exports, so much food disappears from the global market that prices rocket higher
than without government intervention. Inventory stock levels have a crucial role
in commodity pricing and at the same time are affected by commodity prices.
When prices are low, rational firms tend to store some units of the commodity, and
total demand equals demand for current consumption plus demand from inventory
holders. Thus positive inventory implies that total demand is more elastic than
demand for current use. When prices are high, storage is unprofitable, inventory
goes to zero, and total demand equals current-use demand.

3.3 Estimation Methods

We differentiate between price spikes, volatility, and trends. Since trends are
somewhat anticipated long-term price changes that have little relevance to food
crises, this study focuses only on price spikes and volatility.

A price spike is a large, quick, and temporary rise or fall in price following
a short-term shock. Price spikes can cause crises for consumers, investors, and
farmers. Food price spikes are usually measured using the logarithm of period-over-
period prices. Expressed as a formula:

d ln Pt D ln

�
Pt

Pt�1

�
; (3.1)

where t D m � y, m denotes the month, and y denotes the year. To capture the
contemporaneous correlation of shocks across commodities, a seemingly unrelated
regression has been used to estimate spikes of maize, wheat, and soybean prices.4

The model is specified as:

d ln Pt D ˇRt C "t; (3.2)

where d ln Pt is a I � 1 vector of price spikes (returns) with I number of commodities
identified as i D 1, 2, 3, : : : I; Rt is a vector of explanatory variables that include
monthly supply shocks, oil price spikes, economic shocks, beginning stock-to-use
ratios, and excessive volume of speculative futures; and "t D I � 1 is the error term
where cov

�
"it; "jt

� ¤ 0 for i ¤ j. Some of the Rt are commodity specific, such
as supply shocks and excessive volumes of speculative futures, whereas others are
commodity nonspecific.

4Using a standard ordinary least squares model, however, gives similar results: signs and
significances, as well as the order of magnitude of the coefficients, remain the same.
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Monthly supply shocks are measured as log ratios of the US Department of

Agriculture forecasts on global production d ln Xt D ln
�

Xt
Xt�1

�
, as the USDA

forecasts are widely recognized and play an important role in the price formation
process, which is influenced by monthly information on the available grain supply
in the current agricultural year. Economic shocks are calculated using the same
equation with monthly interpolated global GDP per capita (nominal). The stocks-to-
use ratio is the relationship between the beginning stocks (of the current agricultural
year) and consumption as forecasted by the USDA. Oil price spikes are estimated
using the same procedure as in the case of food commodity spikes (Eq. 3.1).

We have hypothesized that the effect of speculative activities on commodity
price dynamics depends on the extent of deviation between noncommercial and
commercial trading activities. However, many observers, including the US Com-
modity Futures Trading Commission (CFTC), have recognized that the distinction
between commercial and noncommercial is elusive, and hence it can be misleading
to measure speculation relative to hedging. One problem is that small speculators,
who may be influential as a whole, are exempted from certain reporting obligations.
Another shortcoming is that categorizing traders as noncommercial does not allow
for differentiating traders who speculate based on fundamentals from those who
engage in “irrational herding” (UNCTAD 2011). Both issues can lead to an underes-
timation of the impact of speculation due to irrational herding. Nevertheless, the data
on this broad classification of traders constitute the only publicly available source
and therefore provide the only possibility for approximating excessive speculation.

Previous studies (Irwin et al. 2009) have used the Working index to measure
the impact of speculation on food prices. The Working index tries to measure
speculation intensity relative to hedging activity. It is, however, insensitive to the net
positions of speculators—that is, whether they are net long or net short. Because, as
mentioned above, excessive net long speculation leads to price increases (and exces-
sive net short speculation leads to price decreases), we prefer to give equal weight
to commercial and noncommercial trading activities and to measure speculation
based on the deviation between the two types of trading activities. In a perfectly
competitive commodity market, there should be no deviation between commercial
and noncommercial trading activities. To meet commercial traders’ demand for
hedging, an equal number of noncommercial traders’ contracts is necessary at
most.5 However, we have observed a significant difference between commercial
and noncommercial positions. This could be associated with the existence of a
significant number of unsettled noncommercial positions for an extended period
of time, motivated by speculation and the increasing use of food commodities as an
asset class. Thus, using the excessive open interest of speculative futures seems
to be a more appropriate way of capturing the speculative effect than using the

5Fewer noncommercial traders are necessary if commercial traders can already match their
different short and long hedges, i.e., when a producer makes a contract with a processor.
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Working ratio. Technically, the extent of excessive speculative activities in month
t is expressed as:

ESVt D
PNt

dD1 Œ.NCLd � NCSd/ � .CLd � CSd/�

Nt
; (3.3)

with Nt denoting the number of days d in month t in which CFTC position data are
available. As the trading position data are published every Friday for the preceding
Tuesday, only four to five observations are available per month. NCL is the open
interest of noncommercial long positions in a trading day, NCS is the open interest
of noncommercial short positions in a trading day, CL is the open interest of
commercial long positions in a day, and CS is the open interest of commercial short
positions in a day.

Price volatility is a long-term price movement indicating the risk associated with
price changes. It is usually measured in terms of price dispersion from the mean.
Realized total volatility is measured in terms of the coefficient of price variations
(CV), which captures both monthly and yearly variability. The normal coefficient
of variation captures only the monthly price variability in a year. However, the
mean price changes from year to year, and thus inter-year price variability cannot
be captured. To capture both changes, we divided each year’s standard deviation by
the mean price of the entire sample. This allows us to measure variability relative to
a common price level.

CVy D
P12

mD1

�
Pm � Py

�2

PT
tD0 Pt

T

12
; (3.4)

where y indicates year, m month, and t month by year.
This metric does not measure the direction of price changes but rather evaluates

price risks. This means that high variability does not necessarily reflect high prices.
Realized total volatility is the sum of high- and low-frequency volatility (Peterson
and Tombek 2005; Karali and Power 2009; Roache 2010). While high-frequency
volatility is related to price spikes, low-frequency volatility is related to the cyclical
movement of agricultural prices. Since high-frequency volatility is already modeled
in the price spikes equation, we do not disaggregate volatility into its high- and low-
frequency components. Instead we attempt to explain the realized total volatility
using the percentage of annual standard deviation from the long-term average price.

Volatility is estimated using a panel regression in which commodities are
represented as panels and years as time variable. Two alternative specifications
have been adopted: ordinary least squares (OLS) and feasible generalized least
squares (FGLS). The first, which assumes no heterogeneity across commodities,
is expressed as:

Viy D ˛ C ˇ0Xiy C "iy; (3.5)
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where i and y denote commodities and years, respectively, and X consists of the
aforementioned explanatory variables—that is, supply shocks, volatility of oil price,
global nominal economic growth rates, beginning stock-to-use ratios, excessive
speculative futures volume, and an annual financial crisis indicator (an alternative
to speculation). The supply shock variable is defined as the normalized deviation of
total annual production from its long-term trend; this is to account for the market
size of each commodity. Normalized supply shocks are given by SS D jQt�HQtj

HQt
,

where Qt is the world production for each specific commodity and HQt is the
Hodrick–Prescott smoothed production time series. The results derived from the
production series using the Hodrick–Prescott filter have a similar distribution to
those obtained using other time-series filters, such as Baxter-King, Butterworth, and
Christiane-Fitzgerald. However, the Hodrick–Prescott filter is preferred to the others
because it considers extreme values (Baum 2006). All the variables in this equation
are measured annually.

The FGLS specification with fixed effects controls for heterogeneity among
commodities and is expressed as

Viy D ˛ C ˇ0Xiy C �i C "iy; (3.6)

where �i denotes the fixed effect.
A price trigger model has been designed to complete the empirical assessment

and to account for endogenous shock amplifiers. The impact of a price trigger at
high prices might be different from that at low prices. When prices are getting
high, markets are expected be more sensitive to a shock than when prices are
low. This effect is sometimes referred to as the tipping effect. The tipping effect
is estimated using a quantile regression in order to capture the effect of explanatory
variables at lower and upper tips of the response variable (Koenker and Hallock
2001). Put differently, it measures how an explanatory variable affects the � th
quantile of the response variable as opposed to the mean value of the response
variable in OLS. It gives a comparison of the effect at the upper and lower tail
of the price distribution. Equations (3.2) and (3.4) are estimated at the � th quantile,
where � 2 f0:05; 0:15; 0:25; : : : ; 0:95g. If a variable is significant and has a higher
effect at the upper tail, the variable indeed triggers price changes. In the price spike
equation, the lower quantiles represent negative values, and the upper quantiles
positive values. In the volatility equation, both the lower and upper quantile are
positive values, with the upper quantiles denoting higher values.

3.4 Data

The nominal prices of maize, wheat, soybeans, and crude oil were obtained from
the World Bank database (World Bank 2011). We used current prices quoted as
“US No. 2 yellow f.o.b.” for maize; “US HRW” for wheat, “c.i.f. Rotterdam” for
soybeans, and “average spot prices of Brent, Dubai, and West Texas” for crude oil.
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Nominal prices were chosen because of the lack of an accurate consumer price index
for deflating world prices. Although different sample periods are used for different
analyses, most of the datasets are based on data from 1986 to 2009. Position data
before 1986 are unavailable.

Data for annual supply shock estimation were collected from the FAO (2011)—
specifically, annual production data of the major producing countries. Data for
monthly supply shocks were obtained from the world agricultural supply and
demand estimates published monthly by the USDA.6 Open interest of futures
trading of the Chicago Board of Trade (CBOT) was obtained from the CFTC
for maize, wheat, and soybeans.7 The CFTC reports disaggregated open interest
of futures trading positions into long and short and spread by commercial and
noncommercial participants. Since a spread represents the equal value of long
and short positions, it is not included in our calculation of excessive speculative
activities.

3.5 Results and Discussion

3.5.1 Determinants of Food Price Spikes

Table 3.1 presents the results of the seemingly unrelated regression estimates for
different time periods. Production is led by 1 month as markets are assumed to
anticipate supply shocks shortly before the USDA publishes its estimates; this is a
result of private market research and information acquisition.8 As expected, price
spikes are negatively correlated with (anticipated) supply shocks and positively
correlated with economic growth (demand) shocks. The results show the positive
and significant effect of excessive speculative activities on food price spikes,
although the anticipation of supply and demand shocks is already controlled for. The
extent of excessive speculation is significant both before and after 2000; however,
the effect is stronger after 2000. A strong belief exists among financial practitioners
that speculative activity became detrimental only after 2000, when commodity
markets were deregulated and financialization intensified (UNCTAD 2011). For
example, Gheit (2008), Masters (2008), and Frenk (2010) among others, argued
that since the introduction of the 2000 Commodity Futures Modernization Act,
“speculative money” has been flowing into commodity derivatives, which in turn
drives commodity spot prices up and down far beyond their fundamental values.
Our results, together with the research of Gilbert (2010) and Henderson et al. (2012),
provide further evidence of this claim.

6Data are available at http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?
documentID=1194 (accessed February 18, 2013).
7Data are available at http://www.cftc.gov/MarketReports/CommitmentsofTraders/
HistoricalCompressed/index.htm (accessed February 18, 2013).
8The anticipation effect vanishes, however, for a lead of 2 or more months.

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1194
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1194
http://www.cftc.gov/MarketReports/CommitmentsofTraders/HistoricalCompressed/index.htm
http://www.cftc.gov/MarketReports/CommitmentsofTraders/HistoricalCompressed/index.htm
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Table 3.1 Seemingly unrelated regression results on food price spikes (coefficients and z-values)

1986–2009 1986–1999 2000–2009

Maize price spike

Production shock (%), led �0.8607*** �0.8124*** �1.1293**

(�3.84) (�3.46) (�2.23)
Speculation (1000 contracts) 0.000070*** 0.000072*** 0.000086***

(8.00) (7.34) (4.73)
Beginning stock-to-use ratio 0.0004 0.0005 0.0016

(0.84) (0.96) (1.11)
Oil price spike (%) 0.0146 �0.0623 0.0958*

(0.44) (�1.59) (1.69)
GDP shocks (%) 1.2333* �0.2324 1.8303*

(1.73) (�0.23) (1.67)
Constant �0.0204** �0.0208** �0.0439

(�2.12) (�2.04) (�1.54)
Wheat price spike

Production shock (%), led �1.4537*** �0.2039 �2.7769***

(�2.93) (�0.39) (�3.21)
Speculation (1000 contracts) 0.000206*** 0.000295*** 0.000387***

(5.37) (7.40) (3.44)
Beginning stock-to-use ratio �0.0006 0.0020 �0.0032**

(�0.64) (1.60) (�2.17)
Oil price spike (%) 0.0375 �0.0631* 0.1277**

(1.05) (�1.70) (2.13)
GDP shocks (%) 2.0971** 0.1329 2.5479**

(2.42) (0.12) (2.02)
Constant 0.0034 �0.0674** 0.0799**

(0.15) (�2.48) (2.27)
Soybean price spike

Production shock (%), led �0.3413** �0.3218 �0.4052**

(�2.45) (�1.08) (�2.45)
Speculation (1000 contracts) 0.000083*** 0.000080*** 0.000136***

(5.98) (4.99) (3.66)
Beginning stock-to-use ratio 0.0003 �0.0002 0.0001

(0.47) (�0.16) (0.13)
Oil price spike (%) 0.0614** �0.0155 0.1514***

(2.07) (�0.44) (2.98)
GDP shocks (%) 1.9804*** 1.5647 1.6171*

(2.92) (1.45) (1.68)

(continued)
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Table 3.1 (continued)

1986–2009 1986–1999 2000–2009

Constant �0.0204* �0.0157 �0.0145

(�1.87) (�0.98) (�0.71)
R2 0.24 0.32 0.21
N 304 167 137

Note: Dependent variable: maize, wheat, and soybean price spike. ***, **, * denote that the level of
significance is at 1, 5, and 10 %, respectively. Values in parentheses are t-values. All variables refer
to monthly data; spikes and shocks (in %) denote therefore the deviation of that variable from the
level in the previous month. Production shocks are led by 1 month as significance and explanatory
power increases. The coefficients for production shock, oil price shock, and GDP shocks can be
interpreted as elasticities (percentage change of commodity price due to a percentage change of
the respective explanatory variable). Speculation refers to the excessive speculation index given in
Eq. (3.3)

Table 3.2 Historic quantitative impact of speculation on price spikes

Maize (%) Wheat (%) Soybean (%)

Price spike due to one standard deviation
increase in speculation

2:2 1:6 1:4

Average monthly price spike due to
speculation during July 2007 and June 2008

3:2 0:2 1:8

Compound (12-month) price spike due to
speculation during July 2007 and June 2008

37:9 2:5 22:1

Note: The first row was calculated by multiplying the standard deviation of speculation by the
respective speculation coefficient in Table 3.1 for the full sample. The second row was calculated
by multiplying the average monthly speculation volume between July 2007 and June 2008 with
the respective speculation coefficient in Table 3.1; for the third row, the value of the second row
was multiplied by the number of months (12)

Although the coefficient of speculation variable is smallest for maize and largest
for wheat, the variation of speculation is much larger for maize than for wheat.
Table 3.2 shows the impact that one standard deviation change in speculation has on
spikes, showing that maize price spikes are more affected by speculation than wheat
price spikes. Regarding the role of speculation in the 2007–2008 crisis, excessive
speculation predicts that, all other things being equal, maize price increased by
approximately 38 % within the 12 months following July 2007, but wheat price
increased by only less than 3 %. These numbers must, however, be treated with
caution because not only is speculation caused by exogenous (financial market)
events, but it is also endogenous to price expectations. By considering anticipated
information on market fundamentals, speculation could be endogenous to other
factors that influence price expectations, such as export bans. These factors are
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difficult to control for. Financial market shocks, however, clearly constitute a part of
the exogenous elements in the speculation variable.9

The results further suggest that anticipated production fluctuations play an
important role in causing short-term food price spikes. Supply shocks measured
using USDA monthly forecasts were found to be statistically significant in most
of the estimations. Production shocks were included to represent extreme weather
conditions or flood outbreaks, which could lead to supply shortfalls in one part of
the world and higher price expectations in other parts of the world. For example, a
flood in Australia may affect the amount of food supply from Australia as well as
farmers’ and traders’ price expectations in Europe or the United States. These effects
were expected to cause temporary price spikes. The results confirm that expectations
on production influence prices. Thus, short-term price spikes are partly created by
information about supply relating to weather events.

Oil price spikes have increasing effects on food price spikes over time (Table 3.1).
Before 2000, the effect was insignificant or negative (in the case of wheat). After
2000, however, it became positive and statistically significant for maize, wheat, and
soybean prices. As mentioned above, oil prices are linked to food prices through
demand (biofuels), supply channels (cost of production), and increased index fund
activities. The significant impact of oil prices on food prices in recent years suggests
that demand factors and financialization dynamics are more relevant in explaining
price increases than supply factors. The United States accounts for about 40 % of
the world’s maize production. In 2010, about 40 % of the total US maize harvest
was consumed by ethanol producers (USDA 2013). Increasing demand for biofuel
affects prices through not only a direct conversion of food crops to feedstock,
but also the reallocation of production resources (such as land and water) to the
production of biofuel commodities. Reallocation of production resources affects
non-biofuel food commodities as well. The link between oil and food prices is
a more important factor in causing short-term food price spikes than the actual
scarcity caused by biofuel demand. When energy prices are linked to food prices,
political, environmental, and commercial shocks can easily translate to food crises.
Stock-to-use ratios are insignificant, except for wheat since 2000; low wheat stocks
increased the magnitude of price spikes.

9There are two standard approaches to dealing with endogeneity: lagging variables and instrument
variables. In our case, both are problematic. A 1-month lag is already too long for data on
speculation; financial markets operate on a daily basis, and speculative activities in the preceding
month should not have any impacts on price spikes. Selection of appropriate instrument variables
that explain speculation volume due to financial market shocks should be guided by a portfolio
model, such as the Capital Asset Pricing Model (CAPM). This model, however, considers complex
relationships between expected returns, variances, and covariances among many different assets,
which cannot be subsumed under a linear combination of a few financial market variables.
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3.5.2 Food Price Volatility

A panel analysis is used to quantify the relative importance of supply, demand,
and financial shocks in affecting food price volatility. The explanatory variables
included in this volatility equation are the same as for food price spikes, except for
two differences. First, the variables are measured on an annual basis. For example,
the normalized supply shock, the GDP growth, and the beginning stock-to-use ratios
are calculated using annual data; excessive speculation is calculated based on the
number of marketing days in a year; and oil price volatility is measured based
on annual coefficients of variation. Second, the financial crisis index developed by
Reinhart and Rogoff (2009) is also included in the equation. This index combines
measures of banking crises, foreign debt defaults, domestic debt defaults, inflation
crises, and exchange rate crises. The index serves as a proxy for financialization
and speculation in the commodity futures market, and hence speculation and the
financial crisis index are used as alternatives.

The different estimates of the models are presented in Table 3.3. A comparison
of the effect of an excessive volume of futures trading and the financial crisis
index on volatility indicates the importance of commodity-specific and common
economic factors in affecting food prices. The result clearly shows the insignificance
of futures trading on volatility, which is in contrast with the results of the price spikes
estimation. This underlines the importance of distinguishing between volatility and
spikes in this type of analysis. Conversely, the effect of the financial crisis index is
significant and robust across all specifications, implying that the financial crisis is
more relevant in explaining food price volatility than excessive futures trading.10 It
is worth noting that in terms of elasticity, a 1 % increase in the financial crisis index
caused price volatility to rise by about 0.40 % in the OLS estimation and 0.35 %
in the FGLS estimation. The positive relationship between the financial crisis index
and food price volatility implies the significance of food commodities as financial
instruments. When banks, sovereign debt, and exchange rates experience a crisis,
the food market will enter a crisis too.

The normalized supply shock variable has a statistically significant effect on
food price volatility when the restriction of homogeneity is imposed. The variable
was determined not to be significant when the restriction is relaxed. This could
be because heterogeneous production shocks can offset each other (because of
geographical variation) without affecting price volatility. In the presence of homo-
geneity, extreme weather events exert an effect on food crises and agricultural risks.

The results show that when significant, oil prices and GDP—which can be
regarded mainly as demand-side shocks—are more meaningful in explaining food

10We also estimated the models using the lagged values of the speculation and financial crisis
variables. Although this is a convenient way to technically correct for endogeneity, the economic
sense behind this choice is questionable because it implies that 1-year lagged financial variables
can influence current price volatility. For this reason, we prefer to consider only the current values
of all the variables.
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price volatility than market shocks (speculative volumes and financial crisis) and
supply-side shocks (Table 3.3). This is because the marginal effect of oil price
and GDP growth on food price volatility is higher than that of speculation and
supply shocks. Specifically, a 1 % increase in oil price volatility caused food price
volatility to rise by 0.42–0.45 % when the model controls for speculation. When
the financial index is included, volatility rose by 0.43–0.50 %. A 1 % upsurge in
global growth rates generated an increase in food price volatility of 0.56 and 0.45 %
when the model controls for speculation. The variable becomes insignificant when
considering the financial crisis. The importance of oil prices in explaining food
price spikes and volatility suggests that food and energy markets have become more
interwoven.

The variable stock-to-use ratio turns out to be insignificant in explaining food
price volatility. As described in the theoretical section, the effect of exogenous
shocks depends on the economic and political environment. If the stock-to-use ratio
is low in times of financial and environmental shocks, exogenous shocks may well
have a greater impact than when stocks are high. As we control for exogenous
shocks in the models, the direct impact of stocks on volatility might vanish. This
may suggest that the stock-to-use ratio is an amplifier or intermediate variable that
reflects the effect of supply and demand shocks on food price volatility.

In sum, the determinants of price spikes and price volatility are somehow
different, at least in terms of the degree of significance and the magnitude of
marginal effects. Market-related shocks (speculation) affect price spikes much more
than demand- and supply-side shocks. In contrast, demand-side shocks (oil prices
and GDP) lead to higher price volatility than market- and supply-side shocks.

3.5.3 Food Price Trigger

Recent discussions about food prices noted the possibility of a tipping point where
the market may stop responding “normally” to market changes, opting instead to
exaggerate and overreact. In order to identify triggers and test the tipping-point
hypothesis, we estimated a series of quantile regressions for both the price spike
and the volatility equations. The quantile regressions indicate the price or volatility
levels at which the dynamics of price spikes and price volatility change (or whether
the dynamics estimated in Tables 3.1 and 3.3 are robust for all price and volatility
levels). In the price spike equation, the effects of oil prices, speculative futures
trading, and supply shocks are compared at both higher and lower prices. In the
volatility equation, the effects of supply shocks, oil price volatility, and the financial
crisis index are compared at both lower and higher volatility. The tips in the price
spike and price volatility equation are therefore different. In the price spike equation,
the upper tip denotes the highest price, but in the price volatility equation, a high
quantile signifies high volatility.

The results are presented in Figs. 3.3 and 3.4. The figures show the marginal
effects of the explanatory variables on the response variables at different level
of quantiles. The line graphs indicate point estimates, and the shaded regions
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Fig. 3.3 Triggers of food price spikes. Source: Authors’ estimation based on data explained in
Sects. 3.3 and 3.4. Note: The middle line shows the coefficient which explains price spikes using
(a) oil price shocks, (b) production shocks, (c) excessive speculation, and (d) stock-to-use ratios.
The quantile regression shows the coefficients for different quantiles of commodity price spikes.
At low quantiles, the corresponding coefficient shows the impact on price spikes when price spikes
are low; at high quantiles, the corresponding coefficient shows the impact on price spikes when
price spikes are already high. Shaded regions are the 95 % confidence intervals, and the line in the
middle is the coefficient
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Fig. 3.4 Triggers of global food price volatility. Source: Authors’ estimation based on data
explained in Sects. 3.3 and 3.4. Note: The middle line shows the coefficient which explains food
price volatility using different explanatory variables. The quantile regression shows the coefficients
for different quantiles of food price volatility. At low quantiles, the corresponding coefficient shows
the impact on price volatility when volatility is low; at high quantiles, the corresponding coefficient
shows the impact on price volatility when volatility is high. Shaded regions are the 95 % confidence
intervals, and the line in the middle is the coefficient

show the 95 % confidence intervals. A variable is defined as a trigger if the
confidence intervals do not include zero values in the shaded region and if the
line graph is visibly increasing (a positive relationship between food price and
variable) or decreasing (a negative relationship between food price and the variable)
as the quantile increases. The results of triggering price spikes are mixed. Of all
the variables included in the price spike equation (Fig. 3.3), the trigger effect is
evident only when maize or wheat production experiences a shock, or when there
is speculation on maize. Other variables such as oil prices and stock-to-use ratio
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have no trigger effects, as depicted by flat and insignificant marginal values over
quantiles.

The effect of production shocks on price spikes generally becomes stronger as the
quantile increases, except in the case of soybeans. This result could imply that the
USDA production forecasts have a larger impact on price movements when prices
are high rather than low. Thus, production shocks are a significant contributor to
food price spikes.

The u-shaped curve visible in the quantile regressions for speculation sug-
gests that speculation is more important in times of extreme price dynamics. An
increasing price trend, driven by changes in fundamentals (commodity demand
and supply), gives rise to market nervousness, causing speculators to overheat the
market. Speculation is also observed to have a strong impact on price spikes at lower
quantiles of price spikes. This is an indication of the stabilizing effect of speculation
when markets are calm. When markets are flooded, since the lower spike quantiles
are negative values, an increase in speculative activities restores market prices. In
sum, speculation has the capacity to create price hikes and reduce price slumps.

The results from the volatility quantile regression suggest the importance of oil
prices in triggering food price volatility (Fig. 3.4). The effects of supply shocks,
stock-to-use ratio, and global GDP growth also increase over quantiles, but they
are all statistically insignificant. The evidence also shows that financial crises and
speculation do not necessarily trigger volatility, in contrast to price spikes as shown
in the quantile analysis above.

Oil prices have remained a primary factor in causing extreme volatility in food
prices. Apart from being affected by production costs and biofuel-related demand,
food price volatility is also affected by oil prices through a real income effect. This
is because of oil prices’ dominant impact on the overall economy. The trigger effect
may be associated with the interaction between these effects. All the effects are
evident at the higher level of food prices.

3.6 Conclusion

This study has investigated the main drivers of food price spikes and volatility for
wheat, maize, and soybeans. It has also shown how these factors trigger a crisis
when there are extreme price changes. The analysis has indicated that exogenous
shocks as well as the linkages between food, energy, and financial markets play a
significant role in explaining food price volatility and price spikes.

In addition to demand and supply shocks, speculation is an important factor
in explaining and triggering extreme price spikes. Excessive speculation is more
strongly associated with price spikes at extreme positive price changes rather
than negative price changes. This implies that the stabilizing effect of speculation
(generated through price discovery) is smaller than its destabilizing effect (generated
through creating market bubbles).

The results also confirm that supply shocks are reflected in price spikes and that
oil price shocks affect price risk more than they affect food crises. The effect of oil
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prices on food price spikes has become significant only in recent years. Financial
crisis exerts a strong impact on food price volatility, which confirms that the link
between financial and commodity markets is becoming stronger.

On the basis of the empirical results, it seems opportune for policymakers to
prevent excessive speculative behaviors in the commodity market in order to reduce
price spikes and prevent short-term food crises. In this context, policymakers could
put caps on trading in extreme market situations or impose a tax on food commodity
futures trading, along the lines of the Tobin tax. Designing flexible biofuel policies
that are responsive to the food supply situation can also help stabilize prices and
reduce volatility spillovers from oil markets in times of a food crisis. Recent changes
in the US biofuel mandate, for example, include flexibility mechanisms that allow
for relaxing the blending requirement in a certain year if compensated for in another
year.

Improving the market information base would further help all market actors to
form their expectations based on fundamentals and to detect shortages early. While
the Agricultural Market Information System (AMIS), an initiative of the G20, strives
for higher transparency, contributions from some of the member states are still
insufficient.

Recently, many countries are increasing their national grain stocks to reduce
domestic volatility and import dependency, leading to an increased grain scarcity
and in turn higher grain prices in the short term. International levels of storage,
however, are only one of the options to reduce volatility, and they turned out to be
mostly insignificant in our analyses. One reason might be the lack of cooperation
between countries: The governments which build stocks only for their citizens tend
to complement storage policies with trade restrictions, effectively withdrawing their
stocks from the global grain market. Such failure to act collectively needs to be
addressed in regional and global trade talks. The international consequences of
national stock-holding policies should also be discussed during these talks.

Besides policies to reduce volatility and prevent extreme price spikes, govern-
ments can improve the resilience of producers and consumers to price changes. This
can be achieved by supporting contract farming and price insurance mechanisms on
the production side and by enhancing safety nets and access to financial services on
the consumer side.

Governments and their international associations such as the G20 should there-
fore carefully analyze all available options for preventing food price spikes and
volatility—from interventions in financial markets to biofuel policies—and they
should also facilitate market information.
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