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Abstract. Information leakage is a major concern in modern day IT-
security. In fact, a malicious user is often able to extract information
about private values from the computation performed on the devices. In
specific settings, such as RFID, where a low computational complexity
is required, it is hard to apply standard techniques to achieve resilience
against this kind of attacks. In this paper, we present a framework to
make cryptographic primitives based on large finite fields robust against
information leakage with a bounded computational cost. The approach
makes use of the inner product extractor and guarantees security in the
presence of leakage in a widely accepted model. Furthermore, we show
how to apply the proposed techniques to the authentication protocol
Lapin, and we compare it to existing solutions.

1 Introduction

A major concern for the implementation of secure cryptographic protocols
is resistance to side-channel attacks (SCA). This class of attacks makes use
of information obtained by the observation of physical phenomena that may
occur in the device used to implement the scheme. These include measure-
ments of timings, power consumption level, running machine’s sound or an
electromagnetic radiation (cf. for instance [ISW03,MR04,DP08,FKPR10,GR10,
DHLAW10,BKKV10,DF11,DF12,GR12,GST13]).

The technique called masking is a very efficient way to protect sensitive data.
The idea behind masking is to split the sensitive values into d (the masking
order) random shares and to compute every intermediate value of the algorithm
on these shares. The security requirement is that each subset of d − 1 shares
is independent from the original value. In this way, in fact, an adversary would
need to combine leakage samples obtained by several separate shares in order to
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recover useful information about the sensitive data. Multiple candidates for d-th
order masking schemes have been proposed, such as Boolean masking [RP10]
and polynomial masking [PR11].

Recently, an efficient way to mask the LPN-based authentication protocol
Lapin [HKL+12] with Boolean masking was proposed by Gaspar et al. [GLS14].
The proposal takes advantage of the linearity of the Learning Parity with Noise
(LPN) assumption, on which Lapin is based. This makes it easy and there-
fore very efficient to apply Boolean masking to Lapin. While Boolean masking
decreases the efficiency of AES quadratically in the number of shares, it decreases
the efficiency only linearly in case of Lapin.

The above mentioned masking schemes, however, lack a strong formal secu-
rity proof. A way to deal with this issue from a theoretical point of view was
suggested by Ishai et al. [ISW03], who proposed to use a leakage resilient circuit
compiler based on Boolean masking. Such a compiler takes as input a certain
circuit Γ and returns a modified circuit Γ̂ that computes the same functionality
but is designed to be resilient against a restricted class of leakage attacks. This
was subsequently extended to a broader class of attacks in [FRR+10]. Solutions
based on more complicated algebraic frameworks have been also proposed, for
example Juma and Vahlis [JV10] and Goldwasser and Rothblum [GR10]. These
solutions achieve leakage resilience against polynomial-time computable func-
tions, but require a very heavy and inefficient machinery that involves public-key
encryption to protect the shares.

In two independent works by Dziembowski and Faust [DF12] and again
Goldwasser and Rothblum [GR12], it was shown how to achieve the same results
without relying on secure encryption schemes. Both papers describe leakage-
resilient compilers, which encode values on the internal wires using an inner
product. The leakage resilience follows from the extractor property of the inner
product as a strong extractor which builds a strong theoretical security basis.
The framework has been adjusted and optimized in terms of efficiency for AES
in a work by Balasch et al. [BFGV12], along with a sample implementation and
an analysis of performance results. Unfortunately, the authors lose the strong
theoretical security basis in favor of efficiency by using the inner product as a
masking scheme but not as an extractor. Furthermore, Prouff et al. [PRR14]
showed that some of their proposed algorithms to compute operations in finite
fields can be attacked in theory. It is unclear yet, if these attacks can be exploited
by real world SCAs.

Our Contribution. We use inner product extractor based techniques to gain
leakage resilience while preserving the efficiency such that our techniques are
applicable in practice. Compared to the algorithms proposed by [DF12,BFGV12,
GR12] in order to perform operations on the encoded values we use non-
interactive algorithms which do not use any refresh subroutine, thus improv-
ing the efficiency. Furthermore, the security of these procedures is easy to verify
and does not need any leakage-free components or oracles. The drawback is that
the size of the secret state will grow when using our proposed algorithms. To
overcome this issue, we propose a procedure to shrink down the secret internal
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state. This is an interactive algorithm which uses a refresh algorithm as a sub-
routine. We emphasize that this shrinking procedure is optional and in many
applications not necessary. A refreshing algorithm is required when a computed
value is retrieved from the encodings.

The generation of leak-free randomness is a serious issue in many concrete
scenarios. While [DF12,BFGV12] access leakage-free components in almost all
procedures to perform operations in a finite field, we only access leakage-free
components to retrieve a final value and, depending on the application, to shrink
down the internal state. We also give a complete security analysis for every
proposed algorithm, while, in particular for low dimension encodings together
with large finite fields, the security of some of the algorithms given by [DF12,
BFGV12] is not clear.

We emphasize that an inner product extractor based leakage-resilient storage
is very attractive when using a finite field of an exponential size. Since even
encodings with a low dimension preserve strong statistical extractor properties
of the inner product. This is shown by the analyses of inner product based
leakage-resilient storage of [DDV10,DF11]. Further, we improve the analysis of
the inner product based leakage-resilient storage to get even stronger results.

A suitable application of our techniques are LPN- or LWE-based protocols
over large fields. We will show how to perform a leakage-resilient computation
of the LPN-based protocol Lapin and give implementation results. The results
show that our implementation is efficient enough such that it can be considered
for applications in practice.

2 Preliminaries

We write [n] to indicate the set {1, . . . , n}. We denote with F the finite field
Z2[x]/(g(x)), where g(x) is a degree m polynomial irreducible over Z2[x] and
F

∗ := F \ {0}. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two vectors with
elements in F. The notation A||B indicates the concatenation of the two vectors.
Moreover, we denote with A ⊗ B the following vector of length n2:

A ⊗ B := (A1B1, . . . , A1Bn, A2B1, . . . , A2Bn, . . . , AnB1, . . . , AnBn).

The inner product between A and B is defined in the usual way as

〈A,B〉 :=
n∑

i=1

Ai · Bi.

If an algorithm A has oracle access to a distribution D, we write AD. A
probabilistic polynomial time algorithm is called PPT.

The statistical distance between two random variables A and B with values
in a finite set X is defined as Δ(A,B) = 1

2

∑
x∈X

∣∣∣ Pr[A = x] − Pr[B = x]
∣∣∣. If

this distance is negligible, we say that the two variables are statistically indis-
tinguishable. The min-entropy of a random variable A is defined as H∞(A) =
− log(maxx∈X Pr[A = x]).
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Two-source extractors. Two-source extractors, introduced in 1988 by Chor
and Goldreich [CG88], are an important and powerful tool in cryptography.

Definition 2.1. Let L, R and C be finite sets, and let U be the uniform distri-
bution over C. A function ext : L × R → C is a weak (m, ε) two-source extractor
if for all distributions of independent random variables L ∈ L and R ∈ R such
that H∞(L) ≥ m and H∞(R) ≥ m we have Δ(ext(L,R), U) ≤ ε.

If we change the condition on the min-entropy to H∞(L) + H∞(R) ≥ k, the
extractor is called flexible. Note that if k = 2m this requirement is weaker than
the original, hence flexibility is a stronger notion.

The fact that the inner product is a strong extractor is well known in the
literature ([Vaz85], [CG88]). The security results in this work are based on the
following lemma regarding the inner product extractor over finite fields.

Lemma 2.1 (Proof of Theorem 3.1 [Rao07]). The inner product function 〈.,.〉 :
F

n×F
n → F is a weak flexible (k, ε) two-source extractor for ε ≤ 2((n+1) log |F|−k)/2.

Limited adversaries and leakage-resilient storage. There have been several
proposals to model SCA in theory [DF11,DF12,GR12]. In the so-called split-
state model, we assume that the memory of a physical device can be split in two
distinct parts, called respectively PL and PR. These could be, for instance, two
separate processors, or also a single processor operating at distinct and separate
times.

All the computation carried out on the device (for computing, for example, a
cryptographic primitive or an algorithm) is performed as a two-party protocol Π
between the two parties PL and PR. More precisely, each of the two parties has
an internal state (initially just some input) and at each step communicates with
the other party by sending some messages. These messages depend on the initial
state, the local randomness, and the messages received earlier in the protocol.
At the end of the execution of Π, each party outputs a new state.

The main reason to adopt this setting is that we assume that the two parties
operate independently, and hence are subject to completely independent leakage.
In our model, we consider an adversary A that is able to interact with both
memory parts. After each execution of Π, the adversary is allowed to query
a leakage oracle Ω(viewL, viewR), where (viewL, viewR) are the respective views
of the players. The view of a player consists of all the information that was
available to him during the execution of the protocol, i.e. his initial state, his local
randomness and all the messages sent and/or received. The adversary submits
functions fL and fR and after submission, he gets back fL(viewL) and fR(viewR).
The only restriction is that the total amount of bits output by the function fL

during one execution of the protocol is limited to a certain constant λ, and the
same holds for fR. An adversary is called λ-limited with respect to the limited
amount of leakage during a single execution, but an arbitrary amount of leakage
over all executions of the protocol. A more formal description of the model may
be found in [DF12] or [GR12].
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An important primitive used to achieve leakage resilience in this model is a
leakage-resilient storage (LRS) [DDV10,DF11,DF12]. An LRS for a set of values
S consists of two PPT algorithms LRS := (Encode,Decode,Refresh):

• Encode(1κ, S) → (L,R): Outputs an encoding (L,R) of a value S ∈ S.
• Decode(L,R) = S: Outputs the private value S corresponding to the encoding

(L,R).

For correctness it is required that Decode(Encode(S)) = S for all S ∈ S.

Definition 2.2. We say an LRS is (λ, ε)-secure if for every private value S and
any λ-limited adversary AΩ(L,R) querying the functions fL(L) to PL and fR(R)
to PR we have

Δ([fL(L), fR(R) | Decode(L,R) = S], [fL(L′), fR(R′)]) ≤ ε

where (L′, R′) is an encoding of a uniformly chosen value.

With this security notion, a λ-limited adversary cannot distinguish whether
the leakage is obtained from a specific value S or a uniformly sampled value S′.

The protocol Π computes operations on encoded values and outputs encod-
ings of the final values. These can be later retrieved with a dedicated procedure.

Remark 2.1. In our leakage model, the total amount of leakage obtained from
each memory part in a single round is bounded by λ. However, after a few
observations, an adversary could recover the shares completely, and trivially
break the security of the scheme. The first procedure we need to define, then,
is a refreshing procedure that allows to inject new randomness in the protocol.
Namely the procedure Refresh takes as input an encoding (L,R) of a value S and
outputs a new encoding (L′, R′) for S. Due to space limitations, we will leave the
details and issues of the Refresh procedure to the appendix. We will mention,
however, that all known provably-secure refreshing algorithms for two parties
need a leakage-free sampling of the randomness1. We will discuss leakage-free
oracles in Sect. 5.

3 A Leakage-Resilient Storage Based on the Inner
Product

An LRS based on the inner product was first proposed by [DDV10]. Given a
field F and an integer n (the dimension of the encodings), the LRS Φn based on
the inner product for values in F is given by:

• Encode(1κ, S) → (L,R): Sample values (L1, . . . , Ln, R1, . . . , Rn−1)
$←

(F∗)2n−1 and set Rn = L−1
n (S − 〈L1‖ . . . ‖Ln−1, R1‖ . . . ‖Rn−1〉). If Rn = 0,

resample. Finally, output (L := L1‖ . . . ‖Ln, R := R1‖ . . . ‖Rn).
1 The construction of a compiler from [GR12] implies a refreshing procedure, which

does not need any leak-free gates. However, it assumes that a number of parties
executing the protocol is much bigger than 2 and is rather unefficient.
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• Decode(L,R) = S: Output S = 〈L,R〉.
Correctness and security were proved in [DF11]. However, we manage to improve
the bounds for which security holds. We will present our result in the next
theorem.

Theorem 3.1. For separated PL and PR and a finite field F, Φn is a (λ, ε)-
secure LRS for

ε ≤ 2− 2n log |F∗|−(n+3) log |F|−2λ
2

Proof. Let A be a λ-limited adversary with access to oracle Ω(viewL, viewR). He
is allowed to query fL(viewL) and fR(viewR) since PL and PR are separated. The
functions fL and fR have joint output size 2λ. These functions define a map-
ping f from (F∗)2n to {0, 1}2λ. For simplicity we will write f(L,R) instead of
fL(viewL) and fR(viewR). Let Px be the set of all preimages of x ∈ {0, 1}2λ.
Then the min-entropy of L and R given a certain leakage x ∈ {0, 1}2λ is
∀f : (F∗)2n → {0, 1}2λ:

H∞,x((L,R) | f(L,R) = x)

= − log

(
max

(L′,R′)∈(F∗)2n

(
Pr

(L,R)
$←(F∗)2n

[(L,R) = (L′, R′) | f(L,R) = x]

))

= − log

(
max

(L′,R′)∈Px

(
Pr

(L,R)
$←Px

[(L,R) = (L′, R′)]

))
= log |Px|

Since fL(viewL) depends only on L and fR(viewR) only on R, L and R are
independent given f . Hence Lemma 2.1 implies the following bounds on the
statistical distances for the elements of {0, 1}2λ:

εx = Δx([〈L,R〉 | f(L,R) = x], 〈L′, R′〉) ≤
√

|F|n+1
√

|Px|−1

for a uniform 〈L′, R′〉 ∈ F. Notice that the statistical distance εx is not necessar-
ily negligible. For instance an adversary could choose a function f such that the
function is 1 if all entries of L and R are 1 ∈ F and otherwise 0. In this case if a
leakage f(L,R) = x = 1 appears, L and R are statistically fixed and εx = ε1 = 1.
Even if an adversary will choose such a function f , a x = 1 will appear only
with a negligible probability then. A straight forward but a lossy technique to
prove the Theorem would be: Either x appears with negligible probability or εx

is negligible. We are not using this approach which is also a reason why we get
better bounds.

We get the Theorem by bounding the final advantage of A: For all S ∈ F

ε = Δ([f(L, R) | 〈L, R〉 = S], f(L
′
, R

′
))

=
1

2

∑

x∈{0,1}2λ

| Pr[f(L, R) = x | 〈L, R〉 = S] − Pr[f(L
′
, R

′
) = x]|

=
1

2

∑

x∈{0,1}2λ

∣∣∣∣
Pr[〈L, R〉 = S | f(L, R) = x] · Pr[f(L′, R′) = x]

Pr[〈L, R〉 = S]
− Pr[f(L

′
, R

′
) = x]

∣∣∣∣
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≤ 1

2
|F|

∑

x∈{0,1}2λ

Pr[f(L
′
, R

′
) = x]

∣∣∣∣Pr[〈L, R〉 = S | f(L, R) = x] − 1

|F|

∣∣∣∣

≤ |F|
∑

x∈{0,1}2λ

Pr[f(L
′
, R

′
) = x]

⎛

⎝ 1

2

∑

S′∈F

∣∣Pr[〈L, R〉 = S
′ | f(L, R) = x] − Pr[〈L′

, R
′〉 = S

′
]
∣∣

⎞

⎠

= |F|
∑

x∈{0,1}2λ

Pr[f(L
′
, R

′
) = x]

(
Δx([〈L, R〉 | f(L, R) = x], 〈L′

, R
′〉))

≤ |F|
√

|F|n+1

|F∗|2n

∑

x∈{0,1}2λ

√
|Px| ≤

√
|F|n+3 · 2λ

|F∗|n = 2
− 2n log |F∗|−(n+3) log |F|−2λ

2

The first steps are straight forward. Then for the first inequality, we use a
probably lossy bound. In the second last line, we sum over the probability, that a
leakage x appears multiplied with the statistical distance εx implied by x. Finally
we plugin the probabilities and apply the bounds on εx for all x ∈ {0, 1}2λ and
use Jensen’s Inequality. �
Flexibility and graceful degradation. The LRS Φn satisfies two additional,
very useful properties. It is flexible, since an adversary could query 2λ bits on
a single party instead of querying λ bits on each of them, without decreasing
the statistical distance. More generally, an adversary is allowed to arbitrary split
the amount of leakage among the two parties, as long as the sum is equal to the
total amount of tolerated leakage.

Even more interesting is the graceful degradation achieved by an LRS in
general. If an adversary queries 2λ + 2k bits instead of 2λ bits, the security
will not entirely break down. In case of Φn, it will only increase the statistical
distance from uniform by a factor of 2k. If the statistical distance is 2κ for security
parameter κ, then the security parameter will be decreased to κ′ = κ − k.

Remark 3.1. For seeing the improvement compared to previous results, we use
the parameters of Lemma 1 in [DF11] which is also used in [DF12]. We set m = 1
and the given leakage and statistical distance is λ = (1/2 − δ)n log |F| − log γ−1

and ε′ = 2(|F|3/2−nδ + |F|γ) for γ > 0 and 1/2 > δ > 0. If we plug in λ in
Theorem 3.1, our bound yields ε = |F∗|−n|F|n+3/2−nδγ ≈ |F|3/2−nδγ for large
fields. Hence ε′ > ε.

Remark 3.2. Further, for a total leakage 2λ of 1/2 of the bits of the encod-
ings or more, security is not guaranteed anymore. This follows from the fact
that (n + 3) log |F| is larger than n log |F∗| which is the entropy of one of the
encodings.

4 Computation and Retrieving Computed Values

To begin, we show how to perform non-interactive operations on the encoded
values. Non-interactivity guarantees that the computation doesn’t contradict
the split-state model’s assumptions, thus ensuring to achieve security. After
describing the non-interactive operations, we give a more formal description of
a set of leakage-resilient operations based on the LRS Φn.
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Addition of a constant and an encoded value. Let X = 〈L,R〉 be the input
secret value and c ∈ F be a constant. To compute c + X, we set L′ = L||c and
R′ = R||1. Then

〈L′, R′〉 =
n∑

i=1

(Li · Ri) + c = X + c.

Addition of two encoded values. Let X = 〈L,R〉 and Y = 〈K,Q〉 be the
input secret values, and (L′, R′) the encoding for Z = X + Y . The simplest
addition procedure is to set L′ = L||K and R′ = R||Q. It is trivial to verify that

〈L′, R′〉 =
n∑

i=1

(Li · Ri + Ki · Qi) =
n∑

i=1

(Li · Ri) +
n∑

i=1

(Ki · Qi) = 〈L,R〉 + 〈K,Q〉.

Multiplication of an encoded value by a constant. Let c be a public
constant and let X = 〈L,R〉 be the input secret value. We would like to obtain
shares (L′, R′) for c · X. It is then enough to set L′ = L and R′

i = c · Ri for
i ∈ [n]. It is immediate to verify that

〈L′, R′〉 =
n∑

i=1

(Li · c · Ri) = c · 〈L,R〉 = c · X.

Multiplication of two encoded values. Let X = 〈L,R〉 and Y = 〈K,Q〉 be
the input secret values and (L′, R′) the encoding for Z = X · Y . The simplest
multiplication procedure is to set L′ = L ⊗ K and R′ = R ⊗ Q. It is now easy
to verify that

〈L′, R′〉 =
n∑

i=1

n∑

j=1

(Li · Kj · Ri · Qj) =
n∑

i=1

(Li · Ri) ·
n∑

i=1

(Ri · Qi) = 〈L,R〉 · 〈K,Q〉.

We emphasize that this operation is too costly for large dimensions. If a multi-
plication between two encoded values is necessary, using the algorithm given by
[DF12] should be considered.

A set of leakage-resilient operations. To describe the set of leakage-resilient
operations, we use again the algorithms of Φn. More precisely, the set of leakage-
resilient operations Ψn consists of nine PPT algorithms for two parties PL and
PR:

• Initialize(S1, . . . , Ss): For all i ∈ [s] compute EncodeΦn(1κ, Si) → (Li, Ri).
Start PL with input L1, . . . Ls and PR with input R1, . . . , Rs.

• Refresh(i): PL and PR replace (Li, Ri) by (L′
i, R

′
i) ← Refresh(Li, Ri).

• cAdd(i, j, c): PL sets Li := Lj‖c and PR sets Ri := Rj‖1.
• Add(i, j, k): PL sets Li := Lj‖Lk and PR sets Ri := Rj‖Rk.
• cMult(i, j, c): PL sets Li := (cLj,1‖cLj,2‖ . . . ) for Lj = (Lj,1‖Lj,2‖ . . . ) and

PR sets Ri := Rj .
• Mult(i, j, k): PL sets Li := Lj ⊗ Lk and PR sets Ri := Rj ⊗ Rk.
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• RetrieveValue(i) → (L′, R′): Invoke Refresh(i), PL outputs Li and PR outputs
Ri.

• ShrinkDown(i): Shrinks down Li and Ri to dimension n + 1. For more details
and the security analysis, we refer to Appendix B.

Remark 4.1. Note that, apart from cMult, the length of the encodings increases
in all the other operations. This can influence the performance of the following
operations. Thus, we have designed a Shrink procedure that allows to reduce an
arbitrary length of encodings down to n + 1 field elements.

It turns out that, in the protocols we considered, using this operation does
not improve the overall efficiency. This is because it requires a call to the Refresh
procedure, which is quite costly. For completeness, we present the Shrink opera-
tion in Appendix B. We remark that this operation is still useful in many situ-
ations, because it does improve the performance for more complicated patterns
of operations (indeed, even for just two consecutive multiplications on encoded
values).

The main property of Ψn is that functions computable by two parties PL

and PR with the operations described above can be made leakage resilient in a
straightforward way. The procedure Initialize, which receives as input all sensitive
values, is called at the beginning of the computation. This process has to be free
of leakage. Once encodings for the sensitive values are created and shared among
PL and PR, arbitrary functions can be computed and retrieved and the leakage
during the computation will not leak any information about the sensitive values,
even if the computed function may reveal them.

After the computation, PL and PR can refresh their encodings by using
Refresh to compute another function without leaking information about the sen-
sitive values during the computation. If Refresh is used, the amount of tolerated
leakage is as large as during the first computation. This follows directly from
the property of Refresh. We prove the general statement about Ψn in the next
theorem.

Theorem 4.1. Let F be an arbitrary function computable by two parties PL, PR

using Ψn. Let the encodings used by PL, PR for computing a value be fresh and
independent. Let S1, . . . , Ss ∈ F be a set of input values for F among additional
inputs that may be chosen uniformly or by an adversary. Then for any λ-limited
adversary A and any q ∈ N:

Δ(AΩ(PL,PR)(x1, . . . xq),AΩ(PU ,PU )(x1, . . . xq)) ≤ q2− 2n log |F∗|−(n+3) log |F|−2λ
2

where xi is an output of F on input S1, . . . , Ss. Furthermore, for every i ∈ [q],
Ω(PL,PR) gives access to λ bits of leakage on each of the views of PL and PR

during the computation of xi, whereas Ω(PU ,PU ) indicates leakage obtained from
the computation of xi for uniform S′

1, . . . , S
′
s ∈ F.

Proof. We start with q = 1. Without loss of generality we set x1 = {S1, . . . Ss}
and assume that A sends queries fL,1(LS1,1), . . . , fL,s(LSs,1) to PL and
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fR,1(RS1,1), . . . , fR,s(RSs,1) to PR with a total ouput size of 2λ bits. Let λi

be the output size of fL,1(LSi,1) and fR,1(RSi,1) for i ∈ [s]. Then according to
Theorem 3.1:

ε = Δ(AΩ(PL,PR)(x1),AΩ(PU ,PU )(x1))

= Δ(AΩ(PL,PR)(S1, . . . , Ss),AΩ(PU ,PU )(S1, . . . , Ss))

≤
s∑

i=1

2− 2n log |F∗|−(n+3) log |F|−λi
2

= 2− 2n log |F∗|−(n+3) log |F|
2

s∑

i=1

2
λi
2

≤ 2− 2n log |F∗|−(n+3) log |F|−2λ
2

This is because Theorem 3.1 holds for any private value S ∈ F, which is harder
to achieve than if S is known or even chosen by A. To extend the result to q
outputs of F , we use a simple hybrid argument. For x1, we showed that A can
not distinguish if the leakage is received from encodings of S1, . . . Ss or from
some uniform S′

1, . . . S
′
s with probability more than ε. Since we use fresh and

independent encodings of S1, . . . Ss for the computation of x2 to xq, we can
apply Theorem 3.1 again. So for every single xi, A will notice with at most
probability ε, if the leakage is based on S′

1, . . . S
′
s instead of S1, . . . Ss. Summing

up over q we get:

Δ(AΩ(PL,PR)(x1, . . . xq),AΩ(PU ,PU )(x1, . . . xq)) ≤ qε.

�
Note that Theorem 4.1 provides leakage resilience for any function F with

private values S and computable by two parties PL, PR using Ψn. More precisely,
given q outputs of F and leakage retrieved during the computation of F , an
adversary cannot distinguish if the leakage comes from the computation of F on
input S or a uniformly sampled input in F.

Corollary 4.1. Let F be a function with private input S and additional input
that may be chosen at uniform or by an adversary. Suppose that, for any PPT
algorithm, q outputs of F are distinguishable from uniform with probability at
most ε. Then q outputs of F computed by two parties PL, PR using Ψn are
distinguishable from uniform with probability at most ε′ by any PPT λ-limited
adversary, where

ε′ ≤ ε + q2− 2n log |F∗|−(n+3) log |F|−2λ
2 .

5 Leakage-Resilient Computation Of Lapin

Even though the techniques presented above can be easily applied to other prim-
itives or protocols (for example [LM13]), we set our focus on Lapin. The instan-
tiation of Lapin with a large field fits perfectly the proposed techniques. We
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use the parameters given in [HKL+12]. The authors propose to use the field
F = F2[X]/(X532 + X + 1), which results in a size |F| = 2532. Lapin uses two
private key elements s1, s2 ∈ F and for every protocol execution, a sensitive noise
term e is sampled from the distribution BF

τ , i.e. the distribution over the poly-
nomials of F where each of the coefficients is chosen from the binary Bernoulli
distribution. While s1 and s2 could be stored in encoded form on two separated
parts PL and PR on the device, e has to be resampled after every computa-
tion and not just refreshed. During the protocol a term z = r(cs1 + s2) + e for
uniform field elements r, c is computed. Due to space constraintments, we refer
for details to [HKL+12]. A leakage-resilient computation of z would imply a
leakage-resilient variant of Lapin.

On leak-free oracles. For sampling and encoding e, we use a leak-free ora-
cle Oe. The reason for using Oe to generate an encoding for e is that it is
fundamental to securely sample the randomness. In fact, even leaking a sin-
gle bit of the sampled noise is enough to undermine security, since revealing
the noise from a LPN sample provides a linear equation from which the secret
can be recovered. Hence we assume that an encoding of the random noise is
computed in a leak-free way. This may be not reasonable to assume in some
situations. On the other side, the Oe oracle does not have any input, and
the noise e is independent from any interaction between the parties of the
authentication protocol, this makes it harder to attack such an oracle with
a SCA.

One strategy to deal with this issue (that also concerns refreshing proce-
dures), is to sample the vectors Le and Re in advance, i.e. even before the
challenge c is known. One can therefore compute a number of pairs (Le1 , Re1),
(Le2 , Re2), . . . and pick one of them (possibly at random) whenever a fresh pair
is needed. Storing these pairs on the Tag even for a long time is completely
safe under the assumption that only computation leaks information. Even if an
adversary got access to a stored pair, the scheme would still be secure as long as
the adversary did not learn more than what he could have learned via leakage
queries during a single execution of the protocol. Whenever a Tag is running out
of (Le, Re) pairs, it could sample a few new pairs from Oe and store them in the
memory or sample a new pair after every protocol execution. Even if the oracle
Oe was not completely leakage-free, it would still be hard to attack the system,
since the (Le, Re) pairs are sampled in a different moment from the actual exe-
cution of the protocol and it is probably not easy for an adversary to figure out
which pair is used next time.2

Describing the leakage-resilient computation. At the core of Lapin, there
is the function F (r, c, s1, s2, e) = z = r(s1c+s2)+e = rcs1 +rs2 +e. In Fig. 1 we
give the details of its implementation using the set of leakage-resilient operations
Ψn from Sect. 4.

2 Because the pair to be used can be picked at random from the set of available pairs.
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Fig. 1. Leakage resilient computation for a lapin tag. To see which instructions
of Ψn are used, see Sect. 4. For the encodings hold 〈Ls1 , Rs1〉 = s1, 〈Ls1 , Rs1〉 = s2
and 〈Le, Re〉 = e. Before perfoming the next computation, the encodings of s1 and s2
need to be refreshed.

The encodings Ls1 , Ls2 , Rs1 , Rs2 for s1 and s2 are stored on the device and
e is obtained from Oe. The two parties PL and PR perform non-interactive
additions of shares and multiplications by constants to create an encoding of
the response z. The retrieving procedure is used to get an encoding of z in a
secure way. Finally, z itself can be obtained by computing the inner product of
the encodings. Before starting the next protocol execution, the encodings of s1

and s2 need to be refreshed using the refreshing operation of Ψn.
The security of the scheme and robustness against leakage can be easily

obtained from Corollary 4.1. Let εL be the winning probability against Lapin.
This is essentially the probability of distinguishing, for q outputs, the function
F (r, c, s1, s2, e) = z from uniform, where r is uniform and c is chosen by an
adversary. The values s1, s2 and e are the sensitive values and hence they are
encoded. The winning probability εp against the proposed leakage-resilient pro-
tocol for q executions is εp = εL+εΨn , where εΨn is the distinguishing probability
stated in Theorem 4.1.

Sampling the randomness and refreshing. As we already mentioned, it is
necessary that both the on-chip randomness sampling and the refreshing proce-
dure be secure against continual leakage. In particular, if the refreshing procedure
accesses a sensitive value in order to generate new encodings for it, the overall
security of the protocol could be critically harmed. The sensitive value could in
fact be easily retrieved during refresh executions. In Appendix A we describe
two existing refreshing algorithms for inner product shares. Neither of them
directly accesses a sensitive value so both perform much better, in the presence
of leakage, than simply executing an Decode operation followed by a new Encode
operation. While the weaker refreshing algorithm is not provably secure in a
theoretical sense, the stronger, leakage-resilient refreshing procedure comes at a
cost of a less efficient computation and requires a larger amount of randomness.
Note that even the leakage-resilient refreshing requires that the randomness is
drawn from a leakage-free oracle.
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Efficiency. The efficiency of the scheme is calculated in terms of inversions
and multiplications over F. In Table 1 we report our efficiency analysis of Lapin
when instantiated with the stronger (second row) and the weaker (third row)
refreshing procedures. In our analysis, we do not include the computation of a
refreshing procedure between two protocol executions.

Table 1. Efficiency of the Framework and Robustness Against Leakage. In the
table above, n is the dimension of the encodings, εL is the winning probability against
Lapin and εp is the winning probability against the leakage-resilient protocol with λ bits
of leakage on each of the two parties per protocol execution. The refresh procedure in
between two protocol executions is not covered in the presented computational costs.
The 8 bit AVR implementation for multiplication and division is a straight forward
implementation of the algorithms given in [HVM04] and for Lapin a uniform challenge
c in F is used instead of a sparse element in F.

Protocol Refresh n Efficiency Security

Multiplications & 8 bit AVR λ εp

Invertions

Lapin - - 2 &0 0.3 mio cycles 0 εL

Lapin Leakage-Resilient 4 19n &6n + 1 43 mio cycles 141 εL + 2−81

Lapin Leakage-Free 4 11n + 1 &1 9 mio cycles 141 εL + 2−81

Even though the protocol is quite simple, the computation is perhaps more
expensive than one would expect, due to the expensive refreshing operation
(which we describe in Appendix A). Compared to standard Lapin, the efficiency
decreases by at least a factor of 30. Lapin performs better over a ring with
a reducible multiplication, but in order to apply the proposed techniques, the
extractor properties of a field are necessary. Furthermore, Lapin takes advantage
of a multiplication with sparse field elements. In our framework, only a few field
elements are sparse and hence the optimization does not have a big effect on the
overall efficiency.

The 8 bit AVR implementation is based on a shift and add based division
and multiplication. Even the most costly implementation with 43 million cycles
has a running time of 1.34 seconds on a 32 Mhz architecture. The cycle amount
would drastically decrease on an implementation on a 32 bit architecture, since
shifts and additions can be carried out four times faster. We emphasize, that the
cost of sampling the randomness is not covered here.

Leakage resilience. Our proposal accomplishes leakage resilience in a model
which allows continuous and arbitrarily chosen leakage functions as long as
leakage-free components are not addressed. A choice of n = 4 results in a leakage-
resilient protocol for chosen leakage functions of 141 bits output size per round for
each of the two parties. To get these results, we first set the statistical distance
gained by the inner product to 2−81. For meaningful results, Theorem 4.1 requires
n ≥ 4. Finally we set the amount of protocol executions to be at most q = 240.
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6 Conclusions and Future Work

This work provides techniques to perform leakage-resilient operations which per-
fectly fits cryptographic primitives or protocols running over large finite fields.
It achieves strong provable security results thanks to the improved results for
the underlying LRS based on the inner product extractor and the large size of
the field. This framework could be very helpful to make other primitives leakage-
resilient without using heavy machinery. Since the known refresh algorithms are
still costly, more efficient alternatives would greatly increase the overall efficiency.

An issue from which our techniques suffer is the generation of on-chip ran-
domness. Furthermore, it is required to use leakage-free oracles to sample ran-
domness without leaking information.

Applying the proposed techniques to Lapin, we obtain a very high level of
leakage resilience. In terms of efficiency, it is still very expensive, decreasing the
efficiency compared to standard Lapin by at least a factor of 30. This is also
a drawback for leakage resilience, since additional computation will cause addi-
tional leakage. Therefore, in settings in which performance is very important
and leakage resilience plays a minor role, the Boolean masking of Lapin seems
to be a better choice. On the other hand, in applications in which a high leak-
age resilience is necessary, the proposed techniques applied to Lapin provides
an interesting option while still having reasonable responding times during a
protocol interaction.

Acknowledgements. The authors would like to thank Krzysztof Pietrzak and Eike
Kiltz for the helpful discussions on the leakage resilience of LPN and Tim Güneysu,
Thomas Pöppelmann and Ingo von Maurich for helping with the implementation on
the avr microcontroller.

A Refreshing Procedures for the Inner Product LRS

As a first security requirement, a refreshing procedure needs to be rerandomizing.

Definition A.1 (Rerandomizing). The refreshed encodings are uniformly dis-
tributed over the set of encodings of the encoded value.

Dziembowski and Faust in [DF11] describe two possible refreshing proce-
dures, starting from an intuitive, but flawed, one, and then providing a secure
one. The latter makes use of a leak-free component OR that samples uniformly
random pairs of orthogonal vectors, and has a complexity of O(n2) field opera-
tions. An improved version appears in [DF12]. The procedure was then revisited
and adapted to the AES case in [BFGV12]. We report it in Fig. 2.

This formulation of a refreshing procedure is very simple but, as the authors
incidentally mention, security is based on the (rather unrealistic) assumption
that the whole procedure is leakage-free. The reason for this is that, during
the interaction between PL and PR, one of the parties might learn additional
information about the secret state of the other one. While leakage on input
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Fig. 2. Refreshing Procedure. The refreshing procedure proposed in [BFGV12].

and output does not cause any problem, an adversary could use this additional
knowledge of one of the parties during the procedure to query a leakage function
which depends partially on both the encodings. This might reveal information
about the inner product of the encodings and hence of the encoded value. Even
though in practice, it is not known yet, how to exploit this by a SCA.

To deal with this issue, a property called reconstructability was introduced
in [FRR+10]. Let Op be a masked operation with input (L,R), and output
(L′, R′). We call reconstructor a simulator algorithm Rec that is able to recreate
the views that both parties would have after executing Op, without actually
executing it. More specifically, Rec takes as input (L,R) and (L′, R′), and returns
(viewL, viewR). In addition, it is important that the execution of Rec does not
require any interaction between the parties after they are given the input.3

Definition A.2 (Reconstructability). A masked operation Op is said to be ε-
reconstructable if there exists a reconstructor Rec such that, for every X ∈ F, it
holds that

Δ((L′, R′, viewL, viewR), (L′, R′, view′
L, view′

R)) ≤ ε,

where (L,R) = Encode(X), viewL and viewR are the views of the two parties after
the execution of Op(L,R) = (L′, R′) and (view′

L, view′
R) = Rec((L,R), (L′, R′)).

This property guarantees that leaking from the internal states during the
operation on the encodings does not reveal more than just leaking from the
input and output of the operation.

A reconstructable refreshing procedure was suggested by Andrychowicz in
[And12] and we present it in Figure 3.

As opposed to previous proposals, this procedure is more efficient, having a
complexity of O(n) operations: it requires 2n inversions, 4n multiplications and

3 Therefore, the parties can jointly draw some common randomness in advance. This
will be referred to as offline sampling later in this paper.
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Fig. 3. Refreshing Procedure. The procedure Refreshn is used to refresh the shares
of a secret. The values A, Ã, B, B̃ are such that 〈A, B〉 = −〈Ã, B̃〉 and Ai �= 0 and
B̃i �= 0 for 1 ≤ i ≤ n.

2n additions in the finite field. The procedure makes use of a modified leak-
free component ÕR that generates quadruples of vectors (A, Ã,B, B̃) such that
〈A,B〉 = −〈Ã, B̃〉 and for 1 ≤ i ≤ n it holds that Ai �= 0 and B̃i �= 0. It is easy
to see that this oracle can be simulated by players in possession of OR.

Note that his refreshing algorithm assumes that the shares have all non-zero
coordinates. In practice, we will use very big fields (at least |F| ≥ 2256), so a ran-
dom vector would have all non-zero coordinates with overwhelming probability.

It is easy to verify that the procedure Refreshn of Figure 3 verifies the reran-
domizing property. First of all, it is evident that the two shares output by
Refreshn are indeed a correct masking for the input secret, since

〈L′, R′〉 =

= 〈L,R′〉 + 〈Ũ , R′〉 = 〈L,R′〉 +
∑n

i=0 Ũi · R′
i =

= 〈L,R′〉 +
∑n

i=0 Ãi · B̃i · (R′)−1
i · R′

i = 〈L,R′〉 + 〈Ã, B̃〉 =

= 〈L,R〉 + 〈L,U〉 + 〈Ã, B̃〉 = 〈L,R〉 +
∑n

i=0 Li · Ui + 〈Ã, B̃〉 =

= 〈L,R〉 +
∑n

i=0 Li · L−1
i · Ai · Bi + 〈Ã, B̃〉 = 〈L,R〉 + 〈A,B〉 + 〈Ã, B̃〉 =

= 〈L,R〉.
To see that L′ are R′ are independent from the input, we set U = R′ − R

and Ũ = L′ − L. From the condition 〈L,R〉 = 〈L′, R′〉 follows 〈L,U〉 = −〈Ũ , R′〉
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which is the constraint of OR. Therefore OR outputs samples of the correct
distribution to make L′, R′ independent of L, R.

A reconstructor for Refreshn was given in [And12]. We present it in Figure 4.

Fig. 4. Reconstructor. The above algorithm describes a reconstructor for the proce-
dure Refreshn. The only communication between the parties is the sampling of random
vectors V and Ṽ , which can be done offline.

The author provides a proof that the above procedure is an ε-reconstructor
for Refreshn with ε = 0.

B A Shrinking Procedure for the Inner Product LRS

The Shrink operation is presented in Fig. 5. It transforms an encoding of length
m into an encoding of length n+1. It is based on the implicit shrinking procedure
used in the multiplication gadget in [DF12].

The algorithm Shrink is interactive, so we need to analyze its security care-
fully. The reason for this is that for example PL learns during the execution
the value of R̂, which reveals some partial information about the secret state of
PR. An adversary can use this fact and query a leakage function, which depends
partially on both of the encodings, and thus break the security of LRS.

We already introduced reconstruct ability in Appendix A. Reconstructability
implies that the interaction between two parties does not contradict the leakage
resilience. Since the views of PL and PR during a reconstructable procedure can
be simulated by a non-interactive reconstructor. This reconstructor only uses
Oracles which sample randomness which is independent of sensitive values and
he does not require any interaction between PL and PR.
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Fig. 5. Shrinking Procedure. The procedure Shrink described in this figure is used
to reduce the size of the shares of a secret.

Fig. 6. Reconstructor. The above algorithm describes a reconstructor for the proce-
dure Shrink. The views created by the reconstructor for Refresh are treated as part of
the output.

Theorem B.1. Shrink is 0-reconstructable.

Proof. The reconstructor for the Shrink operation is presented on Fig. 6. We
need to show that reconstructed views (L, L̃, L′, L̂, R̂) and (R, R̃,R′, R̂) have the
same distribution as in the shrink down procedure. This is already clear for L,
R and L′, R′ since the input is identical. In the shrink procedure L̂ and R̂ are
uniform elements in (F \ {0})m−n and their inner product is 〈L̂, R̂〉 = L̃n+1.
The presented reconstructor samples L̂ such that this is the case. The correct
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distribution of L̃, R̃ follows from the correct distribution of L′, R′ and L̂, R̂: The
first n field elements of L̃, R̃ are identical to the first n field elements of L′, R′

and the last m−n field elements are identical to L̂, R̂. The reconstructability of
the view during the refresh procedure follows from the reconstructability of the
refresh procedure. �
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