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Abstract. Password-based group key exchange protocols allow group
users who share only a short, low entropy password to agree on a cryp-
tographically strong session key. One fundamental complexity measure
of such protocols is its round complexity. In this paper, we present the
first one-round password-based group key exchange protocol in the com-
mon random string model. Furthermore, we propose a completely new
approach to remove the need for the common random string and then
construct a two-round password-based group key exchange protocol that
does not require any setup assumption. This is - to the best of our knowl-
edge - the first password-based group key exchange protocol without
trusted setup. Using indistinguishability obfuscation as main tool, both
protocols are provably secure in the standard model.

Keywords: Group key exchange protocol · Password based authentica-
tion · Round complexity · Indistinguishability obfuscation

1 Introduction

Password-based authenticated key exchange (PAKE) protocols [1] allow users
who share only a short, low-entropy password to agree on a cryptographically
strong session key. PAKE protocols are fascinating from a theoretical perspec-
tive, as they can be viewed as a means of “bootstrapping” a common crypto-
graphic key from the (essentially) minimal setup assumption of a short, shared
secret. PAKE protocols are also important in practice, since passwords are per-
haps the most common and widely-used means of authentication. In this paper,
we consider PAKE protocols in the group setting where the number of users
involved in the computation of a common session key can be large.
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The difficulty in designing password-based protocols is to prevent off-line
dictionary attacks whereby an eavesdropping adversary exhaustively enumer-
ates passwords, attempting to match the correct password to the eavesdropped
session. However, the adversary can always correctly determine the correct pass-
word via an on-line dictionary attack in which the adversary tries to impersonate
one of the parties using each possible password. Although an on-line dictionary
attack is not avoidable, the damage it may cause can be mitigated by other
means such as limiting the number of failed login attempts. Roughly, a secure
password-based protocol guarantees that an exhaustive on-line dictionary attack
is the “best” possible strategy for an adversary.

1.1 Related Work

Group Key Exchange Protocols. Bresson et al. [2] introduced a formal
security model for group key exchange protocols and proposed the first prov-
ably secure protocol for this setting. Their protocol use a ring structure for
the communication, in which each user has to wait for the message from his
predecessor before producing his own. Unfortunately, the nature of their com-
munication structure makes their protocols quite impractical for large groups
due to the number of rounds of communication linear in the number of group
users. Later, Burmester and Desmedt [3,4] proposed a more efficient and prac-
tical group key exchange protocol, in which the number of rounds of commu-
nication is constant. Their protocol has been formally analyzed by Katz and
Yung [5], who also proposed the first constant round and fully scalable authen-
ticated group key exchange protocol which is provably secure in the standard
model. Recently, Boneh and Zhandry [6] constructed the first multiparty non-
interactive key exchange protocol requiring no trusted setup, and gave the formal
security proof in the static and semi-static models.

Password-Based Group Key Exchange Protocols. Adding password
authentication services to a group key exchange protocol is not trivial since
redundancy in the flows of the protocol can open the door to password dictionary
attacks. Bresson et al. [7] proposed the first solution to the group Diffie-Hellman
key exchange problem in the password-based scenario. However, their protocol
has a total number of rounds which is linear in the number of group users and
their security analysis requires ideal models, which is impractical for large groups.
Later, two different password-based versions [8,9] of Burmester-Desmedt proto-
col were proposed, and unfortunately, both of them are not secure [10]. Also,
Abdalla et al. [10] demonstrated the first password-based group key exchange
protocol in a constant number of rounds. Their protocol is provably secure in
the random oracle and ideal cipher models.

To date, there are only a few general approaches for constructing password-
based group key exchange protocols in the standard model (i.e., without random
oracles). Abdalla and Pointcheval [11] constructed the first such protocol with
a proof of security in the standard model. Their protocol combines smooth pro-
jective hash function with the construction of Burmester and Desmedt [3,4] and
includes only 5 rounds communication, but requires a common reference string
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model. Later, Abdalla et al. [12] presented a compiler, that transforms any prov-
ably secure (password-based) two-party key exchange protocol into a provably
secure (password-based) group key exchange protocol with two more rounds of
communication. Their compiler uses non-interactive and non-malleable commit-
ment schemes as main technical tools, also requires a common reference string
model.

1.2 Technical Contributions

Round complexity is a central measure of efficiency for any interactive protocol.
In this paper, our main goal is to further improve bounds on the round complexity
of password-based group key exchange protocol.

Towards this goal, we propose the first one-round password-based group
key exchange protocol which is provably secure in the standard model. Our
main tool is indistinguishability obfuscation, for which a candidate construction
was recently proposed by Garg et al. [14]. The essential idea is the following: the
public parameter consists an obfuscated program for a pseudorandom function
PRF which requires knowledge of the password pw to operate, so that each user
in the group can independently evaluate the obfuscated program to obtain the
output session key. To prevent the off-line dictionary attack, we require the ran-
dom value ri used for generating the ciphertext ci also as input of the obfuscated
program.

Our second contribution is two-round password-based group key exchange
protocol without any setup. The existing constructions require a trusted setup to
publish public parameters, which means whoever generates the parameters can
obtain all group users’ passwords and compute the agreed session key. However,
this may be less appealing than the “plain” model where there is no additional
setup. Motivated by this observation, we propose a completely new approach to
password-based group key exchange protocol with no trusted setup. The result-
ing scheme is the first secure password-based group key exchange protocol which
does not rely on a random oracle or a setup, only requires two rounds of com-
munication. Our central challenge is how to create a way to let each group user
run setup for himself securely. In fact, at a first glance, it seems that letting each
user publish an obfuscated program might fully resolve this problem. However,
such an approach fails because a potentially malicious program can be replaced
by an adversary. Specifically, an adversary may publish a malicious program
that simply outputs the input password. To prevent such attacks, we extend the
Burmester-Desmedt protocol framework [3,4] to the password setting, where
the Diffie-Hellman key exchanges are replaced by indistinguishability obfusca-
tion, and let each user generate two obfuscated programs. The first obfuscated
program is used to obtain other users’ random value, and the second program
is used to generate the shared key with the user’s neighbors, where the output
of the first program is only as the input of the second program. Moreover, each
user’s partial message broadcasted for computing the session key is generated
by his own program and cannot be replaced. Thus, even if the adversary replace
some programs, any password information will not be disclosed.
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1.3 Outline of the Paper

The rest of this paper is organized as follows. Section 2 recalls the security model
usually used for password-based group key exchange protocol, and Sect. 3 recalls
the definition of different cryptographic primitives essential for our study. We
then propose two round-optimal constructions for password-based group key
exchange protocol in Sects. 4 and 5, respectively. Sections 6 concludes.

2 Password-Based Group Key Exchange

In this section, we briefly recall the formal security model for password-based
group key exchange protocols as presented in [10] (which is based on the model
by Bresson [13]).

In a password-based group key exchange protocol, we assume for simplicity a
fixed, polynomial-size set U = {U1, . . . , Ul} of potential users. Each user U ∈ U
may belong to several subgroup G ⊆ U , each of which has a unique password
pwG associated to it. The password pwG is known to all the users Ui ∈ G wishing
to establish a common session key.

Let U 〈i〉 denote the i-th instance of a participant U and b be a bit chosen
uniformly at random. During the execution of the protocol, an adversary A
could interact with protocol participants via several oracle queries, which model
adversary’s possible attacks in the real execution. All possible oracle queries are
listed in the following:

– Execute(U 〈i1〉
1 , . . . , U

〈in〉
n ): This query models passive attacks in which

the attacker eavesdrops on honest executions among the user instances
U

〈i1〉
1 , . . . , U

〈in〉
n . It returns the messages that were exchanged during an honest

execution of the protocol.
– Send(U 〈i〉,m): This oracle query is used to simulate active attacks, in which

the adversary may tamper with the message being sent over the public chan-
nel. It returns the message that the user instance U 〈i〉 would generate upon
receipt of message m.

– Reveal(U 〈i〉): This query models the possibility that an adversary gets session
keys. It returns to the adversary the session key of the user instance U 〈i〉.

– Test(U 〈i〉): This query tries to capture the adversary’s ability to tell apart a
real session key from a random one. It returns the session key for instance
U 〈i〉 if b = 1 or a random number of the same size if b = 0. This query is
called only once.

Besides the above oracle queries, some terminologies are defined as follows.

– Partnering: Let the session identifier sidi of a user instance U 〈i〉 be a function
of all the messages sent and received by U 〈i〉 as specified by the protocol. Let
the partner identifier pidi of a user instance U 〈i〉 be the set of all participants
with whom U 〈i〉 wishes to establish a common session key. Two instances U

〈i1〉
1

and U
〈i2〉
2 are said to be partnered if and only if pidi1

1 = pidi2
2 and sidi1

1 = sidi2
2 .
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– Freshness: We say an instance U 〈i〉 is fresh if the following conditions hold:
(1) U 〈i〉 has accepted the protocol and generated a valid session key; (2) No
Reveal queries have been made to U 〈i〉 or to any of its partners.

Correctness. The correctness of password-based group key exchange protocol
requires that, whenever two instances U

〈i1〉
1 and U

〈i2〉
2 are partnered and have

accepted, both instances should hold the same non-null session key.

Security. For any adversary A, let Succ(A) be the event that A makes a single
Test query directed to some fresh instance U 〈i〉 at the end of a protocol P and
correctly guesses the bit b used in the Test query. Let D be the user’s password
dictionary (i.e., the set of all possible candidate passwords). The advantage of
A in violating the semantic security of the protocol P is defined as:

AdvP,D(A) = |2Pr[Succ(A)] − 1|.
Definition 1 (Security). A password-based group key exchange protocol P is
said to be secure if for every dictionary D and every (non-uniform) polynomial-
time adversary A,

AdvP,D(A) < O(qs)/|D| + negl(λ),

where qs is the number of Send oracle queries made by the adversary to different
protocol instances and λ is a security parameter.

3 Preliminaries

In this section we start by briefly recalling the definition of different crypto-
graphic primitives essential for our study. Let x ← S denote a uniformly random
element drawn from the set S.

3.1 Indistinguishability Obfuscation

We will start by recalling the notion of indistinguishability obfuscation (iO)
recently realized in [14] using candidate multilinear maps [15].

Definition 2 (Indistinguishability Obfuscation). An indistinguishability
obfuscator iO for a circuit class Cλ is a PPT uniform algorithm satisfying the
following conditions:

– iO(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we
compute C ′ =iO(λ,C), then C ′(x) = C(x) for all inputs x.

– For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the
circuits iO(λ,C0) and iO(λ,C1) are indistinguishable. More precisely, for all
pairs of PPT adversaries (Samp, D) there exists a negligible function α such
that, if

Pr[∀x,C0(x) = C1(x) : (C0, C1, τ) ← Samp(λ)] > 1 − α(λ)

then
|Pr[D(τ, iO(λ,C0)) = 1] − Pr[D(τ, iO(λ,C1)) = 1]| < α(λ)
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In this paper, we will make use of such indistinguishability obfuscators for
all polynomial-size circuits:

Definition 3 (Indistinguishability Obfuscation for P/poly). A uniform
PPT machine iO is called an indistinguishability obfuscator for P/poly if the
following holds: Let Cλ be the class of circuits of size at most λ. Then iO is an
indistinguishability obfuscator for the class {Cλ}.

3.2 Constrained Pseudorandom Functions

A pseudorandom function (PRF) [16] is a function PRF: K × X → Y where
PRF(k, ·)is indistinguishable from a random function for a randomly chosen
key k. Following Boneh and Waters [17], we recall the definition of constrained
pseudorandom function.

Definition 4 (Constrained Pseudorandom Function). A PRF F: K×X →
Y is said to be constrained with respect to a set system S ⊆ 2X if there is an
additional key space KC and two additional algorithms:

• F.constrain(k, S): On input a PRF key k ∈ K and the description of a set
S∈ S (so that S ⊆ X ), the algorithm outputs a constrained key kS ∈ KC .

• F.eval(kS , x): On input kS ∈ KC and x ∈ X , the algorithm outputs

F.eval(kS , x) =
{

F (k, x) if x ∈ S
⊥ otherwise

For ease of notation, we write F (kS , x) to represent F.eval(kS , x).

Security. Intuitively, we require that even after obtaining several constrained
keys, no polynomial time adversary can distinguish a truly random string from
the PRF evaluation at a point not queried. This intuition can be formalized by
the following security game between a challenger and an adversary A.

Let F: K×X → Y be a constrained PRF with respect to a set system S ⊆ 2X .
The security game consists of three phases:

Setup Phase. The challenger chooses a random key K ← K and a random bit
b ← {0, 1}.

Query Phase. In this phase, A is allowed to ask for the following queries:
• Evaluation Query: On input x ∈ X , it returns F (K,x).
• Key Query: On input S ∈ S, it returns F.constrain(K,S).
• Challenge Query: A sends x ∈ X as a challenge query. If b = 0, the chal-

lenger outputs F (K,x). Else, the challenger outputs a random element
y ← Y.

Guess Phase. A outputs a guess b′ of b.

Let E ⊆ X be the set of evaluation queries, C ⊆ S be the set of constrained
key queries and Z ⊆ X the set of challenge queries. A wins if b = b′ and
E

⋂
Z = φ and C

⋂
Z = φ. The advantage of A is defined to be AdvF

A(λ) =
|Pr[Awins] − 1/2|.
Definition 5. The PRF F is a secure constrained PRF with respect to S if for
all probabilistic polynomial time adversaries A, AdvF

A(λ) is negligible in λ.
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3.3 CCA Secure Encryption

Definition 6 (Public-Key Encryption). A public-key encryption scheme Σ
consist of three algorithms:

• Gen: (randomized) key generation algorithm. It outputs a pair (pk, sk) con-
sisting of a public key and a secret key, respectively.

• Enc: (randomized) encryption algorithm. It outputs a ciphertext c =
Encpk(m) for any message m and a valid public key pk.

• Dec: deterministic decryption algorithm. It outputs m = Decsk(c) or ⊥ =
Decsk(c) for a ciphertext c and a secret key sk.

In order to make the randomness used by Enc explicit, we write Encpk(m; r)
to highlight the fact that random coins r are used to encrypt the message m.

Perfect Correctness. We say that the encryption scheme has perfect correct-
ness if for overwhelming fraction of the randomness used by the key generation
algorithm, for all messages we have Pr[Decsk(Encpk(m)) = m] = 1.

CCA Security [18]. The CCA security of the Σ = (Gen; Enc; Dec) is defined
via the following security game between a challenger and an adversary A:

1. The challenger generates (pk; sk) ← Gen(1λ) and b ← {0, 1}, and gives pk to
A.

2. The adversary A asks decryption queries c, which are answered with the
message Decsk(c).

3. The adversary A inputs (m0,m1) with |m0| = |m1| to the challenger, and
receives a challenge ciphertext c∗ = Encpk(mb).

4. The adversary A asks further decryption queries c �= c∗, which are answered
with the message Decsk(c).

5. The adversary A outputs a bit b′, and wins the game if b′ = b.

We say that a PKE scheme Σ is CCA secure if for all (non-uniform) probabilistic
polynomial time adversaries A, |Pr[b′ = b] − 1/2| is negligible.

4 One-Round Password-Based Group Key Exchange
Protocol

In this section we present our construction of a one-round password-based group
key exchange protocol. The idea is the following: each user broadcasts a cipher-
text ci of the password pw using random ri. In the setup phase, a key K is chosen
for a constrained pseudorandom function PRF. The shared session key will be
the function PRF evaluated at the concatenation of the ciphertexts ci and pw.
To allow each user to compute the session key, the setup will publish an obfus-
cated program for PRF which requires knowledge of the password pw to operate.
However, the adversary may obtain the obfuscated program for PRF and then
mount an off-line dictionary attack, that is, the adversary guesses password pw∗
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and inputs it to the obfuscated program. By observing whether the program
outputs ⊥, the adversary can find the correct password. Therefore, besides the
password pw, the random ri is also required as input of the obfuscated program.
In this way, all users can compute the session key, but anyone else without the
password, will therefore be unable to compute the session key.

A formal description appears in Fig. 1. The correctness is trivial by inspec-
tion. For security, we have the following theorem.

Protocol I

Consider an execution of the protocol among users U1, · · · , Un wishing to establish a
common session key and let pw be their joint password chosen uniformly at random
from a dictionary Dict of size N. Let Σ = (Gen; Enc; Dec) be a public-key encryption
scheme and iO be a program indistinguishability obfuscator.

Setup: Run the key generation algorithm Gen on input 1k, where k ∈ N is a security
parameter, to obtain a pair (pk, sk) of public and secret keys (i.e., (pk, sk)
Gen(1k)). Choose a random key K to obtain an instance of a pseudorandom
function PRF. Build the program PPGKE in Figure 2, and then output pk and
PiO = iO (PPGKE) as the public parameters.

Round 1: Each user Ui proceeds as:
1. Choose ri randomly, encrypt the password pw using ri with respect to the

public key pk, and generate the ciphertext ci = Encpk(pw; ri).
2. Broadcast ci.

Key Generation: Each user Ui runs PiO on (c1, c2, · · · , cn, pw, i, ri) to obtain the
session key SK or ⊥.

Fig. 1. An honest execution of the password-based group key exchange protocol

Theorem 1. If Σ is a CCA-secure public-key encryption scheme, PRF a secure
constrained PRF, and iO a secure indistinguishability obfuscator, then the pro-
tocol in Fig. 1 is a secure password-based group key exchange protocol.

Proof. Fix a PPT adversary A attacking the password-based group key
exchange protocol. We use a hybrid argument to bound the advantage of A.
Let Hyb0 represent the initial experiment, in which A interacts with the real
protocol as defined in Sect. 2. We define a sequence of experiments Hyb1, . . .,
Hyb5, and denote the advantage of adversary A in experiment Hybi as:

Advi(A) def= 2 · Pr[A succeeds in Hybi] − 1.

We bound the difference between the adversary’s advantage in successive exper-
iments, and then bound the adversary’s advantage in the final experiment.
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Inputs: c1, c2, · · · , cn, password pw, i, ri
Constants: PRF key K, the public key pk

1. If ci �= Encpk(pw; ri), output ⊥
2. Otherwise, output PRF(K, c1, c2, · · · , cn, pw)

Fig. 2. The program PPGKE

Finally, combining all the above results gives the desired bound on Adv0(A),
the adversary’s advantage when attacking the real protocol.

Experiment Hyb1. In this experiment, whenever a session key is needed to be
computed by an honest simulated user instance U 〈i〉, we directly compute it as
sk

〈i〉
U = PRF (K, c1, · · · , cn, pwi) instead of by calling the obfuscated program

PiO(c1, · · · , cn, pwi, i, ri).

Lemma 1. Adv0(A) = Adv1(A).

Proof. Notice that, for an honest simulated instance, the verification procedure
ci = Encpk(pw; ri) in program PPGKE will always holds. Therefore, this verifica-
tion step could be omitted without changing the adversary’s view and advantage.

Experiment Hyb2. For each honest simulated user instance U
〈s〉
i , which is

involved in either an Execute or a Send query, we compute ci = Encpk(pw0; ri)
instead of ci = Encpk(pwi; ri), where pw0 represents some dummy password not
in the dictionary Dict but in the plaintext space of the encryption scheme Σ.

Lemma 2. |Adv1(A) − Adv2(A)| < negl(λ).

Proof. First note that, with respect to the honest simulated users, the veri-
fication procedure in program PPGKE has been removed in the last experi-
ment. Denote by qes = qexe + qsend. We define Hyb(η)

1 (0 ≤ η ≤ n · qes)
to be a sequence of hybrid variants of experiment Hyb1 such that, for every
η = n · ξ + γ, 0 ≤ ξ < qes, 0 ≤ γ ≤ n, the first ξ Execute or Send queries
are answered according to experiment Hyb2, the last qes − ξ − 1 queries are
replied the same as in experiment Hyb1; when the (ξ +1)-th Execute or Send
oracle is asked, the first γ ciphertexts of (c1, c2, · · · , cn) are computed according
to experiment Hyb2 and the rest n − γ ciphertexts are treated the same as in
experiment Hyb1. As one can easily verify, the hybrids Hyb(0)

1 and Hyb(n·qes)
1

are equivalent to the experiments Hyb1 and Hyb2, respectively.
In such case, if there is an adversary A whose advantage gap between Hyb1

and Hyb2 are non-negligible in security parameter, there would exist an η such
that the adversary’s advantage gap between Hyb(η−1)

1 and Hyb(η)
1 are non-

negligible. Then, we would be able to build an adversary B violating the CPA
security of the encryption scheme Σ with non-negligible advantage from the
adversary A as follows.
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Upon receiving the public key pk of the encryptions scheme Σ from his
challenger, the adversary B initializes the public parameters for the group key
exchange protocol. It selects a random K ∈ K, chooses password pwi for every
users Ui ∈ U, and picks a bit b ∈ {0, 1} for answering the Test oracle. Then,
for η = n · ξ + γ, it simulates the Execute,Send,Reveal and Test oracles
exactly as in hybrid Hyb(η)

1 except for the γ-th ciphertext of (c1, c2, · · · , cn) in
the (ξ + 1)-th Execute or Send oracle. In this case, the adversary B gives pw
and pw0 to its challenger to obtain a challenging ciphertext c∗

i that is either
Encpk(pw) or Encpk(pw0), and it uses this ciphertext in place of ci to answer
the (ξ + 1)-th Execute query. At last, B checks whether A succeeds or not. If A
succeeds in this hybrid game, then B outputs 1. Otherwise, it outputs 0.

The distinguishing advantage of B is exactly equal to the adversary A’s
advantage gap between Hyb(η−1)

1 and Hyb(η)
1 . Then, the lemma follows by

notice that the encryption scheme Σ is a CPA secure one.

Experiment Hyb3. In this experiment, we first let the simulator record the
corresponding decryption key sk when generating the public key pk. Then, we
define the following event:

PwdGuess : During the experiment, an honest user instance U 〈i〉 with password
pwi is activated by some input message (c1, · · · , ci−1,⊥, ci+1, · · · , cn), such that
there exists some index j ∈ [n] and j �= i satisfying Decsk(cj) = pwi.
Whenever the event PwdGuess happens, the adversary is declared successful and
the experiment ends; Otherwise, the experiment is simulated in the same way
as in the last experiment.

Lemma 3. Adv2(A) ≤ Adv3(A).

Proof. Even when the event PwdGuess happens in experiment Hyb2, the adver-
sary would not necessarily succeed in this case. As a result, the modification
made in experiment Hyb3 introduces a new way for the adversary to succeed.

Experiment Hyb4. Replace the PRF (·) in PPGKE by an constrained pseudo-
random function PRFC(·), arriving at the program P ′

PGKE given in Fig. 3. The
constrained set C is defined as C = Mn × Dict \ {(c1, c2, · · · , cn, pw) : pw ∈
Dict,∀i ∈ [n], ci /∈ Encpk(pw), and ∃j ∈ [n], cj ∈ Encpk(pw0)}.

Lemma 4. |Adv3(A) − Adv4(A)| < negl(λ).

Proof. Because the dummy password pw0 in experiment Hyb2 is derived from
the plaintext space randomly, then with overwhelming probability (in fact, big-
ger than (1 − n/|Dict| · 2λ)), the input to the pseudorandom function PRF
in program PPGKE will belong to the set C defined as above. Therefore, with
overwhelming probability, the modified program P ′

PGKE has the same function-
ality with the original program PPGKE . The security of the indistinguishable
obfuscator iO implies that the adversary’s advantage gap between the experi-
ment Hyb4 and Hyb3 is no more than the probability that P ′

PGKE differs from
PPGKE , thus is negligible. The lemma’s result follows.
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Inputs: c1, c2, · · · , cn, password pw, i, ri
Constants: Constrained PRF key KC , the public key pk

1. If ci �= Encpk(pw; ri), output ⊥
2. Otherwise, output PRFC(KC , c1, c2, · · · , cn, pw)

Fig. 3. The program P ′
PGKE

Experiment Hyb5. Recall that only the situation when event PwdGuess does
not happen (i.e., (c1, c2, · · · , cn, pwi) /∈ C) is considered since Hyb3. Then, when
a session key is needed to be computed by an honest user instance, we evaluate
it as sk

〈i〉
U ←R {0, 1}λ instead of sk

〈i〉
U = PRF (K, c1, c2, · · · , cn, pwi).

Lemma 5. |Adv4(A) − Adv5(A)| < negl(λ).

Proof. We reduce the problem of distinguishing the experiments Hyb4 and
Hyb5 to the security of constrained PRF presented above. Assume that A is a
protocol adversary that is defined as in Hyb4. We construct a PRF adversary B
against the security of the constrained pseudorandom function PRF as follows.
When the adversary B receives the constrained key kC of PRF with respected
to the constrained set C, it simulates the protocol execution for A as in Hyb4.
Note that the program P ′

PGKE is used in this experiment and all the queries
asked by A could be answered with overwhelming probability by utilizing it.
However, when a honest simulated user instance needs to generate a session key,
B asks its own challenge query, getting back either a value computed from the
function PRF or a value selected uniformly at random, and used it as the session
key. Finally, B checks whether A succeeds or not. If A succeeds, then B outputs
1. Otherwise, it outputs 0.

It follows that the advantage of B is exactly equal to the adversary A’s
advantage gap between Hyb4 and Hyb5.

Bounding the Advantage in Hyb5. Consider the different ways for the adver-
sary to succeed in Hyb5:

1. The Event PwdGuess happens;
2. The adversary successfully guesses the bit used by the Test oracle.

Since all oracle instances are simulated using dummy passwords, the adver-
sary’s view is independent of the passwords that are chosen for each group of
users. Then we have Pr[PwdGuess]≤ Q(λ)/Dλ, where Q(λ) denotes the num-
ber of Send oracle queries and Dλ denotes the dictionary size. Conditioned on
PwdGuess not occurring, the adversary can succeed only in case 2. But since all
session keys defined throughout the experiment are chosen uniformly and inde-
pendently at random, the probability of success in this case is exactly 1/2. Then,
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we have

Pr[Success] ≤ Pr[PwdGuess] + Pr[Success|PwdGuess] · (1 − Pr[PwdGuess])

=
1
2

+
1
2

· Pr[PwdGuess]

≤ 1
2

+
Q(λ)
2 · Dλ

and so Adv5(A) ≤ Q(λ)
Dλ

. Taken together, Lemmas 1–5 imply that Adv0(A) ≤
Q(λ)
Dλ

+ negl(λ) as desired. �

5 Two-Round Password-Based Group Key Exchange
Protocol with No Setup

In this section, we show how to remove the trusted setup and common reference
string (CRS) from the password-based group key exchange protocol in the previ-
ous section. Intuitively, letting each user publish an obfuscated program and run
setup for himself might fully resolve this problem. However, unlike the protocol
I in the previous section, the obfuscated programs generated by group users are
susceptible to a “replace” attack - i.e., the adversary may replace the program
with a malicious program that simply outputs the input password. Then, the
message broadcasted by an honest user may disclose the information about pass-
word. With this message, the adversary can mount an off-line dictionary attack
and obtain the password, thus breaking the security of protocol. We believe that
such attacks are the principle reason that the existing constructions require a
trusted setup to publish public parameters.

To overcome the above difficulties, we present a new methodology for con-
structing password-based group key exchange protocol with no setup. The basic
idea of our construction follows the Burmester-Desmedt [3,4] construction where
the Diffie-Hellman key exchanges are replaced by indistinguishability obfusca-
tion. As in the Burmester-Desmedt protocol, our protocol assumes a ring struc-
ture for the users so that we can refer to the predecessor and successor of a user.
Each user in the group will run setup for himself and his neighbors (predecessor
and successor), and generate two obfuscated programs.

– The first obfuscated program P iO−dec is used to obtain other users’ random
value s. This program takes as input “ciphertext” c and user password pw,
and outputs the corresponding “plaintext” s.

– The second obfuscated program P iO is used to generate the shared key with
the user’s neighbors. This program takes as input two random value si and
si+1 generated by the user Ui and its neighbor Ui+1 respectively, and outputs
the shared Ki. However, to make the key Ki shared only between Ui and
its neighbor Ui+1 (i.e., other users cannot obtain the key Ki), an obfuscated
program P iO for PRF will be required the knowledge of a seed r to operate.
More precisely, each user generates a seed ri and computes si = PRG(ri),
where PRG is a pseudorandom generator.
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Protocol II

Consider an execution of the protocol among users U1, · · · , Un wishing to establish a
common session key and let pw be their joint password chosen uniformly at random
from a dictionary Dict of size N. Let F1 and F2 be two pseudorandom functions
(PRF), PRG1 and PRG2 be two pseudorandom generators, and iO be a program
indistinguishability obfuscator.

Round 1: Each user Ui proceeds as:
1. Choose rLi and rRi randomly, compute sLi = PRG1(r

L
i ) and sRi = PRG1(r

R
i ).

2. Choose a PRF key Ki−enc for PRF F1 and a PRF key Ki for PRF F2.
3. Compute cLi = sLi + F1(Ki−enc, pw, Ui, Ui−1) and cRi = sRi +

F1(Ki−enc, pw, Ui+1, Ui).
4. Build the program P dec

i in Figure 5, and the program Pi in Figure 6.
5. Broadcast cLi , cRi , P iO−dec

i = iO (P dec
i ) and P iO

i = iO (Pi).
Round 2: Each user Ui proceeds as:

1. Run P iO−dec
i+1 on (cLi+1, pw, Ui+1, Ui) to obtain sLi+1.

2. Run P iO−dec
i−1 on (cRi−1, pw, Ui, Ui−1) to obtain sRi−1.

3. Run P iO
i on (sLi+1, s

R
i , rRi , Ui+1, Ui) to obtain Ki.

4. Run P iO
i−1 on (sLi , sRi−1, r

L
i , Ui, Ui−1) to obtain Ki−1.

5. Compute Xi = Ki/Ki−1 and broadcast Xi.
Key Generation: Each user Ui computes the MSK = Kn

i · ∏n−1
j=1 Xn−j

i+j and the
session key SK = PRG2(MSK).

Fig. 4. An honest execution of No-Setup password-based group key exchange protocol

In our protocol, each group user Ui executes two correlated instances to obtain
Ki−1 and Ki, one with his predecessor and one with his successor so each user can
authenticate his neighbors, and then computes and broadcasts Xi = Ki/Ki−1.
After this round, each user is capable of computing the group session key SK.
For the message Xi = Ki/Ki−1 broadcasted by Ui in the second round, Ki is
generated by Ui’s own program Pi, which cannot be replaced. Moreover, the
output of the first program P iO−dec is only as the input of the second program
P iO. Thus, even if the adversary replace P iO−dec and P iO into malicious pro-
grams, from the messages broadcasted, he cannot obtain any information about
the password or the session key.

A formal description appears in Fig. 4. In an honest execution of the protocol,
it is easy to verify that all honest users in the protocol will terminate by accepting
and computing the same MSK =

∏n
j=1 Kj and the same session key SK. There-

fore, the correctness of the protocol follows directly. For the security, we have the
following theorem.

Theorem 2. If PRG is a secure pseudorandom generator, PRF a secure con-
strained PRF, and iO a secure indistinguishability obfuscator, then the protocol
in Fig. 4 is a secure password-based group key exchange protocol with no setup.
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Inputs: c, password pw, U1, U2

Constants: PRF F1 key Ki−enc

Outputs: c − F1(Ki−enc, pw, U1, U2)

Fig. 5. The program P dec
i

Inputs: s1, s2, r, U1, U2

Constants: PRF F2 key Ki

1. If PRG(r) = s1 or PRG(r) = s2, output F2(Ki, s1, s2, U1, U2)
2. Otherwise, output ⊥

Fig. 6. The program Pi

Proof. Fix a PPT adversary A attacking the password-based group key
exchange protocol. We construct a sequence of experiments Hyb0, . . . ,Hyb13,
with the original experiment corresponding to Hyb0. Let Advi(A) denote the
advantage of A in experiment Hybi. To prove the desired bound on Adv(A) =
Adv0(A), we bound the effect of each change in the experiment one the advan-
tage of A, and then show that Adv13(A) ≤ Q(λ)

D(λ) (where, recall, Q(λ) denotes
the number of on-line attacks made by A, and D(λ) denotes the dictionary size).

Experiment Hyb1. Here we change the way Execute queries are answered.
Specifically, for i = 1, . . . , n, we will choose random sL

i , sR
i ∈ {0, 1}2λ instead of

generating them from PRG. Let the set Ŝ = {sL
i , sR

i |i = 1, . . . , n}. The security
of PRG yields the Lemma 6.

Lemma 6. | Adv0(A) − Adv1(A) |≤ negl(λ).

Experiment Hyb2. In this experiment, We constrain the PRF F2 so that it
can only be evaluated at points (s1, s2, U1, U2) where s1 /∈ Ŝ or s2 /∈ Ŝ. Then
we replace F2 with FC

2 in the program Pi, arriving at the program P ′
i given in

Fig. 7. In respond to a query Execute, output P iO
i = iO (P ′

i ).

Lemma 7. | Adv1(A) − Adv2(A) |≤ negl(λ).

Proof. Note that with overwhelming probability, none of s ∈ S in Experiment
Hyb1 has a pre-image under PRG. Therefore, with overwhelming probability,
there is no input to P iO

i that will cause PRF F2 to be evaluated on points of the
form (s1, s2, U1, U2) where s1 ∈ Ŝ and s2 ∈ Ŝ. We can conclude that the programs
Pi and P ′

i are functionally equivalent. Then based on the indistinguishability
obfuscation property, it is easy to see that the hybrids Hyb1 and Hyb2 are
computationally indistinguishable. Thus, security of iO yields the lemma.
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Inputs: s1, s2, r, U1, U2

Constants: Constrained PRF F2 key KC
i

1. If PRG(r) = s1 or PRG(r) = s2, output FC
2 (KC

i , s1, s2, U1, U2)
2. Otherwise, output ⊥

Fig. 7. The program P ′
i

Experiment Hyb3. In this experiment, we change once again the simulation
of the Execute queries so that the value Ki for i = 1, . . . , n are chosen as a
random string of the appropriate length.

Lemma 8. | Adv2(A) − Adv3(A) |≤ negl(λ).

Proof. This follows from the security of PRF as a constrained PRF (as in
Definition 4). We construct a PRF adversary B that breaks the security of PRF
as a constrained PRF as follows: adversary B simulates the entire experiment
for A. In response to Execute(U 〈i1〉

1 , . . . , U
〈in〉
n ) query, B computes cL

i , cR
i with

correct password pw exactly as in experiment Hyb2. B also asks its PRF F2

oracle and thus always reveals the correct key. At the end of the experiment,
B makes a real-or-random challenge query for the constrained function PRFC

as defined above. One can easily see that, B is given a real PRF or a random
value, then its simulation is performed exactly as in experiment Hyb2 or exper-
iment Hyb3, respectively. Thus, the distinguishing advantage of B is exactly
| Adv2(A) − Adv3(A) |.
Experiment Hyb4. In this experiment, we change once again the simulation
of the Execute queries so that the value MSK is chosen as a random string of
the appropriate length.

Lemma 9. Adv3(A) = Adv4(A).

Proof. Note that in the simulation of Execute oracle in experiment Hyb3, the
values Ki for i = 1, . . . , n are chosen at random. Then, from the transcript
T = {X1, . . . , Xn} that the adversary receives as output for an Execute query,
the values Ki are constrained by the following n equations.

X1 = K1/Kn

...
Xn = Kn/Kn−1

Of these equations, only n − 1 are linearly independent. Furthermore, we have

MSK =
n∏

i=1

Ki.
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Since the last equation is linearly independent of the previous ones, MSK that
each user computes in an Execute query is independent of the transcript T that
the adversary sees. Thus, no computationally unbounded adversary can tell the
experiment Hyb3 apart from Hyb4, i.e. Adv3(A) = Adv4(A).

Experiment Hyb5. In this experiment, we change once more the simulation of
the Execute queries so that the session key SK is chosen uniformly at random.
The security of PRG guarantees that its output is statistically close to be uniform
when given a random value as input, which yields the Lemma10.

Lemma 10. | Adv4(A) − Adv5(A) |≤ negl(λ).

Experiment Hyb6. In this experiment, we change last time the sim-
ulation of the Execute queries. Specifically, in response to a query
Execute(U 〈i1〉

1 , . . . , U
〈in〉
n ) we now compute cL

i = sL
i + F1(pw0, Ui, Ui−1) and

cR
i = sR

i +F1(pw0, Ui+1, Ui) for i = 1, . . . , n, where pw0 represents some dummy
password not in the dictionary Dict. We note that in the simulation of Exe-
cute oracle in experiment Hyb1, the values sL

i , sR
i for i = 1, . . . , n are chosen at

random, and the function F1 is pseudorandom. So the Lemma 11 holds.

Lemma 11. | Adv5(A) − Adv6(A) |≤ negl(λ).

Experiment Hyb7. In this experiment we begin to modify the Send oracle.
Let Send0(Π

j
Ui

, U1, · · · , Un) denote a “prompt” message that causes the user
instance Πj

Ui
to initiate the protocol in a group G = {U1, · · · , Un} that contains

user Ui; let Send1(Π
j
Ui

, {(cL
1 , cR

1 , P iO−dec
1 , P iO

1 ), . . . , (cL
n , cR

n , P iO−dec
n , P iO

n )})
denote sending the message {(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . , (cL

n , cR
n , P iO−dec

n , P iO
n )}

to user instance Πj
Ui

; let Send2(Π
j
Ui

, {X1, . . . , Xn}) denote sending the message
{X1, . . . , Xn} to user instance Πj

Ui
.

In experiment Hyb7 we modify the way Send0 query is handled. In
response to a query Send0(Π

j
Ui

, U1, · · · , Un), Πj
Ui

chooses random sL
i , sR

i ∈
{0, 1}2λ instead of generating them from PRG and computes the cL

i = sL
i +

F1(pw0, Ui, Ui−1) and cR
i = sR

i + F1(pw0, Ui+1, Ui), where pw0 represents some
dummy password not in the dictionary Dict.

Lemma 12. | Adv6(A) − Adv7(A) |≤ negl(λ).

Proof. The proof is similar to those of Lemmas 6 and 11, and follows easily from
the security of PRG and PRF.

Experiment Hyb8. In this experiment, we change again the simulation of the
Send0 query. We constrain the PRF F1 so that it can only be evaluated at points
(pw,U1, U2) where pw is contained in the dictionary Dict. Then we replace F1

with FC
1 in the program P dec

i , arriving at the program P̂ dec
i given in Fig. 8. In

respond to a query Send0, output P iO−dec
i = iO (P̂ dec

i ).

Lemma 13. | Adv7(A) − Adv8(A) |≤ negl(λ).
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Inputs: c, password pw, U1, U2

Constants: Constrained PRF F1 key KC
i−enc

Outputs: c − FC
1 (KC

i−enc, pw, U1, U2)

Fig. 8. The program P̂ dec
i

Proof. Since the group users share a password chosen uniformly at random from
the dictionary Dict, we can conclude that the programs P dec

i and P̂ dec
i are func-

tionally equivalent. Then based on the indistinguishability obfuscation property,
it is easy to see that the hybrids Hyb7 and Hyb8 are computationally indistin-
guishable. Thus, security of iO yields the lemma.

Experiment Hyb9. In this experiment, we change the simulation of the
Send1 query. In response to a query Send1, if {(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . ,

(cL
n , cR

n , P iO−dec
n , P iO

n )} was output by a previous query of the form Send0, the
values Ki and Ki−1 are chosen uniformly at random. As the lemma below shows,
the difference in the advantage between Hyb8 and Hyb9 is negligible. The proof
of Lemma 14 is omitted here since it follows easily from the security of PRF F1

as a constrained PRF, where the outputs of Send0 are always using dummy
password.

Lemma 14. | Adv8(A) − Adv9(A) |≤ negl(λ).

Experiment Hyb10. In this experiment, we change again the simulation of the
Send1 query. In response to a query Send1, if {(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . , (cL

n ,
cR
n , P iO−dec

n , P iO
n )} was generated by the adversary using correct password pw,

the experiment ends.

Lemma 15. Adv9(A) ≤ Adv10(A).

Proof. The only situation in which Hyb10 proceeds differently from Hyb9 occurs
when the adversary correctly guess the password. All this does is introduce a
new way for the adversary to succeed, so Adv9(A) ≤ Adv10(A).

Experiment Hyb11. In this experiment, we change once more the
simulation of the Send1 query. In response to a query Send1, if
{(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . , (cL

n , cR
n , P iO−dec

n , P iO
n )} was generated by the adver-

sary using incorrect password, the values Ki is chosen uniformly at random.

Lemma 16. | Adv10(A) − Adv11(A) |≤ negl(λ).

Proof. Note that, for user instance Πj
Ui

, the program P iO
i can not be altered

by the adversary. Moreover, since sR
i as one of inputs of P iO

i is generated, the
adversary can not get it or change it. Then the proof follows easily from the
security of PRF F2 as a constrained PRF. We construct a PRF adversary B
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that breaks the security of PRF as a constrained PRF as follows: adversary B
simulates the entire experiment for A. In response to Send query, B responds
with correct password pw exactly as in experiment Hyb10. B also asks its PRF
F2 oracle and thus always reveals the correct key. At the end of the experiment,
B makes a real-or-random challenge query for the constrained function PRFC

as defined above. One can easily see that, B is given a real PRF or a random
value, then its simulation is performed exactly as in experiment Hyb10 or exper-
iment Hyb11, respectively. Thus, the distinguishing advantage of B is exactly
| Adv10(A) − Adv11(A) |.
Experiment Hyb12. In this experiment, we change once more the simulation
of the Send2 query. In response to a query Send2(Π

j
Ui

, {X1, . . . , Xn}), the value
MSK is chosen uniformly at random.

Lemma 17. Adv11(A) = Adv12(A).

Proof. The proof of Lemma 17 uses arguments similar to those in the proof of
Lemma 9, omitted.

Experiment Hyb13. In this experiment, we change again the simulation of the
Send2 query so that the session key SK is chosen uniformly at random. The
security of PRG guarantees that its output is statistically close to be uniform
when given a random value as input, which yields the Lemma18.

Lemma 18. | Adv12(A) − Adv13(A) |≤ negl(λ).

Bounding the Advantage in Hyb13. We now conclude the experiment Hyb13.
First, the session keys of all accepting instances are chosen at random. Second, all
oracle instances are simulated using dummy passwords, so the adversary’s view
of the protocol is independent of the passwords that are chosen for each group of
users. Finally, the probability that an adversary guesses the correct password is at
most Q(λ)

Dλ
. Similar to the proof of Theorem1, we have Adv13(A) ≤ Q(λ)

Dλ
. Taken

together, Lemmas 6–18 imply that Adv0(A) ≤ Q(λ)
Dλ

+ negl(λ) as desired. �

6 Conclusion

In this paper, we proposed two round-optimal constructions for password-based
group key exchange protocol. In particular we obtain a one-round protocol in the
common reference string model and a two-round protocol in the “plain” model
where there is no additional setup. Both protocols are provably secure in the
standard model. It remains an interesting open problem to further reduce the
computational costs of group users, whilst maintaining its optimal communica-
tion rounds.
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