Foundations of Reconfigurable PUF's

Jonas Schneider®™) and Dominique Schroder

Saarland University, Saarbriicken, Germany
s9joscne@stud.uni-saarland.de

Abstract. A Physically Unclonable Function (PUF) can be seen as
a source of randomness that can be challenged with a stimulus and
responds in a way that is to some extent unpredictable. PUF's can be used
to provide efficient solutions for common cryptographic primitives such
as identification/authentication schemes, key storage, and hardware-
entangled cryptography. Moreover, Brzuska et al. have recently shown,
that PUFs can be used to construct UC secure protocols (CRYPTO
2011). Most PUF instantiations, however, only provide a static chal-
lenge/response space which limits their usefulness for practical instan-
tiations. To overcome this limitation, Katzenbeisser et al. (CHES 2011)
introduced Logically Reconfigurable PUFs (LR-PUFs), with the idea to
introduce an “update” mechanism that changes the challenge/response
behaviour without physically replacing or modifying the hardware.

In this work, we revisit LR-PUFs. We propose several new ways to
characterize the unpredictability of LR-PUF's covering a broader class of
realistic attacks and examine their relationship to each other. In addition,
we reconcile existing constructions with these new characterizations and
show that they can withstand stronger adversaries than originally shown.
Since previous constructions are insecure with respect to our strongest
unpredictability notion, we propose a secure construction which relies on
the same assumptions and is almost as efficient as previous solutions.

Keywords: Physically unclonable functions - Logically reconfigurable -
Tamper-resistance

1 Introduction

Physically Unclonable Function (PUFs) are non-programmable hardware tokens
that can be challenged with a stimulus and output responses that are unpre-
dictable. The unpredictable output of the PUFs results from the manufac-
tory process and cannot be controlled even by the producer itself. PUFs are
extremely useful to build cryptographic applications, such as e.g., identifica-
tion/authentication schemes, key storage, and hardware-entangled cryptography,
and also to obtain protocols that are secure in Canetti’s UC framework as shown
by Brzuska et al. [4]. Most PUF instantiations, however, only provide a static
challenge/response space which limits their usefulness for practical instantia-
tions. To overcome this limitation, Katzenbeisser et al. [8] introduced Logically
© Springer International Publishing Switzerland 2015

T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 579-594, 2015.
DOI: 10.1007/978-3-319-28166-7_28



580 J. Schneider and D. Schroder

Reconfigurable PUFs (LR-PUFs), with the idea to introduce an “update” mech-
anism that allows to change the input/output behaviour of a PUF. In this work,
we revisit LR-PUFs presenting several ways to characterize the unpredictabil-
ity, we examine their relationship to each other, and we show that previous
constructions can withstand stronger adversaries than originally shown.

1.1 Background and Related Work

Physically Unclonable Functions were proposed as Physical One- Way Functions
[13]. They consist of a physical device which can be challenged with a stimulus
and responds in a way that is to some extent unpredictable.

— The PUF provides unpredictable, but robust responses. This means the
response for a given challenge does not vary beyond a typically low bound,
but it should be not be possible to predict the response for a stimulus that
has not yet been applied.

— The PUF is not clonable, i.e., one cannot produce a device which exhibits the
same response behavior. This goes even as far as not being able to recreate
the same behavior if one has physical access to the device itself and not just
a list of challenge-response pairs.

Reconfiguration Full- PUF-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Access Access Backward
LR-PUF

Query c! LOgiC EReaponbe T
| (| State )
PUF
St-Access Plain  Forward
Fig. 1. Schematic of a generic Logically Fig.2. The relations between the
Reconfigurable PUF construction. unpredictability notions we introduce.

A third property that is usually cited is tamper-evidence, which is closely related
to unclonability. These properties are derived from imprecisions in the manufac-
turing process of some other object, such as differing gate delays in an integrated
circuit. For a survey on the multitude of different PUF constructions, we refer
the reader to [11]. A formal description of these properties has been the subject
of many research efforts. An in-depth treatment to the definition of these proper-
ties that proposes a game-based framework for the description of PUF properties
and even PUF creation is given in [2]. Brzuska et al. propose an entropy based
characterization of the unpredictability property and examine how PUFs can be
integrated into the UC-security framework in [4]. We use their formalization of
PUFs as families of distributions.

The tamper-evidence property forbids most PUF designs to have a stimulus-
response behavior which is anything but static. In applications where PUF's serve



Foundations of Reconfigurable PUFs 581

as physical tokens for e.g., access control this can be a disadvantage. Consider
for example that the PUF-token should be transferable to a different person.
The traditional PUF designs do not allow this, unless the new owner of the
PUF should be allowed to carry the same credentials as the previous owner.
Thus, there have been efforts to construct reconfigurable PUFSs, the first being
Controlled Physical Random Functions [6], and a more recent one being Recon-
figurable PUFs, short rPUFs [10].

Both of these approaches have their own limitations. Controlled PUFs effec-
tively limit the PUF response space a single user can draw from, thereby lessen-
ing security. Physically reconfigurable rPUFs require a potentially costly physical
reconfiguration process, and there are no guarantees regarding the effectiveness
of that process.

A solution which aims to sidestep these limitations are Logically Reconfig-
urable PUFs (LR-PUFs) [8]. In this approach, reconfiguration leaves the physical
device untouched and is instead performed on a piece of state, which is stored
together with the PUF. The stimulus mechanism of the PUF is encapsulated
in a query algorithm, which processes challenges by entangling them in some
way with the current state of the device. See Fig.1 for a visual representation
of the LR-PUF concept. The idea is a combination of the state and the chal-
lenge to perform a logical reconfiguration, in which a new state is chosen instead
of altering the actual physical device. This preserves the original input/output
characteristics of the PUF, but does not require physical manipulation of the
device.

1.2 Applications

PUFs have a wide range of applications such as key extraction and authentication
[9,16-18], remote attestation [16], and tamper-proof and fault injection resilient
implementations of cryptographic primitives [1,3,15]. Most of these applications
assume that the PUFs are somewhat ideal in the sense that they support large
challenge and/or response spaces. Since most of the known PUF instantiations
do not fulfil these properties, LR-PUF's seem to be better suited. Another appli-
cation of LR-PUF's are electronic fare systems for public transport as suggested
in [8]. In this setting, an access token is equipped with an LR-PUF, that serves
to authenticate the passenger at the entry points to the transport system and
can be used to secure a credit stored on the token. The reconfiguration capability
of the device enables the easy reuse of tokens, as reconfiguration of the LR-PUF
is (ideally) equivalent to physically replacing the device without causing the cost
of a new device.

Another interesting application of LR-PUF technology is presented in [5].
Here, the LR-PUF is used to provide secure key storage and helps to prevent
cloning and downgrading of embedded software authenticated using the stored
keys. In this application, software is bound to an embedded device by encrypting
it with a device-specific key. This key is generated by querying a PUF that is
part of the device, making the key dependent on the unique properties of the
PUF in each device. This prevents cloning of the software to a new device, as



582 J. Schneider and D. Schroder

the key on a cloned device will be generated differently. The reconfigurability
is used in the event of a software update, to prevent downgrading to an older
version of the software. In this event, a new key to encrypt the updated software
is derived, and the old software version will no longer be useful, because the old
key can no longer be retrieved from the LR-PUF.

1.3 Contribution

We revisit the LR-PUFs as introduced in [8] and present several ways to charater-
ize the unpredictability notion. We reconsider existing constructions with respect
to these new measures, and we propose a novel construction that is secure w.r.t.
our strongest notion of unpredictability. In the following, we discuss each con-
tribution more in detail.

Definitions. We introduce four different notions of unpredictability. The
first one is called Plain-unpredictability and it is a natural extension of
backward/forward-unpredictability of [8]. The basic idea of this definition is
to allow the adversary to reconfigure the PUF several times. The second
notion, called St-Access-unpredictability, removes the assumption that the
state is stored in a tamper-evident manner and allows the adversary to directly
write the state. The third notion, called PUF-Access-unpredictability, mod-
els the case where the adversary manages to bypass the query and reconfigu-
ration logic and where it gains direct access to the PUF. The fourth notion,
called Full-Access-unpredictability, combines PUF-Access-unpredictability
and St-Access unpredictability in the sense that the adversary has direct access
to the PUF and is allowed to set the state maliciously. Perhaps surprisingly there
is an obstacle when trying to compare the power of state-setting adversaries to
PUF-access adversaries. The issue is that a PUF-access adversary might be able
to completely precompute the behavior of an LR-PUF given the current state,
which makes both notions incomparable. A visual representation of these rela-
tions is given in Fig. 2, where an arrow A — B denotes, that notion A implies
notion B and an arrow A 4 B means that notion A does not imply notion B.

Analysis. In Appendix C we give a comprehensive security analysis of the “speed-
optimized” and the “area-optimized-construction” from [8] w.r.t. our unpre-
dictability notions. The former employs a collision resistant hash function both
to combine state information and query and to generate a new state frome the
old one. The latter uses an identical reconfiguration algorithm, but is geared
towards PUFs with small area, i.e., small input range by providing a query
mechanism that involves iteratively constructing a response from smaller sub-
queries. (For full definitions, please refer to Fig. 8). Our analysis shows that both
constructions are St-Access-unpredictable. Previously, it was only known that
both constructions are backward (resp. forward) unpredictable. The practical
consequences of this result is that the scheme remains secure, even if the state
is mot stored in a tamper-evident manner. On the negative side we show that
both constructions are not secure against adversaries that have direct access to



Foundations of Reconfigurable PUFs 583

the PUF. In fact, our result here is more general, showing that any LR-PUF
cannot satisfy this notion where access to the underlying PUF makes the query
and reconfiguration algorithms completely predictable to the adversary.

Construction. We propose a simple LR-PUF construction that is Full-Access-
unpredictable. Our scheme can be seen as a randomized variant of the
“speed-optimized” construction from [8] with the difference being that our recon-
figuration algorithm samples a fresh state st upon reconfiguration and it evalu-
ates the underlying PUF on w « Hash(st || ¢). This construction relies on the
same computational assumptions as the scheme of [8], it is almost as efficient,
but it satisfies both Full-Access- and St-Access-unpredictability.

1.4 Outline

In Sect.2 we give some background by reviewing a formalization of Physically
Unclonable Functions and present our formalization of LR-PUF's. Section 3 intro-
duces the new unpredictability notions we propose and the relations among them.
Section 4 contains the specification of a construction which achieves the strongest
of our unpredictability notions.

2 Logically Reconfigurable PUF's

2.1 Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a noisy function that is realized
through a physical object [13]. The PUF can be queried with a challenge ¢
and answers with a response r. The output of the PUF is noisy meaning that
querying the PUF twice with the same challenge yields most likely two different
but closely related responses. In the following we recall the definition of PUFs
and their main security property given in [4].

Definition 1 (Physically Unclonable Functions). Let p be the dimension
of the range of the PUF responses of the PUF family, and let d,,sise be a bound on
the PUF’s noise. A pair P = (S,E) is a family of (p, dnoise)-PUF's if it satisfies
the following properties:

Index Sampling. Let Ty be an index set. The sampling algorithm S outputs,
on input the security parameter 1*, an index id € Ix. We do not require that
the index sampling can be done efficiently. Each index id € I, corresponds
to a set Dy of distributions. For each challenge ¢ € {0, 1}’\, Diq contains
a distribution Dig(c) on {0,1}(). We do not require that Dig has a short
description or an efficient sampling algorithm.

Evaluation. The evaluation algorithm E gets as input a tuple (1*,id, c), where
c € {0,1}*. It outputs a response r € {0,1}*N according to distribution Dig.
It is not required that E is a PPT algorithm.

Bounded Noise. For all indices id € Z, for all challenges ¢ € {0,1}*, we have
that when running E(1*,id, ¢) twice, then for any two outputs ri,ro that are
produced the Hamming distance dis(r1,72) is smaller than dyeise(N).



584 J. Schneider and D. Schroder

Unpredictability of PUFs. Loosely speaking, a PUF is unpredictable if it
is difficult to predict the response of the PUF to a given, previously unknown
challenge. This intuition is formalized in an experiment where the adversary can
adaptively query the PUF on challenges of its choice and wins if it can predict
the response to a fresh challenge of its choice, within the bound d;eise. Fresh
means that the adversary did not query the PUF on this challenge.

Definition 2 (PUF-Unpredictability). A family of PUFs P = (S,E) is
unpredictable if for any PPT algorithm A the probability that the experiment
PREZ(N) evaluates to 1 is negligible (in the security parameter \), where

Ezxperiment PRE()\)
id «— S(1%)
(c*,1*) « AE(id)
r— E(c¥)
Return 1 iff dis(r,7*) < dpoise and c* is fresh.

For the sake of simplicity we use this game based definition of unpredictabil-
ity. A formulation with respect to entropy contained in the PUF responses is
given in [4]. A comprehensive and more in-depth game-based formulation of
PUF properties is found in [2].

2.2 Definition of Logically Reconfigurable PUFs

In practice, many PUF instances have only a restricted challenge and response
space, such that after a certain number of queries they cannot be used anymore.
The basic idea of Logically Reconfigurable PUF (LR-PUFSs) is to extend the PUF
by a control logic that allows to change the challenge and response behavior of
the system. Our definition is similar to the one of [8].

Definition 3 (Logically Reconfigurable PUFSs). Let P = (S,E) be a family
of (p,dnoise)-PUFs. A logically reconfigurable PUF (LR-PUF) with black-box
access to P is a tuple of efficient algorithms L = (Setups’E, QueryE, chfE), which
satisfies the following properties

Setup. The Setup algorithm takes as input the security parameter 1. It outputs
an index id € T, determining the underlying PUF from P and an initial state
st € {0,1}N) of the LR-PUF. We require that £(\) > \.

Query mechanism. The Query,, algorithm takes as input a challenge ¢ €
{0,1}* and outputs a response v € p(\).

Reconfiguration. The Renfg algorithm updates the state of the LR-PUF to a
new state st’ € {0,1}*X) which is (possibly probabilistically) computed from
the old state st. The new state is also output.

The three algorithms may interact with the underlying PUF family via the oracles
E and S. We will often omit giving the oracle access explicitly. Additionally, we
assume that the noise of the LR-PUF responses is bounded in the same way as
the noise of the underlying PUF’s responses.



Foundations of Reconfigurable PUFs 585

Remark 1. The setup algorithm of almost all constructions in this paper is the
same and consists of the following steps. Setup(1*) generates the underlying PUF
id «g S(1*), chooses a string st «g¢ {0, 1}*") uniformly at random, and outputs
(id, st). In the following, unless stated otherwise, all constructions will use this
standard setup algorithm.

Unpredictability of LR-PUFs. Ideally, an LR-PUF in one specific state
should be as unpredictable as its underlying physical PUF, so the internal state
of the LR-PUF can be seen as a mapping from LR-PUF queries to PUF queries
that is ideally a permutation. Reconfiguration then constitutes a “shuffling” of
this mapping, such that a completely new permutation is reached. To formalize
this, the authors of [8] propose two complimentary notions of unpredictability:

Forward-unpredictability: The reconfiguration changes the mapping in such
a way, that knowledge about the previous state does not enable an adversary
to predict the challenge-response behavior for the reconfigured LR-PUF.

Backward-unpredictability: The reconfiguration reveals no additional infor-
mation about the old internal state, i.e., after reconfiguration an adversary
should not be able to predict the challenge-response behavior for the old
state.

We provide a formal characterization of these properties as derivatives of our
plain unpredictability notion (see Definition4).

3 New Notions of Unpredictability

In this section we extend the original unpredictability notion by considering
strengthened adversaries. We show how the new notions relate to each other
and in which scenarios their consideration might be beneficial.

3.1 Multiple Reconfigurations

In [8], the unpredictability experiments revolve around a single reconfigura-
tion process. However, an adversary might witness several reconfigurations and
thereby deduce some information about the influence of the state on the LR-
PUFs behavior. This motivates our first unpredictability definition, which is an
extension of the backward /forward-unpredictability properties to multiple recon-
figurations of the LR-PUF. To this end, we provide the adversary access to a
reconfiguration oracle, which invokes the reconfiguration algorithm.

Let Renf denote the reconfiguration oracle for an LR-PUF L with current
state st. The oracle Renf accepts two kinds of inputs: L, upon which Renfy; is
invoked, and st’ upon which the internal state of L is set to st’. The latter input
functionality allows the adversary to program the state and is only available to
state-setting adversaries (see Appendix C.2). Let S denote the list of states the
adversary obtains over the course of an experiment, be it through Setup or the
oracle Renf. Further, let Query denote the query oracle, which takes as input a
state st and a challenge ¢ and returns Query,, (c) to the adversary. The adversary
can only invoke the query oracle with states stored in S.



586 J. Schneider and D. Schroder

Definition 4 (Plain-Unpredictability). An LR-PUF L = (Setup, Query,
Renfgt) is unpredictable if for any PPT adversary A the probability that the
experiment PLAINﬁ()\) evaluates to 1 is negligible (in the security parameter \),
where the game is defined in Fig. 3.

Remark 2. We can obtain the backward- and forward-unpredictability notions
described in [8] by considering restricted adversaries that invoke Renf(L) only
once, setting and obtaining the new state st', in the following only query
Query(st’, ).

Corollary 1. Let L be a Plain-unpredictable LR-PUF, then L is also backward-
and forward-unpredictable.

Separation of Plain- and Backward/Forward-Unpredictability. In
what follows we show that Plain-unpredictability is strictly stronger than
the previous notions. Let Backward5(\) (resp. Forward4()\)) denote

Pr PLAINﬁ(/\) = 1] where A is a backward-unpredictability adversary (resp.

forward-unpredictability adversary) as described above. We separate the secu-
rity notions with the following two propositions.

Proposition 1. If collision-resistant hash functions relative to a PUF exist (cf.
Appendix A), then there erist backward-unpredictable LR-PUFs, which are not
Plain-unpredictable.

The basic idea of our counterexample is to let the adversary learn a prediction
by calling the reconfiguration oracle. This prediction, however, only helps him in
combination with the evaluation oracle, that outputs the evaluation on a point

Experiment PLAIN4()\) Experiment ST-ACCESS4 (\)
(id, st) « Setup(1*) (id, st) « Setup(1*)
(st*,c*,r*) . AQuery,chf(L)(l)\’St) (St*,C*,T‘*) P AQuery,chf(1>\7St)
r < Query - (c") r < Queryg(c)
Output 1 iff dis(r,7*) < dpoise and c¢” Output 1 iff dis(r, 7*) < dnoise and
was not queried to Query(st*,-) ¢* was not queried to Query(st™, )
and st* € S. and st* € S.
Fig. 3. Security of plain unpredictabil- Fig. 4. Security of state-setting unpre-
ity. dictability.
Experiment PUF-ACCESS4 () Experiment FULL-ACCESS4 ()\)
(id, st) « Setup(1*) (id, st) < Setup™E(1*)
(St*, C*7 T*) « ARCHf(L)’E(l/\7 St) (St*, 0*7 7’*) « Achf,E(lA’ St)
Set LR-PUF state to st* using Renf(st™) Set LR-PUF state to st* using Renf(st*)
st’ < Renfgex st’ < Renfex
r < Query/ (c*) r < Query (c)
Output 1 iff dis(r,7*) < dpoise- Output 1 iff dis(r, 7*) < dnoise-
Fig. 5. Security of direct access unpre- Fig. 6. Security of full access unpre-

dictability. dictability.



Foundations of Reconfigurable PUFs 587

different from the challenge, if the query contains a specific prediction. More
precisely, we store a pair (u, v) in the state. Then we modify the query algorithm,
whose input is a challenge ¢, such that it evaluates the PUF on (1A @ cl|st’ ) if
¢ = E(u). Clearly, in our construction the attacker can never invoke the query
oracle on u and thus, cannot exploit this part directly. However, whenever the
attacker queries the reconfiguration oracle, it obtains this answer through the
state.
A more detailed proof appears in the full version of this paper.

Proposition 2. If collision-resistant hash functions relative to a PUF (cf.
Appendiz A) exist, then there exist forward-unpredictable LR-PUFs, which are
not Plain-unpredictable.

The proof is analogous to the one of Proposition 1, as the same construction
describe there is also forward-unpredictable and is thus omitted.

3.2 State-Setting Adversaries

The authors of [8] assume that the state is stored in a tamper-evident manner
and therefore an attacker cannot set the state of the LR-PUF to arbitrary values.
We believe that there are many plausible scenarios where tamper-evident storage
of the state is too expensive and where the adversary might be able to change
the state, even though the internal physical PUF is tamper-evident. Therefore,
we propose the following unpredictability notion, in which an adversary can set
the internal state of the LR-PUF. As mentioned above, this is formalized via the
type of inputs to the reconfiguration oracle Renf which are arbitrary states that
are to be set as the new state of the LR-PUF.

Definition 5 (St-Access-Unpredictability). An LR-PUF L = (Setup,
Query,, Renfy) is unpredictable for a state-setting adversary if for any PPT
adversary A the probability that the experiment ST-ACCESSﬁ(/\) evaluates to 1
is negligible (in the security parameter \), where the game is defined in Fig.4.

The state-setting adversary can be thought of as bypassing the reconfigura-
tion algorithm, thus security against state-setting adversaries should be consid-
ered a property of the Query mechanism.

Remark 3. Tt is easy to see that an LR-PUF construction satisfying this notion
of unpredictability must also be Plain-unpredictable (Definition 4). Any adver-
sary against Plain-unpredictability is also a valid adversary in the ST-ACCESS-
unpredictability experiment, which simply does not invoke the reconfiguration
oracle on an input other than .

Corollary 2. Let L = (Setup,Query,,Renfg) be St-Access-unpredictable.
Then L is also Plain-unpredictable.

The inverse relationship does, however, not hold.



588 J. Schneider and D. Schroder

Proposition 3. There exist Plain-unpredictable LR-PUF constructions, which
are not St-Access-unpredictable.

To show the separation, we consider a construction which has a “vulner-
able” state, i.e., a state which does not support a secure reconfiguration.
A state-setting adversary can then prepare the LR-PUF to have that state and
get an advantage through the defective reconfiguration algorithm. An adversary
without state-setting capabilities, however, would have to wait for that state to
occur in a chain of honest reconfigurations to get any advantage, as long as the
reconfiguration is working correctly for any other state. For more details, please
refer to the full version of this paper.

3.3 Direct Access Adversaries

Another assumption made in [8] is that the attacker cannot bypass the Query
mechanism and thus, does not have direct access to the embedded PUF. In
the real world, however, it might be that case that the attacker finds a way to
stimulate the physical PUF directly, circumventing the control logic of the LR-
PUF. In what follows, we remove this assumption by giving the adversary direct
access to the embedded PUF as well.

Definition 6 (PUF-Access-Unpredictability). An LR-PUF L = (Setup,
Query,,, Renfg) s unpredictable for an adversary with direct PUF access if for
any PPT adversary A the probability that the experiment PU F-ACCESSﬁ()\) eval-
uates to 1 1is negligible (in the security parameter ), where the game is defined
in Fig. 5.

Because an LR-PUF construction might rely solely upon the PUF itself to
perform reconfiguration and querying, an adversary that has access to the PUF
may be able, given the current state of the PUF, to compute challenge-response
pairs for all the following states the LR-PUF will have.

Proposition 4. If collision-resistant hash functions relative to a PUF exist,
then there exists a Plain-unpredictable LR-PUF construction, which is not
PUF-Access-unpredictable.

The proof relies on the fact that an adversary can in some construction
simulate the Renf and Query oracles himself. The full proof can be found in the
full version of this paper.

Perhaps surprisingly there is an obstacle when trying to compare the power
of state-setting adversaries to PUF-access adversaries. As described above, a
PUF-access adversary might be able to completely precompute the behavior
of an LR-PUF given the current state. Thus the definition of PUF-Access-
unpredictability demands the adversary predict a challenge response pair not
for the state, which it finally outputs, but for the state which results from the
reconfiguration based on that state. This excludes bypassing the Renf oracle and
enables the definition to capture the unpredictability gain provided by the Renf
algorithm.



Foundations of Reconfigurable PUFs 589

Proposition 5. Unpredictability against state-setting adversaries is not compa-
rable to unpredictability against PUF-access adversaries, i.e.,

(i) There exists an LR-PUF which is PUF-Access-unpredictable but not
St-Access-unpredictable.

(ii) If collision-resistant hash functions w.r.t. PUFs exist, there exist LR-PUFs,
which are St-Access-unpredictable but not PUF-Access-unpredictable.

The proof of this proposition appears in the full version of this paper.

3.4 Full Access Adversaries

A combination of the previous scenarios provides the PUF access adversary with
the possibility to set the internal state. This is intuitively the strongest notion,
as it provides the adversary with essentially complete control over the LR-PUF
during the query phase of the experiment.

Definition 7 (Full-Access-Unpredictability). An LR-PUF L = (Setup,
Query,, Renfy) is unpredictable for a state-setting adversary with PUF access if
for any PPT adversary A the probability that the experiment FULL—ACCESSﬁ()\)
evaluates to 1 is negligible (in the security parameter X\), where the game is

defined in Fig. 6.

As Full-Access-unpredictability is an immediate extension of PUF-Access-
unpredictability, it is easy to see that any Full-Access-unpredictable £ is
also PUF-Access-unpredictable. However, the PUF-Access-unpredictability
adversary is strictly weaker than the state-setting Full-Access-unpredictability
adversary.

Proposition 6. There are LR-PUF constructions which are PUF-Access-
unpredictable, but not Full-Access-unpredictable.

For the full proof, please refer to the full version of this paper.

Since Full-Access-unpredictability implies PUF-Access-unpredictability
and we because have seen that St-Access- and PUF-Access-unpredictability
do not imply each other (see Proposition5), Full-Access-unpredictability can
also not follow from St-Access-unpredictability.

Corollary 3. There exists a St-Access-unpredictable LR-PUF construction,
which is not secure w.r.t. Full-Access-unpredictability.

4 Construction

In this section we present our construction that fulfills the Full- A ccess notion of
unpredictability we defined in Sect. 3. Our scheme can be seen as a randomized
version of the speed-optimized construction from [8] with the difference that the
reconfiguration algorithm chooses a fresh state uniformly at random (instead
of computing it as the hash of the old state). Afterwards, we show that the
reconfiguration algorithm must be randomized in order to achieve our strongest
notion of unpredictability.



590 J. Schneider and D. Schroder

Query,,(c) Renfs:
w < Hash(st || ¢) st «g {0,1}¢™
y + E(w) Return st
Return y

Fig. 7. The full LR-PUF construction.

Theorem 1. The full construction (Fig.7) is Full-Access-unpredictable.

As the reconfiguration algorithm chooses a new state uniformly at random,
the probability that the adversary correctly predicts the new state is negligible.
The probability that the output prediction made by the adversary is valid for
a different state as well can be bounded by the probability of predicting the
outputs of the underlying physical PUF, which was assumed to be negligible.
The full proof of this theorem appears in the full version of this paper.

Proposition 7. The full construction is St-Access-unpredictable.

As the construction’s Query algorithm is the same as the speed-construction’s
(see Fig. 8), and the Renf-algorithm cannot be used in any advantageous way by
an adversary, the construction is St-Access-unpredictable as long as the speed-
construction is St-Access-unpredictable. This is shown in Proposition9. The
proof of this theorem appears in the full version of this paper.

5 Conclusion

In this paper, we have reconsidered the concept of Logically Reconfigurable
PUFs, an extension of the PUF primitive with applications in embedded devices
for access control or object tracking. We have given a formal definition of LR-
PUFs and presented several new notions of unpredictability, which help to clas-
sify constructions according to the scenarios they could be employed in. An
evaluation of two previously given construction has shown these constructions
to withstand stronger adversaries than initially shown. Finally, we have given a
new construction that can handle the strongest adversaries defined in this work
and we have seen that these notions create an interesting separation between such
constructions that rely on deterministic reconfiguration algorithms and such that
randomize reconfiguration.

Acknowledgements. Dominique Schréder was supported by the German Federal
Ministry of Education and Research (BMBF) through funding for the Center for IT-
Security, Privacy and Accountability (CISPA www.cispa-security.org) and also by an
Intel Early Career Faculty Honor Program Award. Finally, we thank the reviewers for
their valuable comments.


www.cispa-security.org

Foundations of Reconfigurable PUFs 591

A PUFs and Collision-Resistant Hash Functions

As some of the LR-PUF constructions we will discuss use collision resistant hash
functions, we will first have to define this primitive.

Definition 8 (Hash Function). Let £ : N — N be a polynomial. A pair of
PPT algorithms (Gen, Hash) is called a hash function if:

Gen. Takes as input a security parameter 1* and returns an index id from some
index set Iy.

Hash. Takes as input an index id and a bit string x € {0,1}*. It returns an
output string Hash(id, z) € {0,1}*N). We set Hash(z) := Hash(id, z).

What follows is the usual definition of collision resistance against a PPT
adversary [7], modified to account for possible advantages an adversary might
have through PUF Access. For a discussion of the possible complexity theoretic
implications of PUF access, please refer to [4,12].

Definition 9 (Collision Resistance w.r.t. PUFs). Let P = (S,E) be a
PUF family. A hash function is called collision-resistant with respect to P, if for
all PPT algorithms A that have black-box access to P the probability that the
experiment COLLZ evaluates to 1 is negligible, where

Experiment COLL;()\)
id < Gen(1%)
(z,2") — ASE(id)
Return 1 iff Hash(x) = Hash(z') and x # 2.

A.1 PUFs and Asymptotic Security

From a practitioners perspective, the asymptotic formulation of unpredictability
presented in this paper can seem problematic, as it does not quantify exactly
how much security a given construction provides. In [14] there is also an argu-
ment made against asymptotic security claims about PUFs which suggests that
such claims are not meaningful. The core of the argument is that PUFs are
finite functions and an adversary could just have a hard-coded table of challenge
response pairs for a given PUF. We believe this criticism is not applicable in our
case, as we define PUFs as families of functions from which one is sampled in
the unpredictability experiment. As the probability is also taken over the ran-
domness of this sampling process, it is unlikely that the adversary will have the
lookup table for this specific PUF hard-coded.

B Deterministic Reconfiguration Algorithms

As seen before, the PUF-access variants of unpredictability exclude LR-PUF
constructions where access to the underlying PUF makes the Query and Renf
algorithms completely predictable to the adversary. We will now show that an
LR-PUF construction, which is, in this sense, deterministic cannot achieve PUF-
access unpredictability.



592 J. Schneider and D. Schroder

Query(c) Renfg
Queryst(c) chfst st o
w 4 Hash(st || ¢) st + Hash(st) FOR j =0ton ) st « Hash(st)
y + E(w) Return st wj < Hash(st || c ] 5) Return st
Return y y; < E(wj)
Return (yo || ... || yn)

Fig. 8. The speed-optimized construction speed and the area-optimized construction
area from [8].

Proposition 8. A LR-PUF construction L = (Setup, Query,, Renfy), where
Renfg is deterministic cannot achieve PUF -Access-unpredictability.

The proof appears in the full version of this paper.
As PUF-Access-unpredictability is implied by Full- A ccess-unpredictability,
the following corollary follows immediately.

Corollary 4. An LR-PUF construction £ = (Setup,Queryg,,Renfg), where
Renfg is deterministic cannot achieve Full-Access-unpredictability.

Of course, these claims exclude LR-PUF constructions which involve more
than one PUF, as the PUF-Access- and Full-Access-unpredictability experi-
ments only provide access to a single underlying PUF. It is, however, straight-
forward to extend the definition to multiple PUFs. This can also be intuitively
motivated, as a multi-PUF construction, which does not secure access to one of
the employed PUFs is unlikely to secure access to the other PUFs.

Remark 4. As generation of proper randomness on an highly embedded system
such as a public transport access token seems impractical, this result establishes
that the Full-Access-unpredictability notion might not be achievable for all
application scenarios. However, in scenarios, where reconfigurations occur infre-
quently the negative effect of randomness that comes from a weak source is
likely to be tolerable. Additionally, if the degree of sophistication of the device
is high enough, there could already be a circuit in the device implementing a
hash function such as SHA-2, which may be used to extract some randomness
in a heuristic fashion.

C Revisiting Earlier Constructions

Based on the newly proposed unpredictability notions it is worthwhile to revisit
the original LR-PUF constructions given in [8]. We show that they provide unpre-
dictability in more adverse settings than originally demonstrated.

C.1 Speed-Optimized-Construction

Let us first consider the speed-optimized implementation of LR-PUFs given
in [8]. The basic idea of the construction is to use a collision-resistant hash



Foundations of Reconfigurable PUFs 593

function to compound the state and the LR-PUF challenge into one PUF stimu-
lus. The formal description of the algorithms is shown in the left part of Fig. 8. As
the reconfiguration algorithm is deterministic, this construction cannot achieve
PUF-Access- or Full-Access-unpredictability (see Sect.4), however, we can
show that it is St-Access-unpredictable, which is an improvement on the unpre-
dictability result given in [8].

Proposition 9. The speed construction is St-Access-unpredictable.

The proof can be found in the full version of this paper.

C.2 Area-Optimized-Construction

Beside the speed-optimized construction, [8] also propose an area-optimized con-
struction, in which a small-range PUF is stimulated repeatedly on different sub-
challenges derived from the original challenge. The sub-challenge responses are
then assembled to one larger response to the original challenge. The formal
description is given in the right part of Fig.8. We will now see that the con-
struction can be St-Access-unpredictable, but the degree of unpredictability
depends on the choice of underlying PUF and the iteration count n. Note, that
a noise bound d,, ;s on the full response means that the underlying PUF should
not produce responses that are noisier than d#

Proposition 10. If there exist collision-resistant hash functions with respect to
PUFs, and the underlying PUF is unpredictable, then the area-construction is
St-Access-secure.

For the proof of this statement, please refer to the full version of this paper.

References

1. Akdemir, K.D., Wang, Z., Karpovsky, M., Sunar, B.: Design of cryptographic
devices resilient to fault injection attacks using nonlinear robust codes. In: Joye,
M., Tunstall, M. (eds.) Fault Analysis in Cryptography. Information Security and
Cryptography, pp. 171-199. Springer, Berlin Heidelberg (2012)

2. Armknecht, F., Maes, R., Sadeghi, A.-R., Standaert, F.-X., Wachsmann, C.: A for-
malization of the security features of physical functions. In: 2011 IEEE Symposium
on Security and Privacy, pp. 397-412, Berkeley, California, USA. IEEE Computer
Society Press, 22-25 May 2011

3. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Matsui, M. (ed.)
ASTACRYPT 2009. LNCS, vol. 5912, pp. 685-702. Springer, Heidelberg (2009)

4. Brzuska, C., Fischlin, M., Schroder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 51-70. Springer, Heidelberg (2011)

5. Eichhorn, I., Koeberl, P.; van der Leest, V.: Logically reconfigurable pufs: memory-
based secure key storage. In: Proceedings of the Sixth ACM Workshop on Scalable
Trusted Computing, pp. 59-64. ACM (2011)



594

10.

11.

12.

13.
14.
15.

16.

17.

18.

J. Schneider and D. Schroder

Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical ran-
dom functions. In: Proceedings of the 18th Annual Computer Security Conference
(2002)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2008)

. Katzenbeisser, S., Kocabas, U., van der Leest, V., Sadeghi, A.-R., Schrijen, G.-J.,

Schréder, H., Wachsmann, C.: Recyclable PUFs: logically reconfigurable PUFs. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 374-389. Springer,
heidelberg (2011)

Skorié¢, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 407—422. Springer, Heidelberg (2005)

Kursawe, K., Sadeghi, A., Schellekens, D., Skoric, B., Tuyls, P.: Reconfigurable
physical unclonable functions - enabling technology for tamper-resistant storage.
In: IEEE International Workshop on Hardware-Oriented Security and Trust, HOST
2009, pp. 22-29 (2009)

Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state
of the art and future research directions. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp.
3-37. Springer, Berlin Heidelberg (2010)

Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable secure
computation with (malicious) physically uncloneable functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 702-718. Springer,
Heidelberg (2013)

Pappu, R.S.: Physical one-way functions. PhD thesis (2001)

Rithrmair, U., Sélter, J., Sehnke, F.: On the foundations of physical unclonable func-
tions. Cryptology ePrint Archive, Report 2009/277 (2009). http://eprint.iacr.org/
Sadeghi, A.-R., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and
privacy. In: Secure Component and System Identification (SECSI), Cologne,
Germany, April 2010

Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: lightweight remote attes-
tation using physical functions. In: Proceedings of the Fourth ACM Conference on
Wireless Network Security, WiSec 2011, pp. 109-114. ACM, New York, NY, USA
(2011)

Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, DAC 2007, pp. 9-14. ACM, New York, NY, USA (2007)

Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115-131. Springer, Heidelberg (2006)


http://eprint.iacr.org/

	Foundations of Reconfigurable PUFs
	1 Introduction
	1.1 Background and Related Work
	1.2 Applications
	1.3 Contribution
	1.4 Outline
	2 Logically Reconfigurable PUFs
	2.1 Physically Unclonable Functions
	2.2 Definition of Logically Reconfigurable PUFs


	3 New Notions of Unpredictability
	3.1 Multiple Reconfigurations
	3.2 State-Setting Adversaries
	3.3 Direct Access Adversaries
	3.4 Full Access Adversaries
	4 Construction
	5 Conclusion

	A PUFs and Collision-Resistant Hash Functions
	A.1 PUFs and Asymptotic Security
	B Deterministic Reconfiguration Algorithms
	C Revisiting Earlier Constructions
	C.1 Speed-Optimized-Construction
	C.2 Area-Optimized-Construction
	References





