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Abstract. This work presents the first differential power analysis of an
implementation of the McEliece cryptosystem. Target of this side-channel
attack is a state-of-the-art FPGA implementation of the efficient QC-
MDPC McEliece decryption operation as presented at DATE 2014. The
presented cryptanalysis succeeds to recover the complete secret key after
a few observed decryptions. It consists of a combination of a differential
leakage analysis during the syndrome computation followed by an alge-
braic step that exploits the relation between the public and private key.
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1 Introduction and Motivation

The basic idea of the McEliece public-key encryption scheme can be traced back
more than 35 years [19]. Having passed the test of time, today it is considered
one of the most promising alternatives to public-key encryption schemes whose
underling hardness assumptions are invalidated by known quantum algorithms
[23]. A critical point of McEliece-based constructions is the large key size, and
to tackle this problem it is tempting to impose additional structure on the code
involved. For some proposals in this line of work, including constructions build-
ing on Goppa codes, cryptanalytic strategies to exploit the additional structure
have been put forward [5–7]. Lacking obvious algebraic code structure that can
be exploited by an adversary, quasi-cyclic moderate-density parity-check (QC-
MDPC) codes currently receive considerable attention as an implementation
choice [3,9,17,18]. In this paper we take a closer look at a lightweight state-of-
the-art FPGA implementation of this scheme as presented in [17].

Our Contribution. In this paper we are not concerned with the security of
the specific parameters in [17] against the underlying theoretical problem, and
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instead focus on side-channel attacks. Even in a post-quantum world, i.e., when
scalable quantum computers are available, implementation-specific information
leakage will remain a serious issue, but so far no differential power analysis (DPA)
has been documented on implementations of McEliece. In fact, [10] concluded
that a classical DPA attack is not possible for their target implementations. In
this paper we demonstrate that DPA can be a realistic threat for a state-of-the-
art FPGA implementation of McEliece. Besides showing that significant parts of
the private key can be recovered by DPA, we show that knowledge of the public
key can be utilized to recover missing key information or to correct remaining
errors in hypothesized key bits.

On the conceptual side it deserves to be noted that our cryptanalysis tar-
gets the decoding algorithm, and thus is not restricted to a basic McEliece as
presented in [17]. If the basic scheme is augmented with a padding to establish
stronger provable guarantees, then this does not prevent our side-channel attack
as long as the decryption algorithm is applied to the ciphertext directly, pos-
sibly followed by some plausibility checks. This type of padding is common in
combination with the McEliece cryptosystem [13,22].

Related Work. Using QC-MDPC codes in the McEliece cryptosystem was first
proposed by [20] and later published with small changes in the parameter set
in [21]. These codes have no obvious algebraic structure and still allow small
key sizes, which gained high interest in the research community. First imple-
mentations of this scheme for AVR microcontrollers and Xilinx FPGAs were
proposed in [9]. Their FPGA implementation aimed for a high throughput at
the cost of a high resource consumption while their microcontroller implementa-
tion for the first time showed that it is possible to implement McEliece without
external memory to store the keys. A recent lightweight FPGA implementation
showed the full potential of this promising scheme [17]. Occupying less than 230
slices and 4 Block RAMs on Xilinx’s smallest Spartan-6 FPGA (XC6SLX4) for
a combined encryption/decryption unit, their implementation still provides a
reasonable performance of 3.4 ms and 23 ms for en-/decryption, respectively.

Side-channel leakages of McEliece have first been studied in [26]. This work,
as well as two follow-up studies focused on analyzing timing behavior of different
parts of PC implementations of McEliece [24,25]. Subsequently, [1] improved
over prior results, presented countermeasures and pointed out leakages in the
preprocessing steps of McEliece encryption. Heyse et al. [10] performed power
analysis on software implementations of classic McEliece implementations. Their
work relies on simple power analysis (SPA)-based approaches, which usually do
not translate well to hardware implementations, due to the increased paral-
lel processing of data and the much smaller side-channel leakage. They also
show that side-channel analysis is impeded by the large key sizes of McEliece.
In a recent work, AVR/ARM microcontroller implementations of QC-MDPC
McEliece were shown to be susceptible to SPA attacks [18]. The found weak-
nesses rely on secret dependent branches, which allow to recover the encrypted
message as well as to recover the secret key.
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2 Background

McEliece based on (QC-)MDPC codes is fully described in [21]. To provide the
necessary context for our attack, this section gives a brief summary of (QC-)
MDPC codes and their instantiation in the McEliece cryptosystem.

2.1 Quasi-Cyclic Moderate-Density Parity-Check Codes

A binary linear [n, k] error-correcting code C of length n is a k-dimensional vector
subspace of Fn

2 . We write r = n−k for the co-dimension of C. The code C can be
specified by providing a generator matrix G ∈ F

k×n
2 , i.e., a matrix whose rows

form a basis of C. Alternatively, one can provide a parity-check matrix H ∈ F
r×n
2

which characterizes the linear code as C = {c ∈ F
n
2 | cHT = 0r}. Given a parity-

check matrix and a vector x ∈ F
n
2 , we refer to s = HxT ∈ F

r
2 as syndrome of x.

In particular, a vector from F
n
2 is contained in C if and only if its syndrome is

0r.
If a code C is closed under cyclic shifts of its codewords by n0 positions

for some integer n0 ≥ 1, we refer to C as quasi-cyclic (QC). If n = n0 · p
for some integer p, both generator and parity-check matrix can be chosen to
be composed of p × p circulant blocks. This has the advantage that only one
row (usually the first) of each circulant block needs to be stored to completely
describe the matrices. For a moderate-density parity-check (MDPC) code, we
choose the weight of each row to have the same density w = O(

√
n log(n)).

For short, we refer to a binary linear [n, k] error-correcting code defined by
a parity-check matrix with constant row weight w and co-dimension r as an
(n, r, w)-MDPC code. If such a code is in addition quasi-cyclic with n = n0r, we
speak of an (n, r, w)-QC-MDPC code.

2.2 The QC-MDPC McEliece Public-Key Encryption Scheme

The QC-MDPC McEliece public-key encryption scheme uses t-error correcting
(n, r, w)-QC-MDPC codes, i.e., up to t “flipped bits” in any codeword c ∈ C can
be corrected. Specifically, using such a code, key generation, encryption, and
decryption operations can be described as follows.

Key-Generation. The secret key is comprised of the first rows h0, . . . , hn0−1 ∈ F
r
2

of the n0 parity-check matrix blocks H0, . . . , Hn0−1. These rows are chosen at
random and it has to be ensured that their weights—the number of non-zero
entries—sum up to w:

∑n0−1
i=0 wt(hi) = w, where wt() denotes the Hamming

weight computation function. Iterated cyclic rotation of the hi yields the parity-
check matrix blocks H0, . . . , Hn0−1 ∈ F

r×r
2 and thereby the secret parity-check

matrix H = (H0| . . . |Hn0−1) of an (n, r, w)-QC-MDPC code with n = n0r.
Assuming the last block Hn0−1 to be non-singular, the public key is obtained as
generator matrix G = [Ik|Q] in standard form, simply concatenating the identity
matrix Ik ∈ F

k×k
2 with
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Q =

⎛

⎜⎜
⎝

(H−1
n0−1 · H0)T

(H−1
n0−1 · H1)T

· · ·
(H−1

n0−1 · Hn0−2)T

⎞

⎟⎟
⎠ .

Similarly as for the secret key, the public matrix G is determined through
its first row. For a textbook version of McEliece the systematic form of G is
problematic, but in combination with a conversion to protect against chosen-
ciphertext attacks (cf. [13,22]) having the generator matrix G in systematic
form is accepted practice.

Encryption. To encrypt a message m ∈ F
k
2 , an error vector e ∈ F

n
2 of weight

wt(e) ≤ t is chosen at random. With this, the ciphertext evaluates to x =
(m · G ⊕ e) ∈ F

n
2 .

Decryption. To decrypt a ciphertext x ∈ F
n
2 , a t-error correcting (QC-)MDPC

decoder ΨH is applied to x, recovering mG ← ΨH(x). Since G is in systematic
form, the message m can simply be read off from the first k positions of mG.

Parameters. For the implementation investigated in this paper, we used parame-
ters, which in [21] have been considered for an 80-bit security level: n0 = 2, n =
9602, r = 4801, w = 90, t = 84. With these parameters a 4801-bit plaintext block
results in a 9602-bit codeword to which t = 84 errors are added. The parity-check
matrix H has constant row weight w = 90 and is obtained as juxtaposition of
n0 = 2 circulant blocks. The Q-part of the public generator matrix G consists
of a single circulant block.

2.3 Decoding (QC-)MDPC Codes

Several decoders have been proposed to actually decode (QC-)MDPC codes
[2,8,9,11,21]. The implementation investigated in this paper employs the
decoder from [9], an optimized version of the bit-flipping decoder by [8]. The
precomputed thresholds are derived from the code parameters as proposed by
[8]. To decode a received ciphertext x ∈ F

n
2 , four main steps are involved:

1. Compute the syndrome s = HxT .
2. Count the number of unsatisfied parity checks for every ciphertext bit.
3. If the number of unsatisfied parity checks for a ciphertext bit exceeds a pre-

computed threshold, flip the ciphertext bit and update the syndrome.
4. If s = 0r, the codeword was decoded successfully. If s �= 0r, go to Step 2 or

abort after a defined maximum of iterations with a decoding error.

2.4 Target Implementation

The target under investigation is a lightweight implementation of QC-MDPC
McEliece for reconfigurable devices by [17]. The resource requirements are 64
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slices and 1 block RAM (BRAM) to implement encryption and 159 slices and 3
BRAMs to implement decryption on a Xilinx Spartan-6 XC6SLX4 FPGA. This
lightweight implementation is possible mainly for two reasons. First, QC-MDPC
codes allow smaller keys compared to (optimized) binary Goppa codes. Second,
the implementation stores inputs, outputs and most intermediate values during
encryption and decryption in block memories. Since our attack focuses on secret-
key recovery, we limit the description of the details of the implementation to the
decryption, especially to the part in which the syndrome is computed.

Decryption uses three BRAMs, one BRAM stores the 2 · 4801-bit secret
key, one BRAM stores the 2 · 4801-bit ciphertext, and one BRAM stores the
4801-bit syndrome. Each BRAM is dual-ported, offers 18/36 kBit, and allows to
read/write two 32-bit values at different addresses in one clock cycle. To com-
pute the syndrome, set bits in the ciphertext select rows of the parity-check
matrix blocks that are accumulated. Since only one row of each block is stored
in the BRAM, they need to be rotated by one bit to generate the next rows. To
generate all rows of H, the rotation is repeated 4801 times.

Rotating the two parts of the secret key is implemented in parallel, which
means that the 4801-bit rows of the first and the second part of the parity-
check matrix are rotated at the same time. Efficient rotation is realized using
the Read First mode of Xilinx’s BRAMs which allows to read the content of
a 32-bit memory cell and then to overwrite it with a new value, all within one
clock cycle.

The key rotation is implemented as follows: in the first clock cycle, the least
significant bit (LSB) is loaded from the last memory cell. The first 32-bit of the
row to be rotated are loaded next. In all following clock cycles, the succeeding
32-bit blocks of the row are read and overwritten by the rotated preceding 32-
bit block. The LSB of each 32-bit block is delayed by a flip-flop and becomes
the most significant bit (MSB) of the following block. An abstraction of this
implementation is depicted in Fig. 1. In addition to a rotation of the rows, this
introduces a rotation of the memory cells. After one 4801-bit rotation, the most
significant 32 bits of a parity-check matrix row do not reside in memory cell 0
but in memory cell 1.

The syndrome s is computed by processing the ciphertext x in a bitwise
fashion. If the j-th bit is set, i.e., xj = 1, then the j-th row of H is added to the
syndrome s. The implementation adds two 32-bit words in parallel: one word of
the rotated h0 and one word of h1 are processed in each clock cycle.

3 Attack Description

Usually DPA attacks exploit an intermediate state y = f(x, k) that is a function
of both a known data item x and a subkey k. The subkey space K should be
small enough so that a hypothesis y can be checked for all candidates k ∈ K.
Some works that elaborate on this model are [14,16,27]. McEliece does not offer
itself for this approach, as also noted in [10]. One would expect the syndrome
s to serve as a potential predictable intermediate state y. However, the bits in
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Fig. 1. Abstract block diagram of the syndrome computation circuit including key
rotation as implemented in [17].

the ciphertext x only determine which rows of the parity check matrix H are
added to s, where H is the secret key to be recovered. Predicting (parts of) the
syndrome s requires an additional key bit hypothesis for each variation of each
bit of s, i.e., each bit of s depends on l key bits after l variations, supporting
the infeasibility claim of [10]. One of the strengths of QC-MDPC, its small
private key size, comes from the fact that secret information is highly redundant:
each row of H contains the same information—namely 〈h0 ≫ z||h1 ≫ z〉—only
rotated by one bit per row, z ∈ {0, 4800}. This redundancy allows for an efficient
recovery of key information. More important, it enables a differential analysis
approach which greatly enhances the visibility of even faint leakages.

We exploit this leakage of the key rotation operation during syndrome compu-
tation. Our analysis recovers a static key leakage that is completely independent
of the known or chosen ciphertext input x. Since the exploited leakage occurs sev-
eral times during one syndrome computation, our attack combines these leakage
events, as commonly done in horizontal side channel attacks.

3.1 Leakage Behavior of the Target Implementation

The described attack recovers the key during the syndrome computation step of
the decryption algorithm. The key for QC-MDPC consists of a single line of the
parity check matrix H, namely h0||h1. As described in Sect. 2.4, only this line
of H, or one of its rotated versions 〈h0 ≫ z||h1 ≫ z〉, is stored in BRAM. The
key has some noteworthy features that influence the derived DPA attacks. First,
the private key is of low weight : both parts of the secret key h0 and h1 are of
low Hamming weight such that, wt(h0||h1) = w. For the target implementation,
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w = 90 and wt(hi) = 45, i. e. both h0 and h1 have exactly 45 bits set. This
means, each key bit hi,j ∈ {0, 1} where i ∈ {0, 1} and j ∈ {0, 4800} is set with
probability Pr(hi,j = 1) = w/(n0r) = 45/4801 ≈ .94%. This implies low-weight
leakages: Syndrome and key parts hi are stored in BRAMs and are processed as
151 32-bit words. The chance of a 32-bit key word to be all-0 is still 74%, about
22% contain a single one bit, leaving the chance of having more than one bit set
in a word below 5%.

The critical parts of the target implementation that feature exploitable key
leakage are depicted in Fig. 1. There are two operations that contribute to the
leakage during syndrome computation. One operation is the key rotation, which
is always performed. The second operation is the syndrome computation. Our
analysis focuses on the key rotation operation, which is independent of the
ciphertext input x. The stored key row 〈h0 ≫ z||h1 ≫ z〉 is constantly rotated
during the syndrome generation. In fact, it is rotated by a single bit 4801 times,
where each rotation takes 151 clock cycles (plus two additional clock cycles for
preprocessing and a data read-write delay, resulting in the 153 clock cycles men-
tioned in [17]). The implementation features a separate register which stores
the carry bit during rotations. In each of these clock cycles, one bit hi,j—the
LSB of the last accessed word—is written to the carry register, causing leakage
λcarry(i, j). In the following clock cycle, that bit is overwritten with the LSB
of the next word, hi,j+32. Assuming a Hamming distance leakage function, this
register leaks first

λcarry(i, j) = w1 · wt(hi,j−32 ⊕ hi,j), (1)

then, in the subsequent clock cycle, leaks λcarry(i, j+32) = w1 ·wt(hi,j ⊕hi,j+32),
where w1 ∈ R is an appropriate weight. Assuming that hi,j = 1 and further
hi,j±32 = 0, λcarry(i, j) gives a clearly distinguishable leakage from the case
where hi,j = 0. This leakage is the target of the described attack.

In addition to the leakage of the carry register λcarry(i, j) described in Eq. (1),
there are related leakages happening in the same clock cycles. In fact, when
hi,j is written to the carry register, the implementation also reads the word
〈hi,j+1 . . . hi,j+32〉 from the block memory at one address and then stores the
word 〈hi,j−32 . . . hi,j−1〉 into the block memory at the same address. Both read-
ing and storing operations will cause leakages at different levels. Assuming a
Hamming weight leakage function here, reading data and storing data words
leaks as

λread(i, j) = w2 · wt(〈hi,j+1 . . . hi,j+32〉) and
λstore(i, j) = w3 · wt(〈hi,j−32 . . . hi,j−1〉),

respectively. Here, w2 ∈ R and w3 ∈ R are appropriate weights for the different
types of operations. The overall observed leakage is approximated as:

Li(j) = λcarry(i, j) + λread(i, j) + λstore(i, j) + N
where Li is the overall leakage at the clock cycle where hi,j is written into the
carry register and N is noise, which is assumed to be Gaussian. Please note that
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the target implementation processes h0 and h1 in parallel. This means that the
leakage functions L0 and L1 for h0 and h1 overlap. There are two carry registers
(cf. Fig. 1), one stores h0,j when the other stores h1,j . While these leakages
slightly differ, we will not attempt to distinguish them. Instead we recover the
combined leakages. That is, we predict the combined leakage hΣ = h0+h1, which
is still sparse. Note that the addition here is not in F2, i.e., we can distinguish
the case where h0,j = h1,j = 1 from the case h0,j = h1,j = 0, although this case
is very rare (and will be ignored in the further description). While the model is
not perfect, it describes the observed leakages well enough to base a decent key
recovery on it.

As in the classical DPA by Kocher et al. [15], we can now hypothesize the
value of each key bit hi,j separately. We further know at which clock cycle
the leakage of the carry registers (for the key rotation) occurs. Based on this
knowledge, one can build the following attack.

3.2 DPA of Key Rotation

As mentioned above, we do not distinguish h0,j and h1,j . Instead, we predict
the combined leakage hΣ,j = h0,j + h1,j . Our key recovery works well for this
combined leakage, as explained in Sect. 5. Note that we know for each key bit hi,j

at which clock cycle it is processed (if not, several hypotheses can be checked in
parallel by analyzing neighboring clock cycles). In fact, knowing the implemen-
tation, it is predictable which key bit hi,j enters the carry register in which clock
cycle for the key rotation. We use this information to build a differential power
analysis attack. In spite of the independence of the input x we claim the analysis
method to be differential leakage analysis, since differential leakage traces can
be computed—similar to the approach originally proposed in [15].

Our algorithm identifies all clock cycles where hi,j is written to or overwritten
in the carry register in each trace L and extracts that leakage from L. Per
processed ciphertext bit, only 150 words are rotated. The additional bit is stored
in the carry register. Hence, all rotations together result in a total of 4801 · 150
carry register overwrites for each hi. Since there are 4801 bits in hi, each bit
is written to the carry register 150 times. The corresponding clock cycles l are
then identified and their corresponding leakage Li(j, l) is combined, as done in
horizontal SCA. The result is a differential leakage trace Δcarry with only one
bin per key bit. In other words, the difference between a key bit being zero and
a key bit being one can be observed by comparing points of the leakage trace
Δcarry horizontally. Since the key is sparse, there are only very few bins that
correspond to a bit hi,j = 1, while most bins correspond to a bit hi,j = 0. The
implicit assumption of all bits leaking the same way is perfectly justified: each
bit hi,j takes each column position exactly once, in a specific row. That means
due to the rotation, each key bit leaks in every position exactly once, averaging
out any position-specific leakages.

In order to detect whether a key bit is set, i.e., hi,j = 1, we average over all
clock cycles where hi,j is written to the carry register.
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Δcarry(j) =
1

150

150∑

l=1

(L0(j, l) + L1(j, l))

= avg (λcarry(0, j) + λread(0, j) + λstore(0, j)
+λcarry(1, j) + λread(1, j) + λstore(1, j))

Since hi,j−32 = 0 with very high probability, Δcarry(j) depends directly on the
key bit. Further, hi,j = 1 has an even stronger influence on Δcarry(j ± 32), since
it leaks through λcarry(i, j) and either λread(i, j) or λstore(i, j). The dependence
of Δcarry(j) on neighboring key bits hi,j±δ, with δ ≤ 32, implies that each set
key bit not only results in an increased leakage signal for its own position (i. e.,
index j), but also in the neighboring positions. Note that due to the differing
weights, each set key bit imprints a characteristic shape onto the leakage trace.
These shapes can (and actually will) overlap if several key bits in the same region
are set. Figure 2 shows the comparison of the simulated leakage trace (red(gray)
line) using the power model and the real leakage trace (blue/black line). The
characteristic shape is highlighted in Fig. 3, which is a magnification of a single
set bit of the key, surrounded by zeroes.

Fig. 2. Differential leakage trace for key rotation. The plot shows the normalized leak-
age (vertical axis) of both key parts hΣ,j = h0 + h1 over the key bit index (horizon-
tal axis). The red(gray) line is the simulated leakage while the blue/black line is the
observed leakage from the target implementation (Color figure online).

In summary, the key rotation analysis allows us to detect joint leakages of
h0 and h1. This is due to the target implementation that processes both in
parallel. The key rotation leakage features a characteristic shape with easily
detectable bounds. This allows for a precise location of set key bits. Furthermore,
the analysis of the key rotation is mostly input-independent, as will be discussed
in Sect. 4. More importantly, each bit features 150 leakage observations per trace
L, resulting in a very strong leakage.
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Fig. 3. A magnified version of Fig. 2 that highlights the characteristic shape of a single
set bit (center) as well as the overlap of two (right) and three (left) “adjacent” set bits.

3.3 Key Bit Recovery

The key rotation causes leakages which can be analyzed in the presented differ-
ential leakage traces where characteristic shapes caused by set key bits can be
detected and used to recover the set key bits. In the same way, the traces can
be used to detect key bits that are not set. Since the analyzed implementation
processes h0 and h1 in parallel during the key rotation, resulting in an overlap
of the leakages, the differential leakage trace actually recovers the key bits of
hΣ = h0 + h1.

In order to recover key bits, the characteristic shapes need to be detected.
We propose a generic shape detection algorithm that works as follows:

1. Shape Definition. From the differential leakage trace, one singular charac-
teristic shape can be identified and used as a template for set bits. The tem-
plate is used to generate a shape threshold as shown in Fig. 3. The threshold
is defined by the value of features in this shape such as edges, slopes and
pulses.

2. Shape Detection. For each key bit in the differential leakage trace, we check
if this key bit together with the neighboring key bits can form a characteristic
shape. This is done by checking if there are features that are beyond the
threshold. If more than two features exist, it is highly probable that this key
bit is set. If no feature exists, then it is highly probable that this key bit is
0. Otherwise, we mark this key bit as an undetermined bit.

Note that the shapes will overlap if two set key bits are close to each other.
Furthermore, the leakage traces are noisy, hence we can only recover parts of the
key bits, leaving the other key bits as undetermined. By choosing the thresholds
for shape detection carefully, the number of detected bits can be maximized
while keeping the number of false positive errors as low as needed.
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4 Measurement Setup and Results

We ported the implementation of [17] to a Xilinx Virtex-5 LX50 FPGA which
is mounted on a Sasebo-GII side-channel attack evaluation board1. The imple-
mentation is clocked at 3 MHz by default. Measurements were performed using
a Tektronix DPO 5104 oscilloscope at a sampling rate of 100 MS/s. Since our
attack focuses on the syndrome computation, only the syndrome computation
was recorded. The syndrome computation takes 245 ms, resulting in long traces.
For the ease of analysis, a peak extraction was performed. In each clock cycle
only the point of maximum power consumption is retained. The peak extraction
prevents potential alignment issues and makes data handling much faster.

4.1 DPA Results of the Key Rotation

Since the key rotation is independent of the ciphertext, the choice of the cipher-
text could be arbitrary. However, key rotation and syndrome computation run
in parallel, leading to a mixed leakage. To determine the influence of the syn-
drome computation, two different ciphertext scenarios are studied. One is the
all-0 ciphertext to minimize the influence of the syndrome computation. In this
scenario the syndrome remains all-0 throughout the entire computation. The
other scenario assumes random ciphertexts for each decryption, where each bit
in x is set with a 50 % probability. For each scenario we took 256 measurements.

Next, we averaged over all considered traces in both scenarios. From the
resulting average trace, 4801 · 150 peaks are extracted and used to construct the
differential leakage traces Δcarry as explained in Sect. 3.2. Note that averaging
explicitly before the computation of Δcarry or implicitly during the computation
of Δcarry does not influence the result. Figure 4 shows the differential leakage
traces for the key rotation, showing the key bit position (horizontal axis) vs.
the bit leakage (vertical axis) for all key bits. The blue (black) line indicates
the result for the all-0 ciphertext scenario while the green (gray) line indicates
the results for the random ciphertext. The latter one is slightly noisier, but
nevertheless provides a well-exploitable leakage for a low number of observations.
Figure 3 shows magnifications of the differential leakage trace to highlight the
characteristic shapes, particularly the one generated by setting the key bit hi,2900

as 1 and the neighboring key bits as 0.
The other shapes in Fig. 3 result from the overlapping of characteristic shapes

that occur when set key bits of h are close to each other. We noticed that set
key bits for h0 result in a slightly different shape than those of h1. Since this
difference cannot be distinguished as easily, we did not further try to exploit this
information.

Key Extraction. To extract keys from Δcarry, we used the algorithm described
in Sect. 3.3. The first step is to define the characteristic shape. Distinguishable
1 The VHDL code of the QC-MDPC McEliece implementation of [17] is available at

http://www.sha.rub.de/research/projects/code/.

http://www.sha.rub.de/research/projects/code/
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Fig. 4. Normalized differential leakage trace Δcarry for the key rotation for the bits of
hΣ,j = h0+h1. Whether the ciphertext is known (green(gray) line) or all-0 (blue(black)
line) has only marginal influence on the observed leakage (Color figure online).

features such as the rising edge, the pulse in the center and the falling edge
are clearly visible in Fig. 3 and are used to detect the shape. These features are
quantified using a threshold vector. Then, for each key bit hi,j in Δcarry, we
check if there is a pulse at hi,j , a rising edge at hi,j−32 and a falling edge at
hi,j+32. If more than one feature exists for hi,j , we take hi,j as 1. If no feature
exists, hi,j is taken as 0. If only one feature exists, hi,j is left as undetermined
key bit. Depending on the number of traces used for generating Δcarry, it can
be noisy and there will be false positive errors in recovered key bits. Errors can
also be introduced by unfavorable overlapping of shapes.
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Fig. 5. Key bit recovery rates for a range of detection thresholds for recovering 0 key
bits (left) and 1 key bits (right). Solid line indicates the number of recovered bits (out
of 90 ones and 4711 zeroes, scale on left), the dashed line indicates the number of false
positives (scale on right). Markers ◦, then �, and then ∗ indicate the increasing values
for the threshold.
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Figure 5 shows how the chosen threshold affects the key recovery. Three dif-
ferent thresholds are used. The first one (◦) is exactly the value extracted from
the characteristic shape in Δcarry. The other two (� and then ∗) are increased
based on the first one. In Fig. 5.1, as the number of traces used to generate the
differential leakage trace increases, the number of recovered 0 key bits increases
and the number of false positive errors decreases for all three thresholds. How-
ever, the less aggressive the threshold is, the lower is the number of false positive
errors. In contrast, Fig. 5.2 shows that with the least aggressive threshold (◦),
more key bits of 1 can be recovered with a few more false positive errors. Hence,
to recover more key bits of 0 with least false positive errors, the less aggres-
sive threshold should be used. In contrast, to recover key bits of 1 with least
false positive errors, the more aggressive threshold should be used. Note that we
repeated our experiments for five different randomly generated keys to ensure
the result is not key dependent. The figures show the average result for those
experiments.
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Fig. 6. Key bit recovery rates for recovering 0 key bits. Solid line indicates the number
of recovered bits (out of 4711 zeroes, scale on left), the dashed line indicates the number
of false positives (scale on right). The left figure compares known random (◦) vs. chosen
all-0 (�) ciphertext inputs. The right figure compares the experiments for varying clock
rates: ◦ for 3 MHz, � for 8 MHz, and ∗ for 16 MHz.

Figure 6.1 shows a comparison of the number of recovered key bits and false
positive errors between the all-0 ciphertext and random ciphertext. As the num-
ber of traces used to generate the differential leakage trace increases, the num-
ber of recovered key bits of 0 increases and the number of false positive errors
decreases for both cases. However, with the all-0 ciphertext, there are less posi-
tive errors. In conclusion, the all-0 ciphertext is more advantageous to the DPA
of key rotation. Hence, we use the traces with the all-0 ciphertext in the other
experiments.

Modern electronic devices run faster than 3 MHz which is the default clock
rate for the SASEBO board and widely used in power analysis experiments. In
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order to validate our attack on faster platforms, the performance of the attack
was measured for the same design clocked at 8 MHz and 16 MHz. The sampling
rate was accordingly increased to 200 MS/s and 250 MS/s, respectively. For each
case, 256 traces were obtained using the all-0 ciphertext, followed by peak extrac-
tion. Figure 6.2 shows the degradation of the leakage over the increasing clock
rate by comparing the number of recovered 0 key bits and false positive errors.
In all three cases, the number of recovered 0 key bits increases and the number
of false positive errors decreases, as the number of analyzed traces increases.
However, the lower the clock rate is, the better the key bits extraction works.
With a 3 MHz clock rate (◦), almost 4500 of the 0 key bits can be recovered with
about 1 false positive error when using all 256 traces while 4000 of the 0 bits are
recovered with about 3 false positive errors at a clock rate of 16 MHz (∗).

Overall, it can be seen that with as little as 10 measurements, more than
half the key bits can be recovered with a remaining number of errors that is
small enough to allow for efficient error correction. With 100 measurements and
a careful choice of thresholds, the determined bits are entirely error-free at lower
clock rates. This strong leakage is partially due to the fact that 150 leakages are
extracted from each measurement, strongly amplifying the amount of leakage
gained from each individual trace.

5 Full Key Recovery

Next we analyze how to recover the full key of QC-MDPC McEliece if the adver-
sary has knowledge of several 1 bits of the key as well as several 0 bits of the
key, possibly with few errors. We show that the structure of the key can be used
to recover the remaining uncertain bits efficiently, or to detect remaining errors.

5.1 Exploiting a Connection Between Secret Key and Public Key

As described in Sect. 2.2, the secret key consists of two related parts, h0 and h1.
Due to the relation between the secret h0, h1 and the public matrix Q, we can
express h0 as:

h0 = h1 · QT (2)

Likewise, given h0, one can compute h1, since Q is invertible. This means that
once the first half of the secret key is recovered, the second half can be computed
using the public key. More interestingly, this relationship can be used for error
detection for each hi independently: since Q is of high weight (each bit has
approximately a 50 % chance of being 1), even a single bit error in h∗

i will result
in a high weight of a consequently derived h∗̄

i
, i.e., wt(h∗̄

i
) ≈ r/2. A correct hi,

however, will result in an hī of low weight, in our case wt(hī) = 45. We are
currently not aware how slightly faulty or noisy information of h0 and h1 can
be combined more efficiently without a trial and error approach using the above
mentioned relationship.
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If the adversary observes a combined leakage of h0 and h1 as described above,
this is not a problem, since knowledge of h0 ⊕ h1 can also enable key recovery.
Adding h1 on both sides of Eq. (2) we obtain

h0 ⊕ h1 = h1 · (QT ⊕ I4801). (3)

If side-channel leakage allows us to obtain the combined leakage h0 ⊕ h1 and
the rank of QT ⊕ I4801 is high, we can solve this linear system of equations for
h1 with a computer algebra system like Magma [4]—and then derive h0 from
Eq. (2). In our experiments, the rank observed for QT ⊕I4801 was 4800, resulting
in two candidate solutions with only one of them having the correct Hamming
weight. So in cases where all ones can be correctly identified, Eqs. (2) and (3)
enable a practical key recovery.

Due to noise and leakage overlapping, there are probably false positive errors
in the recovered bits and hence error correction would be essential to correct
positions that are slightly off. Guessing error positions becomes infeasible quickly,
even with small improvements over an exhaustive search of

(
4801

l

)
possibilities

for l errors. We did not try to devise elaborate error-correction strategies, as a
different attack strategy which relies on exploiting detected zeroes turned out to
be quite effective. We explain this strategy next.

5.2 Efficient Key Recovery from Partial Information

After having identified several 1 bits and 0 bits of the secret key correctly, we
aim at an efficient way to recover remaining unknown or uncertain key bits. For
this, we define B0, B1 and Bu as index sets indicating the locations of definite
zeroes, definite ones and positions of undetermined bits in h0 ⊕ h1 such that

B0 ∪̇ B1 ∪̇ Bu = {0, 1, . . . , 4800} . (4)

Positions in B0 indicate that both h0 and h1 are zero in that position, while
positions in B1 will mean a one in either h0 or h1.2 Hence, the uncertain positions
for h1 are B1

u = B1 ∪̇ Bu, and with Iverson’s convention [12] we can summarize
our knowledge of h0 ⊕h1 and h1 as h0 ⊕h1 = 〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800

and h1 =
〈
u · [i ∈ B1

u]
〉
0≤i≤4800

, where u indicates unknown bits (“erasures”).
So Eq. (3) yields

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 =
〈
u · [i ∈ B1

u]
〉
0≤i≤4800

· (QT ⊕ I4801).

As the indices in B0 indicate definite zeroes in h0 ⊕ h1 and h1, the corre-
sponding rows in the matrix QT ⊕ I4801 will always be multiplied with a zero
coefficient. We remove these |B0| rows and the corresponding known 0-entries in
h1, obtaining an updated equation system

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 =
〈
u · [i ∈ B1

u]
〉

i�∈B0
· Q′. (5)

2 The (rare) case of h0 and h1 having a one in the same position is not considered
here, as this situation is quite apparent from the side-channel leakage.
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with a (smaller) matrix Q′ ∈ F
(4801−|B0|)×4801
2 . There are 4801 − |B0| − |B1|

unknown bits on the left- and 4801 − |B0| unknown bits on the right-hand side
of Eq. (5). As we are only interested in finding h1, we can try to eliminate
unknown values in h0 ⊕ h1 by dropping columns from Q′. One may hope that
|Bu| columns can be eliminated without Q′ dropping in rank, so that we end up
with a linear system of equations

〈1 · [i ∈ B1]〉i�∈Bu
=

〈
u · [i ∈ B1

u]
〉

i�∈B0
· Q′′ (6)

in 4801 − |B0| unknowns and a matrix Q′′ ∈ F
(4801−|B0|)×(4801−|Bu|)
2 . If |Bu| ≤

|B0| one may hope that this linear system of equations can be solved and yields
a unique candidate for h1.

To check the practical feasibility of this approach, we ran several experiments
in Magma [4], solving the equation system given in (6) for several different vectors
B0 and B1. We were particularly interested in the situation where knowledge of
1-positions in h0 ⊕h1 is ignored (i.e., B1 = ∅), because in our measurements the
0-detection was more reliable. With B1 = ∅, the resulting system of equations
is homogeneous and thus in addition to h1 also has the trivial solution. From
Eq. (4) we see that the condition |Bu| ≤ |B0| now implies that |B0| ≥ �4801/2�.
Staying above this threshold, in our experiments we obtained no more than
8 candidates for h1, and the weight condition identified the correct secret key
uniquely.

For |B0| < 2400, the kernel of the matrix Q′′ in Eq. (6) gets larger quickly
and we obtain additional candidates for h1, but finding the correct h1 may still
be feasible by looking at the Hamming weight of the candidates as long as the
number of candidates is not overwhelming. The results in Sect. 4 show that for
the target implementation the attacker can expect to recover more information
from the side-channel than necessary for recovering the secret key. Having |B0|
comfortably above the threshold of 2400, a few false positives in B0 can be dealt
with efficiently: Instead of using all of these bit positions, one can select subsets
of size 2401 at random. Assuming a hypergeometric distribution, with f false
positive errors among the |B0| indices, the probability of guessing 2401 error-free
positions is

(|B0|−f
2401

)
/
(|B0|
2401

)
. E.g., with |B0| = 3281 and f = 4, this probability

is still ≈ 2−7.6. In summary, as long as more than half the bits of the key can
be recovered with a low error rate, the remaining key bits can be determined
using the above-described algebraic methods. Knowledge of additional bits of
h0 ⊕ h1 facilitates the handling of possibly remaining errors. Not being able to
recover more than half the number of key bits can make the search infeasible,
although—due to the highly biased key—guessing a few additional zeroes may
still be an option.

6 Preventing the Attack

The described attack is somewhat specific to the implementation choices of the
target, but can be adjusted to other implementation parameters as well. For
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example, an implementation that does not process h0 and h1 in parallel would
simplify the attack and amplify the leakage. Implementations that use a dif-
ferent word size (the targeted implementation processes 32-bit words due to
the BRAM structure of the FPGAs) will influence the described attack as well.
The smaller the word size, the more leakages per target bit, most likely facilitat-
ing the attack further. However, a massively parallelized implementation such as
the one described in [9] could impede the described attack, since all bits would
always be leaking in parallel. One might still be able to exploit resource-specific
leakages, e.g., leakage from a carry register. Furthermore, such an implementa-
tion is very resource-consuming and might not find widespread use.

A more reliable way to prevent this attack is provided by side-channel coun-
termeasures. A good overview of standard DPA countermeasures is available
in [16]. Countermeasures are typically classified as masking or hiding counter-
measures. Both classes can be applied to an implementation of (QC-)MDPC
McEliece and, if done correctly, should prevent the above-mentioned attack.

7 Conclusion

This work presents the first successful differential power analysis of a state-of-the-
art McEliece implementation based on quasi-cyclic MDPC codes. The analysis is
not affected by a potentially present padding as commonly used to achieve CCA
security. The analysis exploits the leakages of a key rotation operation which
occurs during the syndrome computation step of the decryption and recovers a
combined leakage of h0 and h1. The leakage model provides precise and strong
leakage. The resulting attack is independent of the ciphertext and succeeds with
tens of traces. A significant part of the key recovery stems from the relation
between the private key and public key, which can be exploited to ease key
recovery. In fact, recovering only half the bits of the (highly biased) secret key
with a low error rate is sufficient for full key recovery.
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