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Abstract. Distributed data usage control enables data owners to con-
strain how their data is used by remote entities. However, many data
usage policies refer to events happening within several distributed sys-
tems, e.g. “at each point in time at most two clerks might have a local
copy of this contract”, or “a contract must be approved by at least two
clerks before it is sent to the customer”. While such policies can intu-
itively be enforced using a centralized infrastructure, major drawbacks
are that such solutions constitute a single point of failure and that they
are expected to cause heavy communication and performance overhead.
Hence, we present the first fully decentralized infrastructure for the pre-
ventive enforcement of data usage policies. We provide a thorough eval-
uation of our infrastructure and show in which scenarios it is superior to
a centralized approach.

1 Introduction

Due to the ever increasing value of data, the continuous protection of sensitive
data throughout its entire lifetime has drawn much attention in recent years.
Corresponding solutions are applicable in many contexts: businesses, military
and governments aim at protecting their internal procedures, research reports,
financial reports, and the like; individuals want to constrain businesses from
using or releasing their private data, e.g. for advertisement or market research;
copyright owners want their licenses to be respected.

Usage control [1,2] tackles such challenges by proposing different models and
enforcement infrastructures [3-6]. Generally, policies describe how data may or
may not be used once initial access has been granted. Additionally, policies might
specify obligations that must be fulfilled before, upon, or after usage. Correspond-
ing solutions [7—10] inject reference monitors, or Policy Enforcement Points
(PEP), into different layers of the computing system. These PEPs intercept
events within the system and enforce the Policy Decision Point’s (PDP) deci-
sion such as allowing, modifying, inhibiting or delaying the event. By tracking
data flows, such as when copying files or loading content from a database into
a process, aforementioned solutions allow to enforce data usage policies on all
representations of some data rather than on particular files or database entries.
Hence, data usage policies are enforced independently of the data’s concrete
representations at runtime. Enforcement may be preventive or detective [1,6],
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meaning that policy violations never occur, or that they can be detected in
hindsight, respectively.

This work tackles the problem of enforcing data usage policies on data that
has been disseminated to remote systems. In this respect, solutions that track
data flows across systems and attach the corresponding policies have been pro-
posed [11,12]. Further, these solutions enable the enforcement of policies that
can be independently evaluated on every single system, such as “do not open
this document with editor X”, or “do not print this document after 5pm”. How-
ever, the preventive enforcement of more sophisticated global policies pertaining
to events and/or the states of multiple systems, such as “not more than five
instances of this software might be executed simultaneously”, or “all copies of
this document must be deleted upon the owner’s demand”, still poses challenges
[6,13,14]. We are not aware of solutions that achieve preventive policy enforce-
ment (i) without the need for any central components, (ii) on all copies and
derivations of the original data, and (iii) which are deployable on commodity
networks.

While Digital Rights Management solutions handle such challenges by
deploying central license servers [15], such a solution comes with the drawbacks
of being a single point of failure, privacy concerns, and the necessity that the
central component must be always reachable by all PEPs. Moreover, a central-
ized solution is expected to impose significant performance and communication
overhead [13,16]. The main reason is that the PEP is stateless. Hence, when-
ever a potentially relevant system event is observed by the PEP, it is unknown
whether it is of actual importance for evaluation by the PDP. Consequently, all
observed events would need to be signaled to the central PDP. While recent
works addressed this problem by decentralizing some aspects of policy evalua-
tion, data flow tracking, and/or information retrieval [6,8,17,18], some of them
do not allow for preventive policy enforcement [6,18], while others effectively
make use of central components [8,17], or do not integrate data flow tracking
[8,17,18].

Problem. We tackle the problem of enforcing global data usage control policies
if (i) the data to be protected resides, (ii) the data usage events occur, and
(iii) the data flow events occur within and across multiple distributed systems.
While a solution could naively be implemented in a centralized fashion, such a
solution imposes drawbacks such as being a single point of failure. Intuitively,
a centralized solution is also expected to impose significant performance and
network communication overhead [13,16].

Solution. We design and implement a fully decentralized enforcement infrastruc-
ture with the goal to minimize aforementioned drawbacks and overheads. This
infrastructure deploys one PDP at each site which takes all decisions pertaining
to all local PEPs. Global policies are enforced by synchronizing the PDPs using a
distributed database. We optimize the information being exchanged according to
theoretical results [13].
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Contribution. To the best of our knowledge, our contributions are:

1. The first fully decentralized architecture and implementation for the preven-
tive enforcement of global data usage control policies (Sect. 3).

2. A thorough evaluation of the proposed and implemented architecture, show-
ing in which scenarios its adoption is beneficial (Sect.4).

Further, we provide the source code of our implementation as open source’.

Attacker Model and Assumptions. Our infrastructure prevents users from
using data in a way that does not comply with the corresponding policy—be
the attempt intentional or unintentional. Foremost, we consider users with-
out administrative privileges. Such a scenario is pervasive in business environ-
ments, where employees are given ready-to-use computing systems. To defend
against stronger attackers, the trust anchor must be embedded at a lower layer,
e.g. by using TPMs or SmartCards. Since our infrastructure runs as a process
within the operating system, we assume both to be free of vulnerabilities. Oth-
erwise, an attacker might be able to gain administrative privileges and switch off
our infrastructure and/or tamper with it. Moreover, we assume state-of-the-art
access control mechanisms to be in place.

Running Example. We illustrate our work along a running example, in which
an insurance company provides potential customers the ability to request con-
tract offers via a web interface. After internal processing of the request, the
customer retrieves a contract offer via email, which may be accepted or declined
via a web link. The entire scenario, including the insurance provider’s internal
data processing, is depicted in Fig. 1.

First, the customer fills a web form on the insurance provider’s website. By
submitting the form (1), a new ContractRequest (CR) object is created (2) and
the web server sends the CR to a set of clerks via the mail server (3,4). One
of the clerks will then review the attached CR (5) and start an analysis job
on the internal data analysis server (6), thereby creating a new AnalysisResult
(AR) object (7). Once the analysis is performed, the clerk retrieves the AR (8)
and performs a manual review on her workstation (9). The clerk then creates a
Contract (C) object using a collaborative word processor (10,11). Once created,
C might be retrieved (12), reviewed (13) and revised (14) by several clerks. After
C has been approved by a predefined number of clerks (15), one of the clerks
retrieves its final version (16) and sends it to the customer via the mail server
(17,18). Once the customer receives the offer, he might decline (19a) or accept
(19b) the Contract. Alternatively, he might delete his initial ContractRequest
altogether (19c).

Besides the application-specific events mentioned above, we also consider
events originating at the operating system layer, i.e. system calls [10]. Using
such an approach, we are able to detect data flows that happen outside the

! https://github.com/fkelbert /uc/ and https://github.com /fkelbert /uc4linux/.
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Fig. 1. Sequence of events in the running example.

application context or that have not been anticipated within the application
context, e.g. if a clerk creates a copy of a Contract using a file manager or a
shared file system.

Clearly, the customer’s data flows through many different systems in many
different formats. Further, the AnalysisResult and the Contract are data items
that have been derived from the original ContractRequest and must as such be
treated as containing the customer’s personal data. All of these data items are
stored and processed by many different systems and users, all of which must
enforce data usage policies such as:

Policy 1: ‘Exactly one contract offer must be sent to the customer not later
than 30 days after a request has been received.’

Policy 2: ‘If the customer declines an offer, all derived data items must not be
used anymore.’

Policy 3: ‘Each contract must be reviewed and approved by at least two clerks.’

Policy 4: ‘At no point in time might two clerks have a copy of the same analysis
result.’

Note, that all of those policies are global policies, meaning that they refer to data
and events that are distributed across several systems.

2 Background

2.1 Existing Data Usage Control Infrastructures

Data usage control infrastructures have been built for various system layers and
scenarios [4,6-10,12], and policy enforcement is usually performed using a PEP,
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a PDP, and a Policy Information Point (PIP). Once the PEP observes an attempt
of using an object, this attempt is signaled to the PDP which is configured with
the policies to be enforced. Depending on these policies, its internal state, and
additional information from the PIP, the PDP decides whether to allow, inhibit,
modify, or delay the usage attempt. The PEP is then in charge of enforcing
the decision. The information provided by the PIP differs slightly in different
models and includes subject and object attributes, environmental information,
and details about which data takes which representations within the system, i.e.
the system’s data flow state.

The set of events intercepted by the PEP is categorized into two, possibly
overlapping, subsets: data usage events and data flow events. Informally, data
usage events are events whose occurrence is obliged or constrained by data usage
policies. As such, all data usage events must be signaled to the PDP. Data
flow events, in contrast, must be signaled to the PIP. According to an event’s
predefined semantics and its actual parameters, the PIP will update its data
flow state. For example, if a ContractRequest data item is known to be stored as
a database entry, then all result sets of database queries selecting this entry will
also be associated with the same ContractRequest data item, and hence with
the same data usage policies.

Using such a combination of policy enforcement and data flow tracking tech-
nology, data usage control infrastructures allow to not only protect one single
data representation, such as a file or database entry, but rather all representa-
tions of the same data.

To differentiate between detective and preventive enforcement, the distinc-
tion between desired events and actual events is needed. Desired events are
intercepted by PEPs before their execution and they may be inhibited or mod-
ified in correspondence with the PDP’s decision. Actual events are intercepted
by the PEP after their execution. They can not be inhibited or modified, but
only be compensated for. Thus, desired events must be intercepted and evalu-
ated for preventive enforcement, while actual events must be monitored because
they cause state changes within the PDP and PIP.

2.2 Data Usage Control Policies: Syntax, Semantics, Evaluation

Building upon previous works [5,7,13,19], we assume policies to be specified as
Event-Condition-Action (ECA) rules: once a triggering Event is observed and
if the execution of this event would make the Condition true, then additional
Actions might be performed. Notably, the triggering event might also be an
artificial event, e.g. to indicate that a certain amount of time has passed. We will
use the terms ‘policy’ and ‘ECA rule’ interchangeably. ECA conditions (®) are
specified in terms of past linear temporal logics and their syntax is specified as:

U = true | false | €
X = isNotIn(D,P(C)) | isCombined(D,D,P(C)) | isMazIn(D,N,P(C))
b = ()| |X|not(P)|P and @ |P or ®|P since | P before N|repmin(N,N, E)
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While the formal semantics of @ are detailed in [13], we recap the intuitive
semantics: £ denotes the set of all data usage events (cf. Sect. 2.1); D denotes the
set of data items to be protected; C denotes the set of all possible representations,
or containers, for data, such as files and database entries. ¥ refers to boolean
constants (true, false) and data usage events £. X refers to so-called state-based
operators, allowing to express constraints over the system’s data flow state as
computed and maintained by the PIP: isNotIn(d,C) is true iff data d is not in
any of the containers C'; isCombined(d;,ds,C) is true iff there is at least one
container in C' that contains both data dy and da; isMazIn(d, m,C) is true iff
data d is contained in at most m containers in C. For @, the semantics of not, and
and or are intuitive; « since (3 is true iff 8 was true some time earlier and « was
true ever since, or if o was always true; a before j is true iff o was true exactly j
timesteps ago; repmin(j, m, e) is true iff event e happened at least m times in the
last j timesteps. Further, we define repmaz(j, m,e) = not(repmin(j,m + 1,¢€))
and always(a) = « since false.

Fixing one data item d, Table1 shows the example policies from Sect. 1 as
ECA rules. Rule 1a expresses that the CEO must be notified via mail if no con-
tract offer has been sent to the customer 30 days after a corresponding request.
Note that this rule does have a wildcard trigger event, implying that the rule is
evaluated upon every event. Further, this rule is detective only: satisfaction of
the condition results in a compensating action; actual violation of the policy is
not prevented. Rule 1b expresses that a contract offer must not be sent if there
was no corresponding contract request, or if a contract offer was already sent.
Rule 2 expresses that any attempt to use data item d is inhibited if the corre-
sponding contract offer was declined in the past. Note, that we have used event
use to refer to a set of events. This set might include events such as Analysis-
Server.start, Docs.create and Mail.sendContract. Rule 3 expresses that sending
of a contract is inhibited if this contract was not reviewed or approved by at
least two clerks in the last 30days. Rule 4 expresses that any event must be

Table 1. Example policies as ECA rules.

Policy 1|Event:
(a) Condition:
Action:

<any>
(Web.reqOffer(d) before 30) and repmax(30, 0, Mail.sendContract(d))
Mail.notifyCEO(d)

Event:
(b) Condition:
Action:

Mail.sendContract(d)
repmax(30, 0, Web.reqOffer(d)) or repmin(30, 1, Mail.sendContract(d))
inhibit

Policy 2|Event:
Condition:
Action:

use(d)
not(always(not(Web.decline(d))))
inhibit

Policy 3|Event:
Condition:
Action:

Mail.sendContract(d)
repmax(30, 1, Workstation.review(d)) or repmax(30, 1, Docs.approve(d))
inhibit

Policy 4 |Event:
Condition:
Action:

<any>(d)
Lm(iSMQXIn(ds ]a CWorkslaIion))
inhibit
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inhibited if its execution would lead to a state in which data d is in more than
one of the clerk’s workstations.

Policy Evaluation. A policy is evaluated whenever a trigger event occurs or if
a predefined amount of time has passed. The amount of time is configurable per
policy and the interval between two subsequent time-based policy evaluations
is called a timestep. The introduction of timesteps is necessary for practical
reasons: If an ECA condition such as ¢ = (Web.reqOffer(d) before 30[days]) is
to be evaluated, then it is unlikely that event Web.reqOffer(d) has happened
ezactly 30 days (i.e. 2592000s) ago. What is more likely and practical, however,
is that Web.reqOffer(d) has happened ‘approximately’ 30 days ago, e.g. 30 days
£ 12h. Similarly, consider the conjunction and disjunction of operators, and
and or. While it is unlikely that two events happen at ezactly the same point
in time, what is more likely and practical is that two events happen within a
specified time interval, i.e. within the same timestep.

For policy evaluation purposes, we consider conditions ¢ € @ as expression
trees. Leaves represent the constants true and false, events £, and state-based
operators X'; internal nodes are operators such as before, since, and, etc. Figure 2
depicts ECA rule 1a as expression tree. Leaves are stateful by storing whether the
represented operand has become true or false, depending on the actual operand,
during the current timestep. Whenever a PEP signals an event to the PDP,
it is evaluated against all of ¢’s leaves, potentially changing their states. E.g.,
if a leaf represents the event Mail.sendContract, then this leaf’s state changes
to true once the PEP signals event Mail.sendContract. If a leaf corresponds to
a state-based operator X, then its state is examined with the help of the PIP
under consideration of the signaled event’s data flow semantics. In a nutshell, the
expression trees’ leaves track which events have happened and which state-based
operators have changed their state during the ongoing timestep.

Only if the event signaled by the PEP matches
the ECA rule’s trigger event, then the entire condi-
tion ¢ is evaluated, denoted eval(y). For this, the
expression tree’s internal nodes recursively query repman,
their child nodes for their current state. Subse-
quently, the internal nodes are evaluated using this [[ Web.reqOffer(d) ]}
information. Internal nodes also maintain a state,
capturing historical values of child nodes. E.g. if [[Mail.sendContract(d)D
© = (Web.reqOffer(d) before 30[days]), then before
will keep a history of occurrences of Web.reqOffer(d) Fig. 2. Expression tree of
for 30 days. ECA rule 1a.

If eval(p) = true, then the ECA’s actions will be
triggered. Notably, evaluation of a condition ¢ € @ at the end of a timestep is
different in that the leaves’ evaluation results correspond to the truth values that
have been ‘accumulated’ during the elapsed timestep: an event’s truth value is
true iff the event happened at least once during the elapsed timestep, while a
state-based operator’s truth value is true iff the operator was true at least once
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during the elapsed timestep. Note that cardinality operators such as repmin
count all occurrences of an event during a timestep. Once eval(p) has been
computed, the leaves’ truth values are reset for the next timestep.

2.3 Distributed Policy Decisions

As motivated in Sect. 2.1, all data usage events and data flow events must be sig-
naled to the PDP and PIP for decision making and data flow tracking purposes.
Moreover, both the PDP and the PIP maintain an internal state necessary to
perform those tasks. As discussed in [13], this leads to new challenges if the data
to be protected, as well as the data usage and data flow events are distributed.
One naive solution to enforce global policies is to deploy one central PDP/PIP.
However, such an approach is expected to be poorly performing in terms of
runtime and communication overhead [13,16].

The remaining challenge is to build an enforcement infrastructure that
enforces global policies without the need for central components [14]. As such,
it has been proposed to deploy PDPs and PIPs locally and consequently to keep
all communication between PEP and PDP/PIP local [13]. However, consistent
enforcement of global policies across all PDPs then necessitates their coordi-
nation. While naively each PDP/PIP could notify all internal state changes
to all other PDPs/PIPs, we optimize our implementation according to formal
results presented in [13]. In a nutshell, the paper analyzes for which policies and
event traces coordination between PDPs may or may not be omitted. E.g., if
p = ey or ex with ey, ex € £, then if e; happens within system A while es hap-
pens within system B, then two decentrally deployed PDPs on systems A and B
can both locally conclude evala(p) = evalp(p) = true without contacting the
other PDP.

3 Architecture and Implementation

Our implementation deploys a PDP and a PIP at each site, such as a single
system, or an organizational unit, cf. Fig. 3. Those components are responsible
for local data flow tracking and policy evaluation (Sects. 2.1-2.2), as well as cross-
system data flow tracking and policy shipment [12]. For deciding global policies,
the PDPs coordinate their decisions using a distributed database (Sect.3.2),
leveraging previous results on how to efficiently enforce global data usage policies
in distributed systems [13].

3.1 Distributed Policy Evaluation

Once a policy has been deployed at multiple PDPs, their decisions are expected
to be consistent at all times. To explain how we achieve such consistency, we take
the view of the PDP within system A, PDPy4, enforcing policy p; with trigger
event e, € &, condition ¢,, € @, and action ap,. As described in Sect. 2.2,
any event signaled to PDP4 potentially changes the state of leaves within ¢p, .
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. Cassandra node Cassandra node |
System A )J kk System B

Cluster

Fig. 3. High-level architecture view.

Since such state changes are of importance for other PDPs enforcing p;, PDPy
publishes any such state changes via the distributed database. We assume this
database to be always available and strongly consistent; Sect. 3.4 explains how
this is achieved in practice.

As described in Sect.2.2, ¢, must be evaluated whenever a timestep has
passed or whenever a signaled event matches p;’s trigger event e,,. In any
of those cases, PDP, first evaluates ¢, locally. If this local evaluation yields
eval(pp, ) = true, no further coordination with other PDPs is necessary: action
ap, will be executed. However, if eval(¢p,) = false, then it might still be the
case that ¢p, is true globally, eval’(pp,) = true, i.e. when considering other
PDPs’ state changes. Hence, ¢, is re-evaluated: For each leaf of ¢, whose
local state was false, a lookup within the distributed database is performed. If
the lookup yields true, implying that the operator was satisfied at some other
PDP, the parent nodes are recursively re-evaluated up to the root node.? For
example, consider condition ¢, = evy and isCombined(dy,ds, C'), where at sys-
tem A evy is happening, while system B combines data items d; and ds. Locally,
both PDP, and PDPg evaluate ¢, to false, evala(pp,) = evalp(pp, ) = false.
Subsequently, PDP 4 looks up isCombined(d;,ds, C) in the distributed database,
while PDPg looks up whether ev; happened. Hence, distributed evaluation of
@p, results in eval’ (¢p,) = eval’(¢p,) = true.

It is important to note that time-based policy evaluations must consistently
happen at the same time across all PDPs. Otherwise, the PDPs might come to
different conclusions when evaluating the same policy. Consider once again ¢y, , a
point in time ¢, a timestep interval of 10 min, and the fact that PDP, evaluates
at times t,t + 10,¢ + 20, ..., while PDPgy evaluates at times ¢t + 5,¢t + 15,....
Further, assume evy happens at time ¢ + 2, while isCombined(dy, ds, C) is only
true at time t + 7. Then, PDPA’s evaluation at time ¢ + 10 yields true, while
PDPg’s evaluation yields false at times ¢ + 5 and ¢ + 15. For this reason, our
decentral PDPs always evaluate at the same time. While we are aware that such
synchronization is subject to scheduling and clock synchronization issues, our
experiments (cf. Sect.4) did not reveal evaluation inconsistencies.

2 In fact, for operators isNotIn and isMazln a lookup is performed if their local eval-
uation result is true rather than false. This reflects that local satisfaction of those
operators never implies their global satisfaction, while their local violation always
implies their global violation [13].
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3.2 Using Cassandra as a Distributed Database

As indicated in Fig. 3, our infrastructure is built on top of Cassandra—a distrib-
uted database originally developed at Facebook [20] and now maintained by The
Apache Foundation [21]. Cassandra’s purpose is to provide a “highly available
service with no single point of failure” being run “on top of [...] hundreds of
nodes” [20]. As such, Cassandra has been designed to achieve high scalability,
availability, and performance.

Data Replication. In Cassandra, the entire set of nodes forming the distrib-
uted database is called a cluster. The cluster’s data is organized via keyspaces,
and each table is associated with exactly one keyspace. Keyspaces take a cen-
tral role, since each keyspace’s replication strategy defines among which nodes
of the cluster its associated tables are replicated. Hence, data with the same
replication requirements should be organized within the same keyspace. In our
context, each PDP might need to enforce several policies at the same time and
for each the set of remote PDPs with which coordination is required might dif-
fer. Hence, we represent each policy by exactly one keyspace. Consider policy py
constraining the usage of data d; which has representations in systems A and B.
Then, in our implementation there exists keyspace k;,, with replication strategy
kP = {A, B}. Thus, if PDP4 shares a state change of ¢}, within keyspace k;,, ,
this information is replicated to exactly those PDPs for which it is of interest,
i.e. PDPg.

Data Consistency. With the CAP theorem [22] stating that consistency, avail-
ability, and partition-tolerance can not all be achieved at the same time, many
eventually consistent databases have emerged. In this respect, Cassandra is flex-
ible by allowing to trade consistency with performance. For the time being, we
assume strong data consistency; Sect. 3.4 shows how this is efficiently achieved
in practice. In case strong consistency is not sufficient, Cassandra provides lin-
earizable consistency (compare-and-set transactions) on the basis of the Paxos
consensus protocol [23].

As described in Sect. 4, our architecture can be flexibly deployed: While in
Fig. 3 PDP, PIP, and Cassandra are local to the PEPs, it is possible to deploy
those components remotely, allowing to set up a centralized infrastructure. We
also assume all Cassandra nodes to know at least one seed node that is already
part of the cluster; this is discussed in Sect. 3.5.

3.3 Bootstrapping and Cross-System Data Flows

Consider a set of PDPs/PIPs with their corresponding Cassandra nodes and
assume that no data usage policy has yet been deployed. Then, at some point
in time the first policy p; is deployed at PDP 4. While deploying, one or more
containers are marked to contain data d; whose usage is constrained by pj.
This initial classification is performed by PIP . Since p; and d; are only known
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to PDPA, PDPA can independently take all decisions about p; as described
in Sect. 2.2.

Now, consider that system A shares data d; with system B, e.g. via net-
work transfer. From then on, also system B might influence the evaluation of
p1.- Our implementation reflects this first cross-system data transfer of d; by
creating keyspace ky,, with k' = {A, B}. Consequently, all data written to kp,
is immediately replicated to nodes A and B. As Cassandra’s database triggers
are experimental, actual data flow tracking and policy transfer to system B is
performed via remote procedure calls using Apache Thrift [24].

Now, system B might further share data d; with system C. Since keyspace
kp, exists already, our implementation adapts the existing keyspace to incorpo-
rate node C, kyP — k" U{C} = {4, B,C}. Notably, the keyspace’s adaption
is immediately perceived by node A, such that from now on all data written to
ky, will be replicated to nodes A, B and C. In order to prevent conflicts and
lost updates, this adaption of a keyspace’s replication strategy must be atomic;
we implemented corresponding locking mechanisms on top of the keyspace being
updated. For atomic acquiring of the lock, we use Cassandra’s lightweight trans-
actions, which provide linearizable consistency.

3.4 Cassandra Consistency

In Cassandra, each single read and write operation can be configured with a con-
sistency level (CL), which defines how many nodes of the corresponding keyspace
must acknowledge the operation. Among others, Cassandra provides the self-
explanatory consistency levels One, Two, Three and All. While using CL=AIl
guarantees strong data consistency, as assumed in this paper up to now, it comes
at the cost of performance and the requirement that all of the keyspace’s nodes
must be always online and reachable by all other nodes. By providing consis-
tency level Quorum, Cassandra allows to achieve strong consistency without
such drawbacks: If CL=Quorum, then operations must be acknowledged by at
least half of the nodes. Consequently, strong consistency can be achieved by
using CL=Quorum for all reads and writes. Note that strong consistency can
also be achieved by using CL=AII for all writes and CL=0ne for all reads.

Whenever a consistency level different from One is used, reads and writes to a
keyspace might fail. If CL=All, then it is sufficient that only one of the keyspace’s
nodes is not available in order to make queries to the keyspace fail. Since failing of
a node or some network link is not unlikely in practice, a consistency level of All
can be considered impractical. If CL=Quorum, read and write operations might
fail if half of the nodes of a keyspace are not available. While such situations are
not impossible, e.g. if network partitions occur, they are much more unlikely in
practice. Considering the Cassandra cluster from the point of view of a single
node, any query to a keyspace with CL#One fails in case the considered node
is offline. While configurable, by default our implementation uses CL=Quorum
for all reads and writes.

Our implementation tackles the aforementioned problems by two means:
First, it is configurable how often and in which intervals failed queries are retried.
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Second, if queries still fail after the predefined amount of tries, the PDP takes a
fallback decision. Clearly, such a fallback decision depends on the policy being
enforced, the scenario, and the attacker model. Hence, our policies can be con-
figured accordingly.

3.5 Connecting Cassandra Nodes

When starting up, new Cassandra nodes need some way to discover the cluster
they ought to participate in. Cassandra achieves this by defining a fixed set
of seed nodes, through which new nodes can learn about the cluster. Since our
original goal was to develop a fully decentral infrastructure, we provide solutions
to the problem of integrating new nodes into an existing cluster without any
well-known seed nodes. Unfortunately, Cassandra does not provide an API to
explicitly command a running Cassandra node to further explore the cluster via
some specific node. Having in mind that such a functionality would simplify the
following solutions, we provide the following workarounds.

Recap the scenario described in Sect. 3.3, in which the very first policy p,
protecting data d;, is deployed at PDP 5, while PDPg is not yet enforcing any
policies. At some point in time, d;, and subsequently policy pi, is transferred
to system B. In Sect. 3.3 we assumed system B’s Cassandra node to participate
in the cluster. Our solution is to not start the Cassandra node together with
the PDP/PIP, but only once the first global policy ought to be enforced: Once
PDPg receives policy p; via remote procedure call from PDP 4, this call includes
the address of system A’s Cassandra node. Knowing this address, system B will
start its Cassandra node, using the given address as a seed node.

Now, consider an extended scenario in which systems PDP, and PDPp
enforce policy p1, while PDP¢ enforces policy ps which protects data ds. Since
the sets of systems enforcing p; and ps are disjoint, the overall cluster can be
considered to be partitioned, while the single partitions are not aware of any
other partitions. Once d; is transferred to system C, these two partitions must
be merged. Since an explicit ‘explore’-command as described above is missing,
we solve this problem as follows: Once d; is transferred, we start a temporary
Cassandra node which uses both A’s Cassandra node as well as C’s Cassandra
node as seed nodes. Exploring the cluster through this temporary node, the pre-
viously autonomous parts of the cluster will get to know about each other. Once
this has happened, the temporary node can be taken down again.

4 Evaluation

Since our goal was to improve over the communication and performance overhead
imposed by a centralized approach, we conducted case studies to understand
which approach causes which overheads in which situations. After detailing our
experiment setup, we elaborate on the results obtained by enforcing ECA rules
la, 1b and 2.
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System Setup. Our virtual environment was based on VMware ESXi 5.1.0
with a host capacity of a 8 x 2.6 GHz CPU and 128 GB RAM. All machines,
s0..87, were configured with a 4 x 2.6 GHz CPU. Further, sO was configured with
16 GB RAM, s1..s7 with 4 GB RAM each. All machines run Linux Mint 17.1
64 bit, kernel 3.13.0; Cassandra was used in version 2.1.2; the infrastructure of
PDP/PIP and its connection to Cassandra was written in Java 8; PEP and PDP
communicated via Thrift 0.9.2. For the central system setup, sO was hosting the
central PDP /PIP instance, which was responsible for policy evaluation and data
flow tracking for several PEPs being run on systems s1..s7. In this case, no Cas-
sandra instance was run. For the decentral setup, systems sl..s7 all run exactly
one instance of PEP, PDP, PIP, and Cassandra; sO was not used. All cross-system
communication was encrypted using SSL; Cassandra used CL=Quorum.

Parameters. We identified and experimented with the following parameters:
(i) the policy being enforced, (ii) the total number of systems being usage con-
trolled, (iii) the number of systems actually enforcing the policy, (iv) the event
frequency, (v) the percentage of events relevant for data flow tracking and/or
policy evaluation. Although those parameters impose a huge complexity on the
performed experiments, we are confident that our results provide a good under-
standing of their influence on any overheads.

Experiment Execution. For each measurement we fixed all of the above para-
meters and randomly generated an event trace that matched the given (global)
event frequency; each event was randomly assigned to one of the participating
usage controlled systems. We then let the experiment run for 30s, whereby the
policy was evaluated upon every trigger event as well as for a timestep inter-
val of one second. After each run, we reset the entire infrastructure. Note, that
our PEPs intercepted the system events both before and after their execution,
resulting in a desired event and an actual event being sent to the PDP. The data
was gathered using tcpdump and standard datetime utilities.

We present the results that we obtained by enforcing ECA rules la, 1b and
2. For ECA rules 1a and 1b we fixed the total number of systems being usage
controlled to three, and all of those systems where actually enforcing the policy.
For ECA rule 2, a total number of seven usage controlled systems were monitored
and enforcing the policy.

Communication Overhead. Figures4 and 5 show the global communication
overhead when enforcing ECA rules 1a and 1b, respectively. We experimented
with the event frequency and the percentage of events relevant for data flow
tracking and policy evaluation. Trends are visualized using linear regression.

The results produced by the central system setup (Figs. 4 and 5, _*_) where of
little surprise: For each event being observed by a PEP, around 1070 Bytes were
exchanged between the PEP and the PDP. The percentage of relevant events did
not have any influence on the communication overhead. This is of no surprise
when recapping that the PEP is stateless and that every event must be signaled
to the PDP.
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Running our decentralized infrastructure, our first observation is that Cas-
sandra causes some base ‘noise’ of around 1050 Bytes/sec/node—independent of
any operations being performed. This implies that the centralized approach will
inexorably perform better in case of very low event frequencies as can be seen in
Figs. 4 and 5. However, depending on the event frequency as well as the percent-
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Fig. 4. Communication overhead when enforcing Policy 1a on three systems.
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Fig. 5. Communication overhead when enforcing Policy 1b on three systems.
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age of relevant events, our decentralized approach is capable of outperforming
the centralized approach.

While in general event traces with a low percentage of relevant events per-
form particularly well (Figs.4 and 5, _®. (10% relevant events), _*_ (25%)),
we also observe some remarkable exceptions. First of all, aforementioned traces
perform good for two reasons: (i) policies can in many cases be conclusively
evaluated locally, avoiding costly lookups within the distributed database; (ii) a
low percentage of relevant events implies a small amount of state changes that
must be notified to other PDPs and thus written to the database. Secondly,
traces with 0% of relevant events perform badly (*_ ), since our infrastruc-
ture must perform database lookups for each event and timestep. Thirdly, traces
with a high percentage of relevant events also perform badly ( (75 %),
(100 %)). While in the latter case the PDPs can almost always decide locally, a
high amount of state changes must be notified to other PDPs. Thus, the lion’s
share of the communication overhead is due to state changes being written to
the database.

As depicted in Figs.4 and 5, ECA rule la can be evaluated more efficiently
than ECA rule 1b. The main reason is that evaluation of operator before in ECA
rule la necessitates at most one database lookup per PDP per timestep, while
in the worst case each repmin operator, which occurs twice in ECA rule 1b,
necessitates one lookup upon every event.

Fixing several event frequencies, Figs.6 and 7 show how the percentage of
relevant events influences the total amount of Bytes being exchanged between all
involved systems. To compare those numbers, we normalize the measurements
by dividing the total amount of Bytes by the number of observed events. Again,
for the centralized approach (.__ ) the communication overhead is constant
(1070 Bytes per event) and the percentage of relevant events does not influence
the amount of Bytes being exchanged.
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Fig. 6. Communication overhead when enforcing Policy 1a on three systems.
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We observe that the decentralized approach performs best for high event
frequencies (Figs.6 and 7, _*_ (67 Events/sec), -+. (167 Events/sec)) and if
the percentage of relevant events is around 3% to 60 %. Firstly, this is because
higher event frequencies exploit better Cassandra’s base noise, which keeps the
database consistent. Secondly, a low percentage of relevant events results in many
situations in which the local PDPs can decide conclusively, while a low amount
of state changes must be signaled to other PDPs. However, if the amount of
relevant events is too low, then many lookups within the database are required,
while the presence of many relevant events results in many writes to the database.
Hence, the centralized approach outperforms the decentralized approach if the
percentage of relevant events is very low or very high (<2%, 285 %; concrete
values depend on the policy and the event frequency, cf. Figs.6 and 7).

Regarding the enforcement of ECA rule 2 within a total of seven usage con-
trolled systems, the most important difference to ECA rules 1a and 1b is the con-
dition of ECA rule 2. This condition is satisfied if event Web.decline(d) happened
at least once in the past. Once this event is observed for the first time and notified
to all other PDPs, no further coordination is ever needed. This is also reflected
in our evaluation results. First of all, we again observe a worst case scenario if no
events relevant for policy evaluation are happening (Appendix A, Fig.9, = ). In
this case each PDP must query the database upon each evaluation in order to
learn whether the event in question has happened at some remote point. Since
this event never happens, communication overhead is immense. However, once
event Web.decline(d) has happened, then no further communication is required,
and we only observe Cassandra’s base noise (Appendix A, Fig.9, _®_ (10%),
> (25%), -~ - (50%), (75 %), (100 %)). As for the other scenarios, the
communication overhead caused by the centralized infrastructure is linear in the
number of events. Again, Appendix A, Fig. 10 shows that a very low percent-
age of relevant events (i.e. <2%) causes very high communication overheads.
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However, different to the previous policies, Appendix A, Fig. 10 reveals that for
ECA rule 2 the communication overhead for higher percentages of relevant events
is constant; the decentralized approach outperforms the centralized approach if
the global event frequency is higher than approximately 20 Events/sec.

In addition, we enforced ECA rule 1a within a total of seven usage controlled
systems, only three of them being ‘aware’ of the protected data and thus enforc-
ing the policy. While the communication overhead in the centralized approach
was the same as in the scenarios described above, in the decentral approach it
dropped to approximately 60 % of the above values for ECA rule 1la: While in
the central approach still every event must be signaled to the central PDP, in
our decentralized approach four out of three PDPs are not aware of any copy of
the protected data and thus they neither enforce the policy nor participate in
the corresponding Cassandra keyspace.

PDP Evaluation Times. Figure8 shows how many milliseconds it takes for
an event to be decided upon by the PDP for different event frequencies and
percentages of relevant events. For each event, this includes (i) the time to send
the event from the PEP to the PDP, (ii) the PDP’s evaluation process, and (iii)
the time to send the decision to the PEP.

For the centralized infrastructure, we observe that the evaluation times
increase as the event frequency increases. Clearly, higher event frequencies push
the central PDP towards its limits, since more events must be processed by the
single component. Also, more events cause more load on the network an thus
slightly higher network latency. For the same reasons as discussed above, the per-
centage of relevant events is irrelevant. Overall, the PEP usually gets responses
from the PDP after 3 to 10 ms.

For the distributed infrastructure, we observed that the event frequency does
not influence the PDP’s evaluation times. However, we observe an anomaly when
enforcing traces with 0% relevant events. This is in correspondence with the
communication overhead and can be explained by the fact that in this case
the PDPs can never conclusively evaluate locally. Hence, for each event lookups
within the database are required. By using the Quorum consistency level, this
results in remote requests to other nodes of the cluster, decreasing performance
of the evaluation process. In these cases, the PEP may need to wait up to 16 ms
for the PDP’s response. In contrast, if an event trace contains at least some
relevant events, then the distributed decision process is capable of outperforming
the centralized approach by providing responses between 2 to 9ms.

Wrap-Up. Considering the bare numbers, we realize that a fully enforcement
infrastructure is not unconditionally superior to a centralized one. According
to our case studies, the adoption of a decentralized approach is particularly
beneficial if (i) event frequencies are high, (ii) the percentage of events relevant
for policy evaluation and/or data flow tracking is within a range of approximately
3% to 60%, and/or if (iii) the policy being enforced allows for many locally
conclusive evaluations.
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Instead of bluntly deploying either of those infrastructures, experiments as
the ones above should be performed, considering the concrete parameters, i.e.
the policies, the amount of systems, and the expected event traces, of a given
application scenario. We also envision that such experiments can be performed
at runtime, and that the technology in use (i.e. central or decentral) may be
switched dynamically in correspondence with those live observations. While Cas-
sandra simplified the implementation of our infrastructure, it comes at the cost
of performance and communication overhead. It stands to reason that a tailored
solution would improve upon those overheads.

5 Related Work

Service Automata [17] address the problem of enforcing policies that cannot be
decided locally. For this, local “service automatons”, roughly equivalent to PEP,
PDP and PIP, monitor the execution of programs within a distributed system.
If an automaton’s knowledge is insufficient to take a policy decision, it delegates
the decision to some other automaton. For this, each security-relevant event
is statically mapped to one single responsible automaton; possibly conflicting
events must be mapped to the same automaton. In contrast, our approach does
not rely on such a static mapping, but allows each PDP to take the corresponding
decisions. Further, Service Automata do not cater to the fact that the data to
be protected might be copied both within and across systems.

Lazouski et al. [8] provide a framework that enforces usage control policies
if data copies are distributed. Besides access and usage control rules, so-called
PDP/PIP allocation policies are embedded into the protected data, specifying
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Fig. 8. PDP evaluation times when enforcing ECA rules 1a, 1b, and 2.
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which PDPs and PIPs are involved in the decision process. Subject and object
attributes required by the PDP are stored at different PIP locations. Different
to our approach, the proposed allocation policies effectively introduce central
components: for each protected data, the responsible PDP is fixed. Also, each
attribute is under the responsibility of one single PIP. Failure of any of those
components will break policy enforcement.

Bauer et al. [18] monitor LTL formulas in distributed systems using rewrit-
ing techniques. Whenever a local monitor observes an event that influences pol-
icy evaluation, the policy is rewritten according to predefined rules and then
exchanged with the other local monitors. Hence, the local monitors are capable
of detecting violation or satisfaction of the formula. The approach is different
from ours in that it requires a synchronous system bus. Further, our approach
is more expressive by also considering state-based usage control policies and by
integrating data flow tracking.

Basin et al. [6,25] are capable of detectively enforcing data usage policies in
distributed systems. For this, log files are decentrally collected and a-posteriori
(i.e. offline) merged and evaluated against data usage policies. In contrast, our
approach also allows for the preventive enforcement of data usage policies.

6 Conclusions

We presented the first fully decentralized infrastructure for the preventive
enforcement of global data usage policies if the data to be protected, as well
as the corresponding data usage events, happen within multiple distributed sys-
tems.

We based the implementation of our infrastructure onto the distributed data-
base Cassandra. Local monitors, PEPs, observe data usage events within the dis-
tributed system, and signal those events to local decision points, PDPs, which
decide whether the event complies with the data usage policies. Since remote
PDPs might also observe events that influence the local PDP’s decision, the
PDPs exchange relevant information via Cassandra. This way, we achieve consis-
tent policy enforcement across multiple PDPs without any central components.
To minimize the amount of database queries, we optimized our implementation
using formal results from the literature.

We evaluated our infrastructure by comparing it with a centralized app-
roach, in which one single PDP is responsible for taking all policy decisions for
all events being observed by all distributed PEPs. Our case studies revealed that
the adoption of a decentralized infrastructure is particularly beneficial in case the
frequency of the observed system events is high and if approximately 3 % to 60 %
of all events are of relevance for policy evaluation and/or data flow tracking. In
terms of PDP evaluation times, our results revealed that the centralized and the
decentralized approach perform similarly. For our decentralized infrastructure,
the PEP usually gets policy evaluation results from the PDP within 2 to 9 ms.
While performing our experiments, we also realized that all of the above evalu-
ation results highly dependent on the policy being enforced. Notably, there also
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exist policies (cf. ECA rule 2) for which the decentralized approach performs
tremendously better than the centralized one for most situations.

In any case, a decentralized infrastructure overcomes many problems
omnipresent in a centralized approach. By deploying all components locally and
by replicating data to different locations, there is no single point of failure and
no need for a central component to be always available for all clients.

In terms of future work, we plan to experiment with the different consistency
levels provided by Cassandra, which allow to trade consistency with perfor-
mance. While we will likely be able to improve performance and communication
overhead, it would be interesting to understand to which extent a non-strongly
consistent database influences the consistency of the distributed policy evalu-
ations. Clearly, it would depend on the considered scenario whether any such
inconsistencies are acceptable. Depending on those results, a further option is
to abandon off-the-shelf databases and to implement mechanisms specifically
tailored to usage control requirements.
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A  Further Evaluation Results
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