
Cryptographic Enforcement of Information Flow
Policies Without Public Information

Jason Crampton1(B), Naomi Farley1, Gregory Gutin1, Mark Jones1,
and Bertram Poettering2

1 Royal Holloway, University of London, Egham, UK
jason.crampton@rhul.ac.uk

2 Ruhr University Bochum, Bochum, Germany

Abstract. The enforcement of access control policies using crypto-
graphic primitives has been studied for over 30 years. When symmetric
cryptographic primitives are used, each protected resource is encrypted
and only authorized users are given the decryption key. Hence, users
may require many keys. In most schemes in the literature, keys are
derived from a single key explicitly assigned to the user and publicly
available information. Recent work has challenged this design by devel-
oping schemes that do not require public information, the trade-off being
that a user may require more than one key. However, these new schemes,
which require a chain partition of the partially ordered set on which the
access control policy is based, generally require more keys than necessary.
Moreover, no algorithm is known for determining the best chain partition
to use. In this paper we define the notion of a tree-based cryptographic
enforcement scheme, which, like chain-based schemes, requires no public
information but simultaneously has lower storage requirements. We for-
mally establish that the strong security properties of recent chain-based
schemes are preserved by tree-based schemes, and provide an efficient
construction for deriving a tree-based enforcement scheme from a given
policy that minimizes the number of keys required.

1 Introduction

Access control is a fundamental security service in modern computing systems.
Informally, an access control system filters attempts by users to interact with
protected resources, only allowing those interactions that are authorized by a
policy, which is configured by the resource owner(s). Implementations of access
control in software are vulnerable to compromise of the machine hosting the
software. Moreover, such enforcement mechanisms do not work when protected
resources are stored by an untrusted or semi-trusted third party, as is increasingly
common.

In some situations, therefore, we may wish to use cryptographic techniques to
enforce some form of access control. Such an approach is useful when data objects
have the followingcharacteristics: readoften,bymanyusers;writtenonce, or rarely,
by the owner of the data; and transmitted over unprotected networks. In such cir-
cumstances, protected data (objects) are encrypted and authorized users are given
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 389–408, 2015.
DOI: 10.1007/978-3-319-28166-7 19

390 J. Crampton et al.

the appropriate cryptographic keys. When cryptographic enforcement is used, the
problem we must address is the efficient and accurate distribution of encryption
keys to authorized users.

In recent years, there has been a considerable amount of interest in key
encrypting or key assignment schemes. In such schemes, a user is given a secret
value – typically a single key – which enables the user to derive some collec-
tion of encryption keys which decrypt the objects for which she is authorized.
Key derivation is performed using the secret value and some information made
publicly available by the scheme administrator. These schemes are particularly
suitable for policies that can be represented in terms of information flow.

Ideally, such a scheme should minimize the amount of public information
and the time required to derive a key. Unsurprisingly, it is not possible to realize
both objectives simultaneously, so trade-offs have been sought. Most schemes in
the literature assume that each user is supplied with a single key from which
other keys are derived with the help of some information published by the scheme
administrator (see [10] for a survey of such schemes). In 2010, Crampton et al. [9]
introduced a new type of scheme in which users may receive several keys. The
significant advantage of this scheme is that no public information is required.
Moreover, the simplicity of the underlying structure of the scheme makes it
possible to prove the scheme possesses very strong security properties [12].

An information flow policy is defined by a partially ordered set X and a
function mapping users and resources to elements in X. Most key assignment
schemes are derived directly from X. The innovation introduced by Crampton
et al. was to consider a partition of X into chains (or total orders). It is par-
ticularly easy to work with chains, but the partition breaks some of the “con-
nectivity” of the partial ordering. These breaks are “repaired” by issuing more
than one key to some users. However, one question that remains open is how
best to choose the chain partition of a partially ordered set: there may be many
such partitions and different choices may lead to chain partition schemes with
different characteristics.

In this paper, we show that it is possible to work with trees, rather than
chains, without reintroducing the need for public information, resulting in
much more space-efficient key assignment. We define a tree-based, cryptographic
enforcement scheme and provide a rigorous construction for such schemes from
a given partially ordered set. We identify a number of different parameters that
may be important in the context of a tree-based enforcement scheme. In par-
ticular, we consider the total number of keys that may be required in such a
scheme and prove that a tree-based enforcement scheme with a minimal num-
ber of keys can be constructed in time O(|X|2). We show that a tree-based
enforcement scheme for a given X will typically require fewer keys than a chain-
based scheme. Moreover, we present an efficient algorithm for computing the
best choice of tree from the information flow policy, in contrast to chain-based
methods (which assume that a chain partition is given).

Our approach is based on constructing a weighted directed acyclic graph from
X and then constructing a minimum weight spanning out-tree from the graph.

Cryptographic Enforcement of Information Flow Policies 391

We establish a number of results about this out-tree that are likely to provide
the foundation for further study of tree-based enforcement schemes.

In the next section, we introduce notation, relevant background material and
relatedwork.Then, in Sect. 3,wedefine a tree-based enforcement scheme, provide a
method for constructing such schemes for a given informationflowpolicy, andprove
that all the resulting schemes have the property of strong key indistinguishability.
In Sect. 4, we address the problem of finding a tree-based enforcement scheme that
minimizes the total number of keys required to enforce a given policy, culminat-
ing in a polynomial-time algorithm for computing such a scheme. We conclude the
paper with a summary of our contributions and some suggestions for future work.
Those proofs that are useful in understanding our constructions are given in the
body of the paper. The remainder, including the security proof for our construction
(which extends an earlier proof by Freire et al. [12]), are in the appendix.

2 Background and Related Work

In this paper, we consider the cryptographic enforcement of access control poli-
cies. In particular, we focus on the enforcement of information flow policies using
symmetric cryptographic primitives.1

2.1 Definitions and Notation

A directed graph (or digraph) G = (V (G), E(G)) is defined by a vertex set
V (G) and an arc set E(G) ⊆ V (G) × V (G). An arc in E(G) is written
in the form xy, where x, y ∈ V (G). A directed path is a sequence of arcs
v1v2, v2v3, . . . , vp−2vp−1, vp−1vp, which we may also write as the sequence of
vertices v1v2 . . . vp through which the path passes. We write x �G y if there
exists a directed path from x to y in G. For all x ∈ V (G), we define x �G x.

The in-degree of a vertex v ∈ V (G) is defined to be the number of arcs of the
form uv in E(G). Given an undirected rooted tree, we may orient each edge in
such a way that the root has in-degree 0 and all other vertices have in-degree 1;
the resulting (acyclic) digraph is called an out-tree. Thus if a directed path exists
between a pair of two vertices in an out-tree then it is unique. H is a spanning
subgraph of a graph G if V (H) = V (G). A spanning out-tree is a spanning
subgraph that is an out-tree.

A partially ordered set or poset is a pair (X,�), where � is a binary, reflexive,
anti-symmetric, transitive relation. Given a poset (X,�), we write x < y if x � y
and x �= y; and we may write x � y if y � x. We write x � y and say y covers
x if x < y and there does not exist z ∈ X such that x < z < y. We say x is
incomparable to y, denoted x � y, if x �� y and y �� x. We say Y ⊆ X is an
antichain if for all x, y ∈ Y , either x = y or x � y: Y is a maximum antichain if
|Y | � |Z| for every other antichain Z ⊆ X; the width of X is the cardinality of
a maximum antichain.
1 There exists a large body of work on the enforcement of attribute-based policies using

asymmetric cryptographic primitives, notably attribute-based encryption [6,13].

392 J. Crampton et al.

Given a poset (X,�), we define the graph H = (X,E0), where xy ∈ E0 if
and only if x � y. H is called the Hasse diagram of (X,�) and is a directed
acyclic graph. A Hasse diagram of a simple poset is shown in Fig. 1 (on p. 393).
We may also define the graph H∗ = (X,E∗

0), where xy ∈ E∗
0 if and only if x > y.

The graph H∗ is obtained by taking the transitive closure of H.
An information flow policy is defined by a partially ordered set of security

labels (X,�), a set of users U , a set of (protected) objects O, and a security
function λ : U ∪ O → X. We say u ∈ U is authorized to read o ∈ O if λ(u) �
λ(o) [5].

2.2 Basic Methods of Cryptographic Enforcement

A natural way to enforce an information flow policy is to define a cryptographic
key κ(x) for each x ∈ X, encrypt object o with κ(λ(o)) and give u (or enable u
to derive) all keys κ(x) such that x � λ(u). More specifically, let G = (X,E(G))
be an acyclic directed graph such that E0 ⊆ E(G) ⊆ E∗

0 . Then the transitive
closure of G is equal to H∗ and x �H y if and only if x �G y. By publishing key
derivation information for each arc in E(G), it is possible to derive κ(y) from
κ(x) if x �G y. Thus, the total amount of key derivation information required
is proportional to |E(G)|, while the number of key derivations will depend on
the lengths of the directed paths in G. We provide a more formal account of the
functionality required of a cryptographic enforcement scheme in Sect. 2.4.

Typically, key derivation information is generated using an appropriate sym-
metric cryptographic algorithm [1]: for arc xy ∈ E(G), the inputs to the cryp-
tographic algorithm will include κ(x) and κ(y). We write Enc(m,κ) to denote
the encryption of message m with key κ. There are three very well known ways
to implement cryptographic enforcement of information flow policies [10]:

Basic – give u the set of keys {κ(x) : x � λ(u)};
Iterative – give u a single key κ(λ(u)) and publish {Enc(κ(x), κ(y)) : x � y};
Direct – give u a single key κ(λ(u)) and publish {Enc(κ(x), κ(y)) : x < y}.

We may evaluate different implementations by considering a number of para-
meters. Let k(x) be the number of keys required by a user associated with x.
Then we write k to denote the maximum value of k(x) taken over all x and
K to denote

∑
x∈X k(x). We write p to denote the number of items of public

information,2 and d to denote the number of key derivation operations a user
may be required to perform to derive a key. Let n denote the cardinality of X.
Then the characteristics of the three schemes described above are summarized
in Table 1.

Naturally, there is a trade-off between the amount of public information we
need to compute and store centrally, and the number of key derivation operations
that are required. The direct scheme, for example, minimizes the cost of key
derivation at the expense of an increase in public information. Consider the
2 It is assumed that the structure of the poset (X, �) is known to all participants of

a cryptographic enforcement scheme.

Cryptographic Enforcement of Information Flow Policies 393

Table 1. How the parameters of various key assignment schemes vary

Scheme Keys for u K k p d

Basic {κ(x) : x � λ(u)} n + |E∗
0 | O(n) 0 0

Iterative {κ(λ(u))} n 1 |E0| O(n)

Direct {κ(λ(u))} n 1 |E∗
0 | 1

a

b c

d e

f g

h

(a) Hasse diagram

a

b c

d e

f g

h

(b) A chain partition

Fig. 1. The Hasse diagram of a simple poset (X, �) and a chain partition

example in Fig. 1: the Hasse diagram of the poset has 8 vertices and 10 arcs, and
the width of the poset is 2; the graph of the transitive closure has 23 arcs.

More complex schemes have been devised to reduce the number of derivation
operations by increasing |E(G)| [2,8,11]. In particular, Atallah et al. introduced
a scheme for policies where X is a total order, in which the number of derivation
operations was no greater than 2 and |E(G)| = O(|X| log |X|) [2]. Crampton
extended these ideas to arbitary interval-based access control policies [8].

2.3 Chain Partition Techniques

We may consider other ways of enforcing an information flow policy. Crampton
et al. observed that one possibility is to decompose a partially ordered set (X,�)
into disjoint chains and then use one-way functions to derive keys [9]. In this case,
the arc set E(G) ⊆ E0 and the transitive closure of G (the graph representing
the chain partition) is not necessarily equal to H∗ (as illustrated in Fig. 1b, in
which deleted arcs are shown as gray dashed lines).

The advantage of such a scheme is that no public information is required.
We simply select a key for the top element in each chain and then use a (public)
one-way function F to iteratively compute the keys for the remaining elements
in each chain. In particular, if x � y in a chain, then κ(x) = F (κ(y)).3 Thus a
3 This method is not appropriate for arbitrary posets because we may have y � x and

y � z [10].

394 J. Crampton et al.

user can simply derive keys by repeated applications of the one-way function.
The trade-off in this case is that the user may need as many as w keys, one for
each of w chains. In Fig. 1b, for example, a user assigned to vertex d will require
κ(d) and κ(c). In short, it may be advantageous to eliminate public information,
in which case each user may require multiple keys to support key derivation.

2.4 Formalization and Constructions

Recent work has formalized the security properties required of a cryptographic
enforcement scheme (CES) for information flow policies [1,3,12]. Atallah et al.
introduced the concepts of key recovery and key indistinguishability [1]. The
former, informally, is the requirement that a coalition of users V ⊆ U (the
“adversary”) can derive κ(x) only if there exists v ∈ V such that λ(v) � x.
In other words, compromising users cannot lead to non-derivable keys being
compromised. This is, essentially, the weakest security requirement that one
might require of a CES. The schemes described in Sect. 2.2 have this property
(provided the encryption scheme has reasonable properties).

However, in the interests of integrating a CES with other cryptographic tools,
the stronger notion of indistinguishability was introduced. This property requires
that the adversary cannot distinguish between κ(x) and a random string (of
the same length). The schemes discussed in Sect. 2.2 do not have this property
(see [1], for example).

Informally, treating encryption keys as “just another encrypted data object”
cannot be the basis for a robust cryptographic enforcement scheme. Specifically,
the derivation of keys has to be separated from the decryption of data objects.
We achieve this by introducing a secret value σ(x) for each x ∈ X from which
κ(x) may be derived. More formally, a CES for (X,�) comprises the SetUp and
Derive algorithms, the first being used to generate keys and the data used to
derive keys, and the second to derive keys. Let K denote an arbitrary key space
(typically K = {0, 1}l for some l ∈ N).

– SetUp takes as input a security parameter ρ and a poset (X,�) associated
with an information flow policy. It outputs, for each element x ∈ X, a pair
(σ(x), κ(x)): σ(x) is used to derive keys κ(y) ∈ K, where y � x; and κ(x) is
used to encrypt data objects associated with security label x. The SetUp algo-
rithm also outputs a set of public information Pub, which is used to support
key derivation.4

– Derive takes as input (X,�), Pub, start and end points x, y ∈ X and σ(x).
It outputs κ(y) ∈ K if and only if y � x. (In particular, κ(x) can be derived
from σ(x).)

Atallah et al. described a CES in which two keys τ(x) and κ(x) are derived
from σ(x) using a pseudorandom function and (τ(y), κ(y)) is directly derivable
from τ(x) only if y � x. (Thus, κ(y) is iteratively derivable from σ(x) if x � y.)

4 In some schemes, it may be the case that κ(y) = σ(y) for all y ∈ X; and in some
schemes, it may be that the set of public information is empty.

Cryptographic Enforcement of Information Flow Policies 395

The main innovation here is to separate the derivation and encryption functions
of κ(x), meaning that knowledge of the object decryption key κ(x) does not help
in deriving κ(y). (Of course, exposure of τ(x) will allow for the derivation of τ(y)
and hence κ(y).)

Freire et al. introduce a security property called strong key indistinguisha-
bility [12], which we define formally in Fig. 4 and Definition 5 (on p. 401). The
adversary selects a vertex x to attack and may then learn {σ(y) : y �� x} (as in
the security model for key indistinguishability) and {κ(y) : y �= x}; the adver-
sary’s task is to distinguish κ(x) from random. They then define a CES for total
orders that has the property of strong key indistinguishability, in which a key
κ(x) is derived from σ(x) using a pseudorandom function and σ(y) is directly
derivable from σ(x) only if y � x. Finally, they demonstrate how this CES can
be extended to arbitrary posets using the chain partition construction described
in Sect. 2.3.

3 Tree-Based Enforcement Schemes

In this work, we are interested in enforcing an information flow policy, defined in
terms of the Hasse diagram of a partially ordered set (X,�), using cryptographic
primitives. We may enforce the policy in any way we see fit. We may, for example,
increase the number of arcs (by including some subset of the transitive arcs),
thereby decreasing the lengths of the directed paths in the graph and the number
of key derivations that are required. Thus there is a trade-off between (increasing)
the number of arcs and (decreasing) the amount of storage required for public
information. In particular, we could include all transitive arcs, so that all paths
are of length 1 (as in the direct scheme). Alternatively, we may increase the
number of keys given to each user and reduce the derivation time (keeping the
number of arcs constant). This corresponds to allowing the user to start from
multiple points in the graph.

In practice, there may be constraints that will dictate what kind of crypto-
graphic enforcement schemes will be appropriate. There may be constraints, for
example, on the computational power and/or storage of the end-user devices; or
it may not be possible to provide an on-line server to store public information.
As noted in Table 1, there are four parameters that are likely to be of interest: k,
K, p, and d. We may wish to minimize or impose an upper bound on one or more
of these parameters. Certain choices have been well studied, particularly those
for which k = 1 (when each user is given exactly one key and E0 ⊆ E(G) ⊆ E∗

0).
Alternatively, we can eliminate public information (by ensuring that every node
has at most one in-arc), at the expense of an increase in the number of keys
assigned to each vertex. It is these types of schemes that we consider in the
remainder of this paper. In particular, we consider the problem of minimizing
K, the total number of keys required.

In the special case that the Hasse diagram H = (X,E0) is a spanning out-
tree, we may use simpler cryptographic primitives to enforce an information
flow policy. Specifically, we know there is a unique directed path from x to y

396 J. Crampton et al.

whenever y < x. Hence, for all x, y ∈ X such that y � x, we define κ(y) to be
F (κ(x) ‖ y), where F is an appropriate one-way function [16] and ‖ denotes
string concatenation. In other words, keys are determined by the vertices, rather
than the arcs, through which a directed path passes. In this case, we require
no public information (apart from a description of the poset), because keys are
derived only from a (secret) key and a (public) vertex label.

In general, of course, H is not an out-tree. We may assume without loss of
generality, however, that our poset has a maximum element. If (X,�) has more
than one maximal element then we add a new element to X which is defined
to be greater than all elements in X. (In this case, no user or object would be
assigned to such an element.) Thus, we may assume that H∗ has only one vertex
of in-degree zero and so has a spanning out-tree [4, Prop. 1.7.1].

3.1 Constructing an Enforcement Scheme

In this paper, then, we investigate ways of constructing a spanning out-tree from
H∗ = (G,E∗

0) (in order to eliminate the need for public information) by selecting
an arc set that is a subset of E∗

0 . However, we have to “repair” the Hasse diagram
by allocating some users more than one key (because some of the paths will have
been “broken” by the deletion of arcs). Thus it is interesting to consider how to
select the arcs for deletion in such a way that the increase in the number of keys
is minimized (either on a per-vertex basis or in total).

Figure 2 illustrates three out-trees derived from the poset in Fig. 1a. Remov-
ing arcs to create an out-tree inevitably means that certain paths are broken.
The out-tree in Fig. 2a, for example, means that a user associated with vertex h
only requires a single key and derivation requires no more than one hop. How-
ever, every other vertex (except a) requires additional keys in order to bridge
the gaps. The above observations motivate the following definition.

a

b c

d e

f g

h

(a)

a

b c

d e

f g

h

(b)

a

b c

d e

f g

h

(c)

Fig. 2. Spanning out-trees derived from the poset in Fig. 1 by arc deletion

Cryptographic Enforcement of Information Flow Policies 397

Definition 1. Given an information flow policy (X,�), E(T) ⊆ X×X defines a
derivation out-tree T = (X,E(T)) if (i) T is a spanning out-tree; (ii) xy ∈ E(T)
implies y < x.

Lemma 1. Let D = (V,E) be an acyclic digraph with only one vertex r of
in-degree zero. Then by selecting one in-bound arc for each vertex x �= r we
obtain a spanning out-tree of D. Furthermore, any spanning out-tree of D can
be constructed in this way.

Proof. First, let us prove that T is a spanning out-tree. Clearly, T has no directed
cycle and every vertex of x �= r has in-degree 1. It remains to show that T is
connected and contains r. Consider a vertex y1 �= r and a longest directed path
of T terminating at y1: P = ytyt−1 . . . y1. Since T has no directed cycle all
vertices of P are distinct and since P is longest, yt = r. Thus, every vertex of T
is reachable from r showing that T is connected and contains r.

Now let T be a spanning out-tree. Note that for every vertex x �= r there
is exactly one arc to x. Thus, T can be constructed by the procedure of the
lemma. �	

If T = (X,E) is a derivation out-tree and x ≯ u, then x ��T u. However, we
may have u < x but x ��T u. Thus, the problem with a derivation out-tree, in
the context of cryptographic enforcement schemes, is that some authorized labels
will no longer be reachable. Accordingly, we extend the notion of a derivation
out-tree to a tree-based enforcement scheme.

Definition 2. Given an information flow policy (X,�), a tree-based enforce-
ment scheme is a pair (T, φ), where T is a derivation out-tree and φ : X → 2X

is a key allocation function such that:

– x ∈ φ(x);
– if u � x then there exists z ∈ φ(x) such that z �T u;
– if u �� x then for all z ∈ φ(x), z ��T u.

In a tree-based enforcement scheme (T, φ), directed paths in T are used to
derive secrets (and hence keys): E(T) determines the paths and φ determines the
starting points of those paths (and hence the set of secrets that should be given
to each user). In particular, φ(x) \ {x} is a set of vertices that were reachable
from x in H∗ that are no longer reachable in T . Thus, informally, φ(x) identifies
a set of starting places in T from which all (and only those) nodes that were
accessible in (X,�) from x remain accessible in T , and |φ(x)| − 1 is the number
of additional secrets that will be required by a user with security label x.

Given a poset (X,�) with maximum element r and a derivation out-tree
T = (X,E), define φE : X → 2X , where

φE(x) =

{
{x} if x = r,

{z ∈ X : ∃y ∈ X such that yz ∈ E, x � z, x �� y} otherwise.

We now establish that φE is the “best” tree-based enforcement scheme. First,
we show that (T, φE) is indeed a tree-based enforcement scheme. We then show

398 J. Crampton et al.

that for a given tree T = (X,E), any tree-based enforcement scheme (T, φ), and
any x ∈ X, φ(x) ⊇ φE(x).

Lemma 2. For any poset (X,�) and any derivation out-tree T = (X,E),
(T, φE) is a tree-based enforcement scheme.

Proof. We first show that x ∈ φE(x). This is trivially the case for x = r. If x is
not the root vertex, there exists y ∈ X such that yx ∈ E (since T is a derivation
out-tree). Moreover, x � x and x �� y (since yx ∈ E implies x < y). Hence, by
definition, x ∈ φE(x).

Now consider the case u < x. Since T is a derivation out-tree, there exists
a path z�z�−1 . . . z0 in T , with r = z�, u = z0 and � > 0. If zi = x for some i
then we are done (since x ∈ φE(x)). Hence, we may assume that zi �= x for all i.
However, there exists a smallest integer m < � such that x � zm and x �� zm+1.
(If no such integer existed, we would have to conclude r > x.) By definition,
zm ∈ φE(x) and also zm �T u.

Finally, consider the case u �� x and suppose (in order to obtain a contradic-
tion) there exists z ∈ φE(x) such that z �T u. Then u � z (by definition of a
derivation out-tree and �T) and z � x (by definition of φE(x)). By transitivity,
u � x, the desired contradiction. �	
Lemma 3. For any tree-based enforcement scheme (T = (X,E), φ) and every
vertex x ∈ X, φ(x) ⊇ φE(x).

Proof. Clearly φ(r) ⊇ φE(r), by definition. Given x �= r, suppose (in order to
obtain a contradiction) that z ∈ φE(x) and z �∈ φ(x). Then, by definition of
φE , there exists y ∈ X such that yz ∈ E, x � z and x �� y. Now, since z � x
and (T, φ) is an enforcement scheme, there exists t ∈ φ(x) such that t �T z.
Hence t �T y (since T is a tree and yz ∈ E). Therefore, y � t and t � x, since
(T, φ) is an enforcement scheme and t �T t. By transitivity, x � y (the desired
contradiction). �	

Thus, for a given tree T , (T, φE) is the enforcement scheme that minimizes,
for each x ∈ X, the number of secrets required by a user assigned to x. Hence,
for a given derivation out-tree T = (X,E), it is reasonable to assume that we
will always use the enforcement scheme (T, φE). Accordingly, we define

K(T) =
∑

x∈X

|φE(x)| .

That is K(T) represents the total number of secrets required by a tree-based
enforcement scheme based on the derivation out-tree T . Note also that |φE(x)|
denotes the number of secrets required by a user assigned to security label x.
Henceforth, given a derivation out-tree T = (X,E), we will assume we will use
the enforcement scheme (T, φE). Accordingly, we will write φ in preference to φE .

Let T = (X,E) be a derivation out-tree. Then, for y, z ∈ X such that yz ∈ E,
define

γ(yz) = {x ∈ X : x � z, x �� y} .

Cryptographic Enforcement of Information Flow Policies 399

As we will see in Lemma 4 and Sect. 4, there is a strong connection between φ
and γ, which we can use to compute a tree-based enforcement scheme efficiently.

Lemma 4. Let (X,�) be an information flow policy and let T = (X,E) be a
derivation out-tree. Then φ can be computed in time O(|X|2).
Proof. By definition, φ(x) = {z ∈ X : ∃y ∈ X such that yz ∈ E, x � z, x �� y},
for any x not equal to r in X. Moreover, there is a single arc in E of the form yz,
for any z ∈ X, since T is a derivation out-tree. Thus, an algorithm to compute φ
comprises an outer loop which iterates through the elements of X and an inner
loop that iterates through the elements of E, where each iteration of the inner
loop for arc yz tests whether x � z and x �� y. We can compute the adjacency
matrix of H∗ in time O(|X|2), which we can use to test whether x � z (and
x �� y) in constant time. Moreover, |E| = |X| − 1 (since every vertex except the
root has in-degree 1). Thus our algorithm runs in time O(|X|2). �	

3.2 Generating Keys

We now describe how to instantiate a tree-based enforcement scheme for (X,�),
given a derivation out-tree T = (X,E), using a pseudorandom function (PRF).
The scheme is a natural extension of the one used by Freire et al. for total
orders [12].5 Let ρ be a security parameter and F : {0, 1}ρ × {0, 1}∗ → {0, 1}ρ

be a PRF (as formally introduced in Sect. 3.3).

SetUp: The inputs to the algorithm are ρ and a derivation out-tree T = (X,E)
for (X,�), with root vertex r.
Select secret value s(r) uniformly at random from {0, 1}ρ. Set

κ(r) def= F (s(r), r) (1)

and, recursively, if y is a child of vertex x (in T), set

s(y) def= F (s(x), y) (2)

κ(y) def= F (s(y), y) (3)

Thus, for xy ∈ E, s(y) is derived from s(x) and the label of y, while κ(y) is
derived from s(y) and the label of y.
Finally, define σ(x) = {s(y) : y ∈ φ(x)}.

Derive: Given y, x and σ(x), with y � x, there (uniquely) exists z ∈ φ(x) such
that z �T y.
If z = y, then (since s(z) ∈ σ(x)), compute κ(z) = F (s(z), z). If z �= y,
then for each intermediate vertex ti on the path t1 . . . tm between t1 = z and
tm = y, compute s(ti) = F (s(ti−1), ti). Finally, compute κ(y) = F (s(y), y).

Our method for generating secrets is illustrated in Fig. 3.
5 In the special case of a total order, we obtain the scheme of Freire et al., modulo

some differences in the choice of the second input to the PRF.

400 J. Crampton et al.

s(a) = F (s(c), a)

s(b) = F (s(d), b) s(c) = F (s(d), c)

s(d) = F (s(g), d) s(e) = F (s(g), e)

s(f) = F (s(h), f) s(g) = F (s(h), g)

s(h)

Fig. 3. The secrets generated for the spanning-out-tree in Fig. 2c

3.3 Security Analysis

We start by specifying what we understand by a PRF. Our definition is not the
most general possible and is tailored to the requirements of our construction
(as described in Sect. 3.2); specifically, we assume that the keyspace and range
of the PRF are the same set.

Definition 3. A pseudorandom function (Fρ)ρ∈N is a family of efficient func-
tions Fρ : K × {0, 1}∗ → K, where we understand ρ as a security parameter and
K = {0, 1}ρ as the keyspace.

We will usually write Fρ,K(x) to denote Fρ(K,x) for any K ∈ K. To further
simplify the notation, we will omit ρ when no confusion can arise. We write
DO ⇒ 1 to denote a configuration where D is a probabilistic poly-time Turing
machine that has oracle access to a function O and outputs a bit with value 1.

Definition 4. Given a pseudorandom function F , we define the advantage of a
distinguisher D to be

AdvF
D(ρ) =

∣
∣
∣Pr[K ←R K;DFK(·) ⇒ 1] − Pr[ϕ ←R 〈{0, 1}∗ → K〉;Dϕ(·) ⇒ 1]

∣
∣
∣ ,

where 〈{0, 1}∗ → K〉 denotes the universe of all functions mapping {0, 1}∗ to K.
We say F is indistinguishable from a random function if the advantage of any
efficient distinguisher D is negligible.

We next make precise the level of security that we target. We refer to [1,12] for
recent discussions and comparisons of security models that are specific enough
to allow the analysis of CESs using the formalisms of provable security. We
reproduce here the strongest model from [12]; that is, the one formalising the
highest level of security, which is based on the security experiment Exptkist,bX,x,A(1ρ)
defined in Fig. 4. We write σ̄ and κ̄ to denote, respectively, vectors that list the
values σ(x) and κ(x) for all x ∈ X.

Cryptographic Enforcement of Information Flow Policies 401

Fig. 4. Security experiment for strong key indistinguishability

Definition 5. Let (X,�) be an arbitrary poset. A CES for (X,�) is strongly
key indistinguishable with respect to static adversaries if, for all x ∈ X, the
advantage of all efficient adversaries A that interact in experiment ExptkistX,x,A is
negligible, where we define

Advkist
X,x,A(ρ) =

∣
∣
∣Pr

[
Exptkist,1X,x,A(1ρ) ⇒ 1

]
− Pr

[
Exptkist,0X,x,A(1ρ) ⇒ 1

]∣
∣
∣

and set CorruptX,x = {σ(v) : v ∈ X,x �� v} and KeysX,x = {κ(v) : v ∈ X\{x}}.
Observe that in this definition, and in contrast to other models discussed in

[1,12], the adversary obtains, in principle, all secrets embedded in the system
(that is, all σ(x) and κ(x) values), excluding only those that would allow distin-
guishing the target key by trivial means (e.g., by invoking the Derive algorithm).6

The final step of our analysis is to prove that our tree-based enforcement
scheme from Sect. 3.2 is strongly key indistinguishable. Observe that this implies
that our scheme is secure in all the models considered in [1,12]. More formally,
we have the following result.

Theorem 1. Our tree-based enforcement scheme is strongly key indistinguish-
able in the sense of Definition 5. More precisely, for any poset (X,�), x ∈ X,
and efficient adversary A, there exists a constant 0 � c � |X| and efficient
distinguishers D0

1, . . . ,D0
c , D1

1, . . . ,D1
c against the underlying PRF such that

Advkist
X,x,A � AdvF

D0
1

+ · · · + AdvF
D0

c
+ AdvF

D1
1

+ · · · + AdvF
D1

c
.

4 Minimizing K in a Tree-Based Enforcement Scheme

So far, we have shown that it is possible to construct a tree-based enforcement
scheme for an information flow policy (X,�) that is strongly key indistinguish-
able. As we observed before, we will usually require our tree-based enforcement
scheme to have some particular properties, such as minimizing the total number
6 A variant of Definition 5 would consider dynamic adversaries: such an adversary is

able to choose the challenge label x during the experiment, rather than having it
fixed as one of the experiment’s parameters. However, it has been shown that static
and dynamic definitions of key indistinguishability are polynomially equivalent [12].
To simplify the exposition, therefore, we restrict our attention to the static case.

402 J. Crampton et al.

of keys or ensuring that all derivation paths are no longer than some threshold
value. Hence, we require an algorithm to compute a derivation out-tree that
satisfies the desired requirements, since, by Lemma 4, we can then compute the
associated key allocation function φ in polynomial time.

In this section, we consider two questions: how to minimize K, the total
number of keys allocated to vertices (by the key allocation function φ); and
how to minimize K̂, the total number of keys distributed to users. The second
question is interesting because, in practice, we might want to reduce the exposure
of keys by ensuring that very few keys are associated with vertices to which many
users are assigned. We solve both questions, demonstrating that it is surprisingly
efficient to compute the required tree-based enforcement schemes in polynomial
time. This is possible because of the connection between φ and γ, which leads to
Theorem 2. We then state and prove Theorem 3, the main result of this section.

Our basic approach is to define a weight for each arc in E∗
0 and construct

a minimum weight spanning out-tree. Accordingly, given an information flow
policy ((X,�), λ, U,O), where λ : U ∪ O → X, let U(x) = {u ∈ U : λ(u) = x},
and let H = (X,E0) be the Hasse diagram of X. Then we define the weight
function ω : E∗

0 → N, where

ω(yz) def=
∑

x∈γ(yz)

|U(x)| .

Theorem 2. Let (T = (X,E), φ) be any tree-based enforcement scheme for
(X,�). Then ∑

x∈X

x�=r

|U(x)| · |φ(x)| =
∑

e∈E

ω(e).

Proof. By definition, we have, for every x �= r,

|φ(x)| = |{yz ∈ E : x ∈ γ(yz)}|
and so

|U(x)| · |φ(x)| = |U(x)| · |{yz ∈ E : x ∈ γ(yz)}| .
Hence ∑

x∈X

x�=r

|U(x)| · |φ(x)| =
∑

x∈X

x�=r

|U(x)| · |yz ∈ E : x ∈ γ(yz)|

and, since r �∈ γ(yz) for any yz ∈ E, we have
∑

x∈X

x�=r

|U(x)| · |φ(x)| =
∑

yz∈E

∑

x∈γ(yz)

|U(x)| =
∑

yz∈E

ω(yz).

�	
Theorem 3. Given an information flow policy ((X,�), U,O, λ), we can com-
pute a tree-based enforcement scheme (T, φ) such that K̂ is minimized in time
O(|E∗

0 | + |X|2).

Cryptographic Enforcement of Information Flow Policies 403

Proof. For brevity, we write E for E(T). By Theorem 2,

K̂ = |U(r)| +
∑

e∈E

ω(e).

An algorithm to compute the weight function ω iterates through the arcs in E∗
0

and, for a given arc yz, iterates through all x in X testing whether x � z and
x �� y. In other words, we swap the inner and outer loops in the algorithm used
in the proof of Lemma 4. Thus, we can compute ω in time O(|X|2).

Since |U(r)| is fixed, we minimize K̂ by computing a derivation out-tree that
minimizes

∑
e∈E ω(e). By Lemma 1, we can achieve this by selecting, for each

non-root vertex x ∈ X, the minimum weight arc to x, where the weights are given
by ω. We need only consider each arc (in E∗

0) once, which takes time O(|E∗
0 |).

The resulting set of arcs forms a spanning out-tree of minimum weight and the
number of additional keys required is

∑
e∈E ω(e). We can derive the associated

key allocation function in time O(|X|2), by Lemma 4; the result follows. �	
Corollary 1. Given an information flow policy ((X,�), U,O, λ), we can compute
a tree-based enforcement scheme such that K is minimized in time O(|E∗

0 |+ |X|2).

Corollary 2. We can find, in time O(|E∗
0 |+ |X|3/2 |E∗

0 |1/2), a minimum weight
spanning out-tree that has the minimum number of leaves among such trees.

It is useful to find a minimum weight spanning out-tree with a minimum
number of leaves because the number of leaves will impose an upper bound on
|φ(x)|. Note, however, that |φ(x)| may be greater than the width of X (and it is
not difficult to construct such an example). This is because the set of arcs in the
graph that is input to MinLeaf – the algorithm used to construct the spanning
out-tree – will, in general, be a strict subset of E∗

0 . Thus, the size of the maximal
independent set in the graph that is input to MinLeaf can exceed the width
of the poset (which is the equal to the size of the maximal independent set in
G = (X,E∗

0)).
We now prove some further properties of γ. This enables us to reduce the

running time of our algorithm because we show it is sufficient to consider only
arcs in E0 (rather than E∗

0) when constructing the minimum weight spanning
out-tree.

Lemma 5. Let (X,�) be a partially ordered set. Then for all x, y, z ∈ X such
that z < y < x,

γ(xy) ∩ γ(yz) = ∅ and γ(xz) ⊇ γ(yz) ∪ γ(xy)

Corollary 3. Let (X,�) be a partially ordered set with Hasse diagram H =
(X,E0). Then, for any path x1x2 . . . xp in H∗, p > 2, we have

ω(x1xp) �
p−1∑

i=1

ω(xixi+1).

404 J. Crampton et al.

Corollary 4. Let (X,�) be a partially ordered set with Hasse diagram H =
(X,E0). Then there exists a minimum weight spanning out-tree T = (X,E) with
E ⊆ E0.

Corollary 5. We can compute a tree-based enforcement scheme for information
flow policy (X,�) in time O(|E0| + |X|2).
Remark 1. In practice, we expect that |U(x)| > 0, although our proofs do not
make this assumption. If we do make this assumption, it is possible to strengthen
the statement in Corollary 4 and assert that a minimum weight spanning out-tree
can only contain arcs from the Hasse diagram.

Figure 5 illustrates the construction of the minimum weight spanning out-
tree for the poset in Fig. 1 (assuming there is a single user for each vertex).
The weight on arc ec is 3, for example, because γ(ec) = {c, d, f}. (The effect of
retaining arc ec would be that κ(c) would be required for each of c, d and f .
Equivalently, c ∈ φ(d) and c ∈ φ(f) if we were to choose ec to belong to our
derivation out-tree.) To construct a minimum weight spanning out-tree, we must
select arcs ca and dc (and we select one or other of fd and gd). One possible
scheme, when gd is retained rather than fd is illustrated in Fig. 5b; the scheme
requires a total of 11 keys, being the sum of the weights on the retained arcs
plus an extra one for the root vertex.

a

b c

d e

f g

h

3 2

1 2 3

2 2 1

1 1

(a) Weights on arcs

a

b c

d e

f g

h

(b) Derivation out-tree

Fig. 5. The minimum weight derivation tree for Fig. 1

Remark 2. Our construction will almost always require fewer keys than a scheme
based on chain partitions. This follows by noting that any vertex x, such that
x > y, x > z and {y, z} is an antichain, necessarily requires (at least) two keys
in a chain partition scheme, but this is not necessarily true of our construction
(since the derivation tree may include many antichains). Consider the chain
partition in Fig. 1b and the derivation tree in Fig. 5b. The former would require
13 keys, while the latter only 11.

Cryptographic Enforcement of Information Flow Policies 405

5 Conclusion

In this paper, we have introduced a new form of cryptographic scheme for the
enforcement of information flow policies. Our scheme has the advantage that no
public information is required for the derivation of decryption keys. Moreover,
our tree-based scheme requires fewer keys (when X is not a total order), com-
pared to existing chain-based approaches, to enforce a given policy. Nevertheless,
our scheme retains the strong security properties that have recently been estab-
lished for chain-based schemes [12]. From a practical perspective, we provide an
efficient algorithm for computing an optimal derivation tree, in the sense that
it requires the smallest number of keys. This is in sharp contrast to chain-based
approaches, which provide no guidance on how best to select a chain partition
of the poset (of which there may be many) nor provide a way of computing the
number of keys required for a given partition. Thus, there are particular practical
advantages to using a tree-based approach.

There are several interesting opportunities for future work. From a mathe-
matical perspective, it would be interesting to establish the minimum total num-
ber of keys required by a chain-based scheme and, if possible, to quantify the
benefits offered by a tree-based scheme. This is, however, likely to be non-trivial,
as it is not clear that there exists a weight function for chain-based schemes that
can be used to formulate a result analogous to Theorem 2. From a more practi-
cal perspective, it would be interesting to find an algorithm that can compute a
derivation tree such that (i) no user requires more than w keys, where w is the
width of the poset (ii) the total number of keys is as small as possible. In partic-
ular, such a construction may be useful in scenarios where the user devices have
limited secure storage for keys. Our preliminary work on this problem suggests
that no efficient algorithm exists, but whether it is an NP-hard problem remains
open. We also intend to investigate whether a forest-based enforcement scheme,
which would share some of the characteristics of tree- and chain-based schemes,
would offer advantages in terms of reducing (i) the maximum number of steps
required for key derivation (ii) the administrative effort required following key
revocation (since we can limit key updates to those vertices within a tree in the
forest). In Fig. 5b, for example, we could delete arc gd to yield a forest of two
trees: each user assigned to vertex h or g would require an additional key (κ(d))
but worst-case key derivation would require two, rather than four, hops.

Acknowledgments. BP was supported by EPSRC Leadership Fellowship
EP/H005455/1, a Sofja Kovalevskaja Award of the Alexander von Humboldt
Foundation, and the German Federal Ministry for Education and Research.

A Proofs

Proof (of Theorem 1). The argument proceeds using sequences of |X| = n hybrid
games that interpolate between experiments Exptkist,0 and Exptkist,1. In each
hybrid step, if specific conditions are met, we replace one PRF instance by a

406 J. Crampton et al.

random function; from the point of view of the adversary, the distance between
each two consecutive hybrids is not greater than AdvF , for an appropriate PRF
distinguisher.

Fix a poset (X,�), a derivation out-tree T = (X,E(T)) for X, a label x ∈ X,
and an efficient adversary A. Let xn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 = r be any
(reverse) linear extension of X; that is xn is a smallest element in X and x1 is
the root.7 For b ∈ {0, 1}, we set Gb

0 = Exptkist,bX,x,A and define games Gb
1, . . . , G

b
n

such that, if x �� xk then Gb
k and Gb

k−1 are identical, and if x � xk then the
difference between games Gb

k and Gb
k−1 is precisely that all PRF invocations

with key σ(xk) are replaced by assignments with values in K drawn uniformly
at random. Let Sb

k denote Pr[Gb
k ⇒ 1] for all b, k.

Observe that we replace PRF invocations by random assignments for pre-
cisely those labels x that do not have a corresponding entry in CorruptX,x.
Observe also that, as we consider labels x ∈ X in a suitable order, for all switch-
ings from a PRF to a random function we have that the corresponding PRF key
σ(x) was replaced with a uniform random value before. Hence, by a standard
reductionist argument, in the cases x � xk we have

|Sb
k − Sb

k−1| = |Pr[Gb
k ⇒ 1] − Pr[Gb

k−1 ⇒ 1]| � AdvF
D, (4)

for a specific (efficient) distinguisher D; in addition, whenever x �� xk we have
Gb

k = Gb
k−1 and hence |Sb

k − Sb
k−1| = 0. Now, by repeated application of the

triangle inequality and (4), we have

∣
∣Sb

0 − Sb
n

∣
∣ �

n∑

i=1

∣
∣Sb

i−1 − Sb
i

∣
∣ �

c∑

i=1

AdvF
Db

i
,

where c = |{x′ ∈ X : x � x′}| and distinguishers Db
i are constructed as specified.

We now consider games G0
n and G1

n. In both cases κ(x) is picked uniformly at
random, thus lines 2 and 3 in the experiment implement the same operation.
Hence G0

n is identical to G1
n and

∣
∣S0

n − S1
n

∣
∣ = 0. Thus, we obtain

Advkist
X,x,A = |S1

0 − S0
0 | � |S1

0 − S1
n| + |S1

n − S0
n| + |S0

n − S0
0 |

� AdvF
D1

1
+ . . . + AdvF

D1
c

+ 0 + AdvF
D0

1
+ . . . + AdvF

D0
c

as required. �	
Proof (of Corollary 1). We simply set |U(x)| = 1 and apply Theorems 2
and 3. �	
Proof (of Corollary 2). Replace H∗ by its subgraph D = (X,E) obtained as
follows: for each vertex x �= r delete all arcs to x apart from those of minimum
7 That is, if x � y (in X) then x � y (in the linear extension). Every (finite) partial

order has at least one linear extension, which may be computed, in linear time, by
representing the partial order as a directed acyclic graph and using a topological
sort [7, §22.3].

Cryptographic Enforcement of Information Flow Policies 407

weight (among arcs to x). Observe that D can be constructed in time O(|E∗
0 |).

Find an out-tree with minimum number of leaves using algorithm MinLeaf [14].
It remains to observe that MinLeaf’s runtime is O(|E| + |X|3/2 |E|1/2). �	
Proof (of Lemma 5). Suppose t ∈ γ(xy) ∩ γ(yz). Since t ∈ γ(yz), we have t � z
and t �� y; since t ∈ γ(xy), we have t � y, immediately leading to the desired
contradiction.

Now suppose t ∈ γ(xy). Then t � y and t �� x. Hence, we have t > z, by
transitivity; thus t ∈ γ(xz) and γ(xy) ⊆ γ(xz). Finally, suppose t ∈ γ(yz). Then
t � z and t �� y. Now t �� x (otherwise, we would have t > y by transitivity) and
hence t ∈ γ(xz); thus γ(yz) ⊆ γ(xz). �	
Proof (of Corollary 3). Consider the case p = 3, with x > y > z. Using Lemma 5
and the fact that |U(t)| � 0 for all t, we have

ω(xz) =
∑

t∈γ(xz)

|U(t)|

�
∑

t∈γ(xy)

|U(t)| +
∑

t∈γ(yz)

|U(t)|

= ω(xy) + ω(yz).

Now suppose the result holds for all p < P and consider a path x1 . . . xP con-
taining P vertices. Then x1xP−1 ∈ E∗

0 and, by Lemma 5 and the inductive
hypothesis, respectively, we have

ω(x1xP) � ω(x1xP−1) + ω(xP−1xP)
� ω(x1x2) + · · · + ω(xP−2xP−1) + ω(xP−1xP)

=
P−1∑

i=1

ω(xixi+1)

Thus the result holds by induction. �	
Proof (of Corollary 4). Let T ′ = (X,E′) be a minimum weight spanning out-
tree for (X,�), and suppose arc xy is in E′ but not in E0. Then x �H y and
let zy be the last arc in this path. Since ω(uv) � 0 for each arc uv and by
Corollary 3, ω(zy) � ω(xy). Therefore by removing xy from E′ and adding zy,
we have a spanning out-tree with weight at most that of T ′. By replacing every
arc in E′ \ E0 in this way, we have a spanning out-tree T = (X,E) of weight at
most that of T ′, and therefore of minimum weight. �	
Proof (of Corollary 5). By Corollary 4, we may restrict our attention to arcs in
the Hasse diagram. Thus we can compute the minimum weight derivation tree
in time O(|E0|) and we can compute φ in time O(|E0| + |X|2). �	

408 J. Crampton et al.

References

1. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 18 (2009)

2. Frikken, K.B., Atallah, M.J., Blanton, M.: Incorporating temporal capabilities in
existing key management schemes. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 515–530. Springer, Heidelberg (2007)

3. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. In: Juels et al. [15], pp. 288–297

4. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, London (2009)

5. Bell, D., LaPadula, L.: Secure computer systems: Unified exposition and Mul-
ticsinterpretation. Technical report MTR-2997, Mitre Corporation, Bedford,
Massachusetts (1976)

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society (2007)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

8. Crampton, J.: Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM Trans. Inf. Syst. Secur. 14(1), 14 (2011)

9. Martin, K.M., Crampton, J., Daud, R.: Constructing key assignment schemes from
chain partitions. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security
and Privacy XXIV. LNCS, vol. 6166, pp. 130–145. Springer, Heidelberg (2010)

10. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: CSFW, pp. 98–111. IEEE Computer Society (2006)

11. De Santis, A., Ferrara, A.L., Masucci, B.: New constructions for provably-secure
time-bound hierarchical key assignment schemes. Theor. Comput. Sci. 407(1–3),
213–230 (2008)

12. Freire, E.S.V., Poettering, B., Paterson, K.G.: Simple, efficient and strongly ki-
secure hierarchical key assignment schemes. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 101–114. Springer, Heidelberg (2013)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels et al. [15], pp. 89–98

14. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related prob-
lems. Theor. Comput. Sci. 410(45), 4571–4579 (2009)

15. Juels, A., Wright, R.N., di Vimercati, S.D.C., (eds.) Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria,
VA, USA, October 30 - November 3, 2006. ACM (2006)

16. Sandhu, R.S.: Cryptographic implementation of a tree hierarchy for access control.
Inf. Process. Lett. 27(2), 95–98 (1988)

	Cryptographic Enforcement of Information Flow Policies Without Public Information
	1 Introduction
	2 Background and Related Work
	2.1 Definitions and Notation
	2.2 Basic Methods of Cryptographic Enforcement
	2.3 Chain Partition Techniques
	2.4 Formalization and Constructions

	3 Tree-Based Enforcement Schemes
	3.1 Constructing an Enforcement Scheme
	3.2 Generating Keys
	3.3 Security Analysis

	4 Minimizing K in a Tree-Based Enforcement Scheme
	5 Conclusion
	A Proofs
	References

