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Abstract. Time–memory trade-off (TMTO) cryptanalysis is a powerful
technique for practically breaking a variety of security systems in reality.
There are mainly four general TMTO cryptanalysis methods, namely
Hellman table cryptanalysis, rainbow table cryptanalysis, thin rainbow
table cryptanalysis and thick rainbow table cryptanalysis, plus a few
supplementary techniques that can be combined with a general method
to produce possibly distinct TMTOs, like distinguished points. In this
paper, we present a unified TMTO cryptanalysis, which we call unified
rainbow table cryptanalysis, basing it on a unified rainbow table, then
we describe its general combination with distinguished points, and finally
we apply unified rainbow table cryptanalysis to the A5/1 stream cipher
being used in the Global System for Mobile Communications (GSM). On
a general-purpose graphics processing unit (GPGPU) computer with 3
NVIDIA GeForce GTX690 cards that cost about 15,000 United States
dollars in total, we made a unified rainbow table of 984 GB in about
55 days, and implemented a unified rainbow table attack that had an
online attack time of 9 s with a success probability of 34 % (or 56 %)
when using 4 (respectively, 8) known keystreams (of 114 bits long each).
If two such tables of 984 GB were generated, the attack would have an
online attack time of 9 s with a success probability of 81 % when using 8
known keystreams. The practical results show again that nowadays A5/1
is rather insecure in reality and GSM should no longer use it.

Keywords: Time–memory trade-off · Hellman table cryptanalysis ·
Rainbow table cryptanalysis · Stream cipher · A5/1 · GPGPU

1 Introduction

Generally, there are two elementary cryptanalysis techniques that can be applica-
ble to any cryptosystem from a theoretical perspective, namely exhaustive key
search and the dictionary attack, which require a negligible number of data but
represent two extreme cases in terms of time and memory complexities: exhaus-
tive key search requires a negligible memory, but has a time complexity of the
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same order as the key size of the concerned cryptosystem, while the dictionary
attack has a negligible time complexity, but requires a memory of the same order
as the key size of the concerned cryptosystem. As the two elementary cryptanaly-
sis techniques have a time or memory complexity of the same order as the key
size of the concerned cryptosystem, it is usually impossible to apply them in
reality to break a real-world cryptosystem during its lifetime, since the key size
of a cryptosystem is usually set to be larger than that required for the designed
lifetime of the cryptosystem.

In 1980, Hellman [24] introduced a cryptanalytic time–memory trade-off
(TMTO), known as Hellman table cryptanalysis; it requires a memory less
than that for the dictionary attack to store some precomputation tables, called
Hellman tables, and has an online attack time smaller than that for exhaustive
key search. If the required memory is small enough to be realistic, Hellman table
cryptanalysis may allow an attacker to break a cryptosystem within a reasonable
time. In 2003, Oechslin [31] described a refinement of Hellman table cryptanaly-
sis, called rainbow table cryptanalysis, which is based on a rainbow table that
has a different structure with a Hellman table; in a straightforward way, rain-
bow table cryptanalysis can be twice as fast as Hellman table cryptanalysis under
the same precomputation complexity. By combining rainbow table cryptanaly-
sis with Hellman table cryptanalysis, in 2006 Barkan, Biham and Shamir [10]
gave two variants of rainbow table cryptanalysis, called thin and thick rainbow
table cryptanalyses, that are based on thin and thick rainbow tables respectively.
Except the four general TMTO cryptanalysis methods, there are several compli-
cated variants [17,21] with merely theoretical interest, plus a few supplementary
techniques that aim to improve a general TMTO method from certain aspect(s)
but usually at the sacrifice of other aspects more or less, for example, distin-
guished points [18] and checkpoints [6]. A general TMTO method can be used
alone, however, a supplementary technique has to be used together with a general
TMTO method. When applied to particular areas, TMTO has been extended to
time–memory–data trade-off (TMDTO) [14], time–memory–processor trade-off
[3], time–memory–key trade-off [11,13], etc.

The A5/1 stream cipher was designed in 1987 for use in the Global System for
Mobile Communications (GSM) to provide data confidentiality in Europe and the
U.S.A. It was reported that by 2011, about 4 billion GSM users relied on A5/1
to protect their communications [1]. Since A5/1 was reverse-engineered partially
in 1994 and completely in 1999 [4,16], many cryptanalytic results have been pub-
lished on it, including guess-and-determine attacks [12,19,22], correlation attacks
[8,20,27] and TMTO attacks [9,15,19,30]. From a realistic viewpoint, almost all
these attacks are somewhat academic in the sense of their impact on the real-world
security of GSM, for they either require a large data complexity, ranging usually
from 1,500 to 70,000 known keystreams, or have a long attack time, typically from
several minutes to hours. The only exception is Nohl’s recent attack [30] using
thick rainbow table cryptanalysis with distinguished points (i.e., fuzzy-rainbow
table cryptanalysis [10]), which uses 8 known keystreams and has an online attack
time of about 10 s on a general-purpose graphics processing unit (GPGPU) and a
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success probability of 87 %, plus 30 precomputation tables with a total of about 1.7
Terabytes, (Note that there were predecessors to this work with an inferior perfor-
mance, say much larger precomputational workload). Nohl described mainly the
details related to the structure of the precomputation tables, but did not disclose
the online attack details (maybe because of his company’s need for confidentiality).
After an investigation, we find that Nohl’s online attack on A5/1 is actually not
so straightforward as a general TMTO attack from a theoretical viewpoint, and
it seems that a crucial technique associated with the attack’s precomputational
workload and success probability is not disclosed.

In this paper, we make a few theoretical contributions to TMTO cryptanaly-
sis and a practical contribution to the cryptanalysis of the GSM A5/1 stream
cipher. First, inspired by thin and thick rainbow table cryptanalyses, we present
a unified TMTO cryptanalysis, which we call unified rainbow table cryptanalysis,
that is built on a unified rainbow table. Then, we discuss its general combination
with distinguished points, as well as the resulting TMDTOs. On one hand the
unified rainbow table itself represents a novel type of rainbow tables, and on the
other hand it can be regarded as a unified model for rainbow-type tables, from
which Hellman table, rainbow table, thin rainbow table and thick rainbow table
can be easily obtained as special cases. Unified rainbow table cryptanalysis offers
a trivially more comprehensive TMTO curve than the above four general meth-
ods, and its combination with distinguished points can offer a better TMDTO
curve than any other general method except fuzzy-rainbow table cryptanalysis,
but nevertheless it does not provide a better TMTO (or TMDTO) curve than the
best previously known, thus it is merely of theoretical significance as a unified
TMTO cryptanalysis. In particular, from its success probability formula, we can
have success probability formulas for rainbow table, thin rainbow table and thick
rainbow table cryptanalyses, which take into account some possible redundancy
among different columns and the distinctions among different function variants.
At last, we apply unified rainbow table cryptanalysis to A5/1, by working out a
crucial theoretical technique. On a GPGPU computer with 3 NVIDIA GeForce
GTX690 cards that cost about 15,000 United States dollars in total, we gener-
ated a unified rainbow table of 984 GB in about 55 days, and finally implemented
a unified rainbow table attack that had an online attack time of 9 s with a success
probability of 34 % (or 56 %) when using 4 (respectively, 8) known keystreams
(of 114 bits long each). If two such tables of 984 GB were generated, the attack
would have an online attack time of 9 s with a success probability of 81 % when
using 8 known keystreams. Our attack on A5/1 is the first rainbow-type TMTO
attack on A5/1 that reveals crucial theoretical techniques and implementation
details, and the practical experimental results sufficiently show again that A5/1
is rather weak in terms of its realistic security.

The remainder of the paper is organised as follows. In the next section, we
give the abbreviations and notation used throughout this paper and describe
the A5/1 stream cipher. We present our unified rainbow table cryptanalysis in
Sect. 3, describe its combination with distinguished points in Sect. 4, and dis-
cuss the resulting TMDTOs in Sect. 5. In Sect. 6, we describe our application of
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unified rainbow table cryptanalysis to A5/1 and give our experimental results.
Section 7 concludes this paper. Because of page constraints, we leave many other
theoretical and implementation materials in the full version of this paper.

2 Preliminaries

In this section we describe the abbreviations and notation and the A5/1 cipher.

2.1 Abbreviations and Notation

The bits of a value are numbered from left to right, starting with 1. In the
description below and throughout this paper, we assume f : {1, 2, . . . , N} →
{1, 2, . . . , N} is a one-way function, where N is a positive integer. We use the
following abbreviations and notation.

CPU Central Processing Unit
(GP)GPU (General-Purpose) Graphics Processing Unit
GSM the Global System for Mobile Communications
LFSR Linear Feedback Shift Register
TM(D)TO Time–Memory(–Data) Trade-Off
XOR/⊕ bitwise logical exclusive OR
XNOR the inverse of bitwise logical exclusive OR (XOR)
◦ functional composition. When composing functions X and Y, Y◦

X denotes the function obtained by first applying X and then

applying Y. Sometimes we simply write Xi to denote

i timesX
︷ ︸︸ ︷

X ◦ · · · ◦ X,
where i is a non-negative integer

e the base of the natural logarithm, (e = 2.71828 . . .)
�X� the largest integer that is less than or equal to X
O(X) a value that is of the same order as a value X
X[i1, . . . , ij ] the j-bit string of bits (i1, . . . , ij) of a bit string X

2.2 The A5/1 Stream Cipher

A5/1 is a synchronous stream cipher, specifically a binary additive stream cipher.
Its core part is a keystream generator, which is depicted in Fig. 1. The keystream
generator is built on three Fibonacci linear feedback shift registers [5] (LFSRs) of
19, 22 and 23 bits long, which we denote by R1, R2, R3, respectively. As an LFSR
with a primitive feedback polynomial can generate a maximum-length binary
sequence, the three LFSRs have been set to have a primitive feedback polynomial
each: The taps for R1 are at the 19th, 18th, 17th and 14th bits; the taps for R2
are at the 22th and 21th bits; and the taps for R3 are at the 23th, 22th, 21th
and 8th bits. The three LFSRs are mutually clocked in a stop/go fashion under
a majority function Maj of three bits from the three LFSRs, respectively. The
majority function Maj takes as input the 9-th bit of R1, the 11-th bit of R2 and
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Fig. 1. The A5/1 keystream generator

the 11-th bit of R3, that is, R1[9], R2[11], R3[11], and outputs the majority of the
three input bits, more formally, it is defined to be Maj(R1[9], R2[11], R3[11]) =
(R1[9] × R2[11]) ⊕ (R1[9] × R3[11]) ⊕ (R2[11] × R3[11]).

In a clocking cycle, for each LFSR, if the input bit to the Maj function is
equal to the output of the Maj function, then the LFSR is clocked, outputting the
rightmost bit as the output bit, and the feedback value is given by its feedback
polynomial and is fed into the leftmost bit of the LFSR; otherwise, the LFSR
remains invariant, but still outputs the rightmost bit as the output bit. Then,
the keystream generator outputs the XOR of the output bits of the three LFSRs.
The Maj function guarantees that at least two of the three LFSRs are clocked
every clocking cycle.

A GSM conversation is represented as a series of frames of 114 bits long
each, and it is classified into two categories: downlink (base station to mobile)
conversation and uplink (mobile to base station) conversation; the number of
frames can be at most 22 bits long, that is from 0 to 222 −1. GSM sends a frame
of conversation every 4.615 ms, and thus a GSM conversation can usually be
at most several hours unceasingly. For a conversation, GSM generates a 64-bit
secret session key K from a master key, and uses the A5/1 stream cipher to
encrypt every frame, with the frame number IV starting with a particular value
generated by the system and being increased sequentially (0 < IV < 222).

When encrypting a frame of conversation, the A5/1 stream cipher first gen-
erates a 228-bit pseudorandom keystream through the keystream generator. The
keystream generator takes as input the 64-bit secret session key K and the 22-
bit publicly known frame number IV , and generates a 228-bit pseudorandom
keystream in the following steps:

1. Initialization phase that involves: (a) setting the 64 bits of the three LFSRs
to zero; (b) key setup that loads the 64-bit key into the LFSRs, with the Maj
function ineffective; and (c) IV setup that loads the 22-bit IV into the LFSRs,
with the Maj function ineffective.

2. 100 clockings on the three LFSRs with the Maj function effective and without
outputting the output of the keystream generator.

3. 228 clockings on the three LFSRs with the Maj function effective and out-
putting the output of the keystream generator.
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A 228-bit pseudorandom keystream is generated after Step 3. The first 114
bits of a 228-bit keystream are used for downlink conversation and the last 114
bits are used for uplink conversation. The A5/1 stream cipher encrypts a frame
of conversation by XORing it with a 114-bit keystream, and produces a frame
of ciphertext. Decryption is identical to encryption.

We refer to the internal state of the three LFSRs immediately after Step 1
(i.e., at the end of the initialization phase) as the initial state of a keystream.

3 The Unified Rainbow Table Cryptanalysis

In this section we present unified rainbow table cryptanalysis. Like the dictionary
attack and the four general TMTO methods, unified rainbow table cryptanalysis
also consists of two phases: offline precomputation phase to build one or more
tables, and online attack phase to search the correct solution. We start with
generating a unified rainbow table.

3.1 A Unified Rainbow Table

We define five parameters m, s, v, r, t, and each parameter is a positive integer.

– m: the number of starting points in a unified rainbow table.
– s: the number of the f variants used, namely f1, f2, . . . , fs, each constructed

usually by a functional composition of the f function with a simple operation
(called a color sometimes [10]), say an XOR with a unique number [32] or a
rotation of a unique number of bits [24].

– v: the number of the fi variant in each sector of the adjacent columns
(fi, fi, . . . , fi) with the same fi variant.

– r: the number of the sector (fs)v ◦ · · · ◦ (f2)v ◦ (f1)v.
– t: the total number of appearances of the f variants, that is equal to rsv.

The attacker builds a unified rainbow table of size m × t by applying the
following procedure:

1. Choose m starting points uniformly at random from the domain {1, 2, . . . , N},
and we denote them by SP1, SP2, . . ., SPm.

2. For 1 ≤ i ≤ m:
(a) Let xi,0 = SPi.
(b) For q = 1, 2, . . . , r:

For j = 1, 2, . . . , s:
For l = 1, 2, . . . , v:

– Compute xi,(q−1)·sv+(j−1)·v+l = fj(xi,(q−1)·sv+(j−1)·v+l−1).
– If (q = r) and (j = s) and (l = v), the value xi,rsv is termed

the endpoint corresponding to SPi; and we denote it by EPi,
that is EPi = xi,rsv.



356 J. Lu et al.

3. Store the m pairs (SPi,EPi) into a table sorted by the values of the endpoints,
(and discard the intermediate values xi,1, xi,2, . . . , xi,rsv−1). The resulting
table is called a unified rainbow table. This completes the construction of
a unified rainbow table.

In short, the series of f variants used to generate a chain is [(fs)v ◦· · ·◦(f2)v ◦
(f1)v]r, or more intuitively

1
︷ ︸︸ ︷

f1 . . . f1
︸ ︷︷ ︸

v times

f2 . . . f2
︸ ︷︷ ︸

v times

. . . fs . . . fs
︸ ︷︷ ︸

v times

2
︷ ︸︸ ︷

f1 . . . f1
︸ ︷︷ ︸

v times

f2 . . . f2
︸ ︷︷ ︸

v times

. . . fs . . . fs
︸ ︷︷ ︸

v times

. . .

r
︷ ︸︸ ︷

f1 . . . f1
︸ ︷︷ ︸

v times

f2 . . . f2
︸ ︷︷ ︸

v times

. . . fs . . . fs
︸ ︷︷ ︸

v times

.

The unified rainbow table requires a memory of m units, and has a time
complexity of m × r × s × v = mt computations of the f function, where we
assume a computation of a variant fj of the f function is approximately equal
to a computation of the f function in terms of computational complexity, as in
previous work [10,24,31].

3.2 Online Attack Procedure

Given an inversion target y = f(x), below we will describe an online attack pro-
cedure based on a unified rainbow table of Sect. 3.1. The online attack procedure
is devised according to the structure of the unified rainbow table, so that certain
previously computed values can be reused to save time.

The attacker tries to find the correct solution x by checking the unified rain-
bow table column by column in the following procedure. Recall that t = rsv.

1. For j = s, s − 1, . . . , 1:
(a) Apply the simple operation concatenated with f for constructing fj to

the given output y, and we denote the resulting value by ŷ0.
(b) For l = 1, 2, . . . , v:

i. Sety0 = ŷ0 ifj = s; otherwise, compute y0 =

from (fj+1)
v until (fs)

v

︷ ︸︸ ︷

(fs)v ◦ · · · ◦ (fj+1)v (ŷ0).
ii. For q = 1, 2, . . . , r:

A. Check whether yq−1 is an endpoint in the unified rainbow table. If
yq−1 does not match any endpoint, we execute the next sub-step.
However, if yq−1 atches an endpoint, EPi say, then re-generate
xi,(r−q)·sv+jv−l from the corresponding starting point SPi as
(f1)v−l ◦ [(fs)v ◦ · · · ◦ (f2)v ◦ (f1)v]r−q(SPi) if j = 1, or (fj)v−l ◦
(fj−1)v ◦ · · · ◦ (f2)v ◦ (f1)v ◦ [(fs)v ◦ · · · ◦ (f2)v ◦ (f1)v]r−q(SPi) if
j �= 1. Finally, xi,(r−q)·sv+jv−l is likely to be the correct solution
x, (Note that xi,(r−q)·sv+jv−l may be a false alarm, and under
this situation we need do extra work to test whether the recov-
ered xi,(r−q)·sv+jv−l is a false solution). If xi,(r−q)·sv+jv−l is the
correct solution, terminate the procedure.

B. If q �= r, compute yq = (fs)v ◦ · · · ◦ (f2)v ◦ (f1)v(yq−1).
iii. If l �= v, compute ŷ0 = fj(ŷ0).

2. The attack fails if the correct solution is not found after the above steps.
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3.3 Online Time Complexity

Before further proceeding, we emphasize two points that are throughout this
paper. As in previously published TMTO or TMDTO methods [7,10,13,14,24,
31]: first, we consider the online time complexity of the unified rainbow table
attack as well as other TMTO attack methods in the worst scenario where the
correct solution to the inversion target is found from the very first column of
a precomputation table and no false alarm is taken into account; second, we
consider the memory complexity in the unit of the number of starting-endpoint
pairs, rather than the optimised memory complexity with certain sophisticated
techniques like endpoint truncation [10,15]. Anyway, a recently emerging direc-
tion is to study the expected online time complexities and the optimised memory
complexity, as done in [6,25,26]; we leave such studies as future work.

From the equations yq = (fs)v ◦ · · · ◦ (f2)v ◦ (f1)v(yq−1) and ŷ0 = fj(ŷ0) in
Steps 1(b)(ii)(B) and 1(b)(iii), we can see that some previously computed values
(i.e. yq−1 and ŷ0) are re-used during the next iteration, which enables us to save
online attack time.

A detailed analysis reveals that the unified rainbow table attack has a total
time complexity of approximately

∑s−1
j=1

∑v
l=1[(s−j)·v]+∑s

j=1

∑v
l=1

∑r−1
q=1 sv+

∑s
j=1

∑v−1
l=1 1 = t2

r − t2

2r2 − t2

2sr2 + t
r − s computations of the f function and

∑s
j=1

∑v
l=1

∑r
q=1 1 = vrs = t table look-ups.

3.4 Success Probability

The success probability of the unified rainbow table attack is determined by the
coverage rate of the unified rainbow table, that is defined to be the proportion
of the number of distinct values for both starting points and intermediate values
associated with the generation of the table to the size N of the domain.

As in previous work, we assume that the f function as well as its variants
fi’s is a random function. Besides, in order to obtain an as accurate as possible
formula, we need to consider the difference between two different function vari-
ants fi and fj , which depends on how these function variants are constructed
from the f function. If the function composed with f to construct a function
variant is like an XOR operation with a unique integer, then we definitely have
fi(x) �= fj(x) for any x when 1 ≤ j �= i ≤ s; however, if it is like a rotation of
a unique number of bits, we may have fi(x) = fj(x) for an x, and if there are
many such x’s then the function variants are unwanted. Thus, below we assume
the first case for constructing the function variants. As a result, we obtain the
following approximate formula on the expected success probability of the unified
rainbow table attack.

Theorem 1. If f, as well as its variants f1, f2, . . . , fs constructed each by
composing f with a simple function such that fi(x) �= fj(x) for any x when
1 ≤ j �= i ≤ s, is modeled as a random function mapping the set {1, 2, . . . , N}
into itself, and the correct solution to the inversion target is chosen uniformly
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from the same set, then a unified rainbow table attack based on one unified rain-
bow table with parameters m, s, v, t has a success probability of approximately
∑t−1

k=0 mk

N , where m, s, v, t are defined in Sect. 3.1 and mk is computed as follows:

m0 = m̂0 = m0 = N · (1 − e
− m

N ); mk+1 = N · (1 − e
− mk

N );

α = �k + 1

s · v
�, β = �k + 1 − α · s · v

v
�, δ = k + 1 − α · s · v − β · v = (k + 1) mod v,

m̂k+1 =

⎧

⎨

⎩

mk+1 · (1 −
∑α−1

i=0
∑v−1

j=0 m̂i·s·v+β·v+j

N
), if δ = 0;

N · (1 − e− m̂k
N ) · (1 −

∑α−1
i=0

∑v−1
j=0 m̂i·s·v+β·v+j+

∑δ−1
j=0 m̂α·s·v+β·v+j

N
), if δ �= 0.

mk+1 = N · (1 − e
− m̂k

N ) · (1 −
∑k

j=0 mj

N
).

3.5 TMTO Curve

Above we have described a unified rainbow table attack based on a unified
rainbow table as well as its success probability. However, because of possible
duplication of values associated with a precomputation table, the gain on its
coverage rate is not as much as before when the number of starting points goes
beyond a threshold value specified by a matrix stopping rule [14] theoretically.
Alternatively, an attack may need more than one precomputation tables to reach
a large success probability. This results in the following TMTO curve of unified
rainbow table cryptanalysis.

Theorem 2. Suppose P represents computational complexity for (offline) pre-
computation, T represents online time complexity, M represents memory com-
plexity (for offline precomputation, since the memory complexity of online attack
is negligible generally), s and r are those parameters used for unified rain-
bow table cryptanalysis. Then, unified rainbow table cryptanalysis approximately
meets a time–memory trade-off T · M3 = N3

s·r − N3

2s·r2 − N3

2s2·r2 + M ·N2

s·r − M2 · N ,
where P = N , M ≤ N and 1 ≤ s · r ≤ N

M , plus N2

s·M2 table look-ups.

Furthermore, a simple analysis reveals the following result:

Corollary 1. Hellman table, rainbow table, thin rainbow table, thick rainbow
table and unified rainbow table cryptanalyses (can) have a TMTO curve T ·
M2 = O(N2). Generally, rainbow table cryptanalysis has the best TMTO curve
2T · M2 ≈ N2 among the five general TMTO methods.

4 Unified Rainbow Table Cryptanalysis
with Distinguished Points

When attacking a practical cryptosystem in reality, a huge precomputation table
is usually required and stored in a hard disk, which makes a table look-up much
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more costly than a computation of the f function in terms of time, thus the sup-
plementary technique of distinguished points is often used to speed up an online
attack. Considering this, we briefly discuss a combination of unified rainbow
table cryptanalysis with distinguished points in this section.

4.1 A Combination

Unified rainbow table cryptanalysis can be combined with distinguished points
in the following way, where DP represents a distinguished point and two values
represented by DP may be different, (1 ≤ i ≤ m, here m is the number of
starting points).

SPi

r times
︷ ︸︸ ︷

f1···f1−→ DP · · · f1···f1−→ DP
︸ ︷︷ ︸

vDPs

f2···f2−→ DP · · · f2···f2−→ DP
︸ ︷︷ ︸

vDPs

· · · fs···fs−→ DP · · · fs···fs−→ DP
︸ ︷︷ ︸

vDPs

=EPi.

Its online attack procedure is similar to the one for unified rainbow table
cryptanalysis given in Sect. 3.2, in that we treat the series of functions fj ◦ · · · fj
for generating a distinguished point at here as a single function fj in the attack
procedure from Sect. 3.2. Suppose q is the expected average length of each sector
with the same fj variant, (i.e. the chain length is expected to be t = r · s · v · q),
then we can similarly obtain that such unified rainbow table cryptanalysis with
distinguished points has an online time complexity of

∑s
j=1[q + (j − 1) · q · v +

(r− 1) · q · s · v] · v = tsv + t
r − tsv

2r − tv
2r computations of the f function, plus rsv

table look-ups.

4.2 TMTO Curve

Below is the TMTO curve of the combination described in Sect. 4.1.

Theorem 3. Suppose P represents computational complexity for precomputa-
tion, T represents online time complexity, M represents memory complexity,
plus those parameters v, s, r used for unified rainbow table cryptanalysis with
distinguished points. Then, unified rainbow table cryptanalysis with distinguished
points approximately meets a time–memory trade-off T · M2 = (v − v

2r − v
2rs +

1
rs ) ·N2, where P = N , M ≤ N and 1 ≤ r · s · v ≤ N

M , plus r·v·N
M table look-ups.

5 Time–Memory–Data Trade-Off Curves

In this section, we briefly discuss the time–memory–data trade-off (TMDTO)
curves when unified rainbow table cryptanalysis and its combination with dis-
tinguished points are applied in certain situations where multiple data can be
helpful, for example, cryptanalysis of some stream ciphers. We have the following
result.
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Theorem 4. Suppose P represents computational complexity for precomputa-
tion, T represents online time complexity, M represents memory complexity,
D(≥ 2) represents the number of available data, v, s, r are those parameters used
in unified rainbow table cryptanalysis without/with distinguished points. Then,
unified rainbow table cryptanalysis approximately meets a time–memory–data
trade-off T · M2 · D = N2

r − N2

2r2 − M ·D2·N
2r2 + M ·D·N

r − M · N , with P = N
D ,

M · D2 ≤ N , T ≥ D3

r − D3

r2 + D2

r − D and 1 ≤ r ≤ D, plus N
M table look-ups;

and unified rainbow table cryptanalysis with distinguished points approximately
meets a time–memory–data trade-off 2T ·M2 ·D2 = (2v− v

r ) ·N2− (v−2)·M ·D2·N
2r ,

with P = N
D , M · D2 ≤ N , T ≥ (v + 1

r − v
r ) · D2 and 1 ≤ r · v ≤ D, plus r·v·N

M ·D
table look-ups.

At last, a detailed analysis gives the following result:

Corollary 2. Hellman table, thin rainbow table and unified rainbow table crypt-
analyses (can) have a TMDTO curve T ·M2 ·D2 = O(N2), while rainbow table
and thick rainbow table cryptanalyses have a TMDTO curve T ·M2 ·D = O(N2).
Generally, among all the aforementioned TMDTO methods, fuzzy-rainbow table
cryptanalysis is the best TMDTO method, and unified rainbow table cryptanalysis
with distinguished points is the second best TMDTO method.

6 Application to the GSM A5/1 Stream Cipher

In this section, we apply the TMDTO version of unified rainbow table crypt-
analysis with distinguishing points to the A5/1 stream cipher, since its design
allows us to conduct a TMDTO attack. We first describe the f function with
respect to A5/1 and the structure of a unified rainbow table, then describe
two crucial theoretical techniques and some implementation issues, and finally
describe an experimental attack and its results on A5/1.

6.1 The f Function with Respect to A5/1

Since our goal is to recover a secret session key, clearly we should choose a
suitable f function from the A5/1 keystream generator, so that we can have an
efficient attack. A detailed analysis on A5/1 reveals the following result:

Proposition 1. The state (of the three LFSRs) immediately after the key setup
of the A5/1 keystream generator is a system of 64 linear functions of the 64 bits
of the secret session key. The 64 secret key bits can be easily obtained by solving
the system of 64 linear functions of the 64 secret key bits. Given the 64-bit state
immediately after the IV setup of the A5/1 keystream generator, we can recover
the state immediately before the IV setup (i.e., the state immediately after the
key setup) with a time complexity of 22 clockings.

Finally, after a further investigation we define the f function as follows.
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Proposition 2. With respect to A5/1, the f function starts with the initial state
(that is immediately after the IV setup), and ends with the first 64 keystream
bits. It takes the initial state as input, and outputs a 64-bit sequence. The 64-bit
sequence is then input to the next f function as an initial state, and so on.

6.2 The Structure of a Unified Rainbow Table

We targeted to build a reasonably large unified rainbow table with distinguished
points. We set m = 237, t = 216, r = 22, s = 26, v = 1, q = 28; see Sect. 4.1 for
the meaning of the parameters.

The starting points are of 64 bits long; every time we generate a 64-bit
random from a particular sub-space as a starting point; and the used sub-spaces
guarantee that the generated starting points are distinct one another. A variant
fi of the f function is a functional composition of f and an XOR operation with
an integer i, (i ∈ [0, s − 1], i.e., i = 0, 1, . . . , 63), that is, fi = f ⊕ i; the XOR
operation works on the rightmost 6 bits of an output of f, which correspond
to positions 1–6 of the first LFSR (i.e. R1) of the keystream generator. The
distinguished points used here have zeros in eight bit positions 41–48 of a 64-
bit value, which correspond to positions 17–19 of R1 and positions 1–5 of R2.
Thus, on average it takes q = 28 computations to have a distinguished point.
By the definitions of the f function and distinguished points, the endpoints are
distinguished points that have zeros in the above-mentioned eight bits, and thus
only 56 bits are effective for each endpoint. That is, a starting-endpoint pair
takes a memory of 120 bits.

We do not use any other supplementary technique for the table, such as
sequential starting points [24], index tables [15], endpoint truncation [15], or
checkpoints [6].

6.3 Two Crucial Theoretical Techniques

We used two crucial theoretical techniques in our online attack on A5/1; the first
one aims to reduce an attack’s data complexity by using the sliding property [19]
of the A5/1 keystream generator, and the second one aims to increase an attack’s
success probability by using the state convergence property [19,30] of the A5/1
keystream generator. In other words, the two techniques allow us to reach a
certain success probability with much smaller precomputational workload. Since
the first technique has been described and used in previous work like [19], below
we only describe the second technique, which can be similarly applied to any
stream cipher with a similar property. Note that Dj. Golić [19] also mentioned
the state convergence property of A5/1, however, he used the property in a
direct way — simply reducing the concerned searching space from the ideal 264

to the convergent 263.32 (upper bound), which (is not sufficient and should be
followed by) is quite different from the technique we describe below. It seems
that Nohl [30] used the state convergence property in some way comparable to
the second technique described below, but he did not describe or even mention it
(maybe because of his company’s need for confidentiality), thus we are not sure
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Fig. 2. The second technique compared with a general procedure

whether the second technique was used in [30]. To the best of our knowledge,
the straightforward way that Dj. Golić used is the popular way to use the state
convergence property, and none has explicitly described the second technique
before.

The second technique relies on the fact that usually a few initial states of
A5/1 will converge to the same internal state after the 100 clockings without
output, known as the state convergence problem of A5/1 [19]. A theoretical
analysis from [19] reveals that there are only 263.32 possible states after the first
clocking, and experimental results [15,30] show that only about 15 % of the 264

states is possible after the 100 clockings without output; and our experiments
show that on average about 23.5 ≈ 11 initial states can be obtained from a state
just after the 100 clockings without output. Below we describe an approach to
make use of this state convergence property, which is illustrated in Fig. 2.

Suppose y = f(x) is our inversion target. Let’s consider the case with the
first keystream segment, that is a preimage is also an initial state. When we find
a preimage x∗ to y from our (unified) rainbow table, we compute the internal
state immediately after 100 (or 164, that is immediately after generating the first
64-bit keystream segment) clockings from x∗, and then we reverse this internal
state at Clock 100 (respectively 164) to obtain all possible initial state(s) that
can produce this internal state at Clock 100 (respectively 164), and finally we
recover the corresponding session key for every obtained initial state and check
whether one of them is the correct session key. (By contrast, a general procedure
after finding a preimage x∗ to y is to reverse x∗ through the key and IV setups
to check whether it could lead to the correct session key)

As mentioned earlier, on average about 11 initial states can be obtained
from a state immediately after the 100 clockings without output; for some initial
states, there are a large number of other initial states that converge to the same
internal state at Clock 100, while for others there are a small number of other
initial states that converge to the same internal state at Clock 100. For session
keys such that there are a large number of other initial states that converge to
the same internal state after 100 (or 164) clocks, there is a larger success rate to
find it, because there is a larger probability that one of the many initial states
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converging to the same internal state is covered in the (unified) rainbow table,
and as long as one of the convergent initial states is found with our rainbow
table, then we can definitely recover the correct initial state and then find the
correct session key; for session keys such that there are a small number of other
initial states that converge to the same internal state after 100 (or 164) clocks,
there is a smaller success rate to find it, for there is a smaller probability to cover
one of the few convergent initial states in our table. This explains the existence
of preferred session keys and non-preferred session keys for our attack.

The second technique also indicates why we did not define the f function
to be from the state after the 100 clocks (without output) to the first 64-bit
keystream segment. In this case, roughly 85 % of the points covered in a rainbow
table would not have a corresponding initial state and thus is wasteful, and we
cannot use the above technique to increase success probability.

The approach holds similarly for the cases with other keystream segments,
where a preimage x∗ to y obtained from our rainbow table is not an initial state,
and we first compute forward to get the internal state immediately after 100 or
164 clockings, and then reverse this internal state to obtain all possible initial
states that converge to the same internal state at Clock 100 or 164.

Note that we can compute the internal state after more than 100 (or 164)
clockings from x∗, and then we reverse this state to obtain all the possible initial
state(s). This could increase success probability slightly further, although our
experiment shows that the gain is not much.

Thus, given a (unified) rainbow table, the second technique enables us to
achieve a success probability of about 11 times as much as that for a naive
attack (at the expense of negligible extra work). In other words, it enables us to
reduce the precomputational workload by about 90 % to have a certain success
probability. Notice that this technique is also owing partially to the fact that it
is easy to reverse an internal state to the initial state position.

6.4 Implementation Issues

Below we briefly describe some implementation issues associated with our attack.

6.4.1 Implementations on A5/1
An efficient implementation of A5/1 is essential to our work, for it could save a lot
of time during both precomputational and online phases. We have implemented
three versions of A5/1 in C language:

1. A basic version that generates a keystream bit by bit under a session key;
2. A bit-slicing version that generates 64 keystreams in parallel under 64 differ-

ent session keys; and
3. A multiple-bit version that generates a keystream block by block under a

session key, by using several small precomputation tables, here a block consists
of i bits generated simultaneously (i ∈ [2, 8]). (We did not consider i > 8, for
the corresponding precomputation tables would take a large memory)
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We have checked the performance of the three versions on a HP Z600 work-
station with Intel Xeon Processor E5630 (2.53 GHz, 12 MB cache) and Ubuntu
12.04 operating system under the following three cases:

* Case A — the session key is fixed and, each time a large number of keystreams
with only the first 64 bits are generated (106 in our test).

* Case B — each time the session key is updated and only the first 64 keystream
bits are generated.

* Case C — only the part of the f function is considered.

For the three cases, the basic version has a throughput of approximately 202,
636 and 406 cycles/byte, respectively; the bit-slicing version has a throughput of
approximately 29, 130 and 57 cycles/byte, respectively; and among the multiple-
bit versions the four-bit version has a best throughput of approximately 89, 195
and 154 cycles/byte, respectively. We use the bit-slicing version (with further
optimisation for using distinguished points) during offline precomputation phase,
and use the four-bit version during online attack phase.

6.4.2 Computing a (Unified) Rainbow Table with GPGPU
We used the TMDTO version of unified rainbow table cryptanalysis with dis-
tinguishing points in our attack, and used a GPGPU workstation in both the
offline precomputation and online attack phases.

The workstation used for our attack consists of a host system based on one
dual XEON CPU (2 CPUs of Intel Xeon Processor E5-2620, 2 GHz, 15 MB
cache and 32 GB ECC RAM each), one Quadro 600 GPU for display, 3 NVIDIA
GeForce GTX690 graphics cards (which are actually 6 GTX680 cards roughly)
for parallel computation, and 10 solid state disks (SSDs) of 480G SATA3 each.
The total price was about 15,000 United States dollars. A GTX690 contains 8
graphic processing clusters (GPCs) and 16 streaming multiprocessors (SMXs);
a streaming multiprocessor contains 192 streaming processors (SPs). In total,
a GTX690 has 3072 cores with processor clock of 915MHz, and the on-chip
memory is 2 × 2 GB GDDR5 with 2 × 256 bit width.

In the offline precomputation phase, the startpoints were processed by the 6
GTX680s in parallel; and 6 CPU threads were needed to control the 6 GPUs,
respectively. The startpoints and endpoints were all located in host memory,
and all of them can be accessed and modified by GPUs via direct memory
access (DMA). Startpoints were randomly generated with no collisions, which
were made by dividing the whole 264 space into many small sections of equal
length and then selecting a random number in each small section, (thus avoiding
collisions). An additional thread was used to store the starting-endpoint pairs
into a table. Whenever an endpoint was generated by a GPU, the additional
thread put it into the input/output (I/O) buffer, and a fast I/O was achieved
by writing out the buffer at one time. The additional thread was in parallel with
the 6 threads controlling the 6 GPUs.

In the online attack phase, only one GPU (i.e. GTX680) was used, (which
makes the attack feasible on laptops). Distinguishing points were computed on



Time–Memory Trade-Off Attack on the GSM A5/1 Stream Cipher 365

the GPUs, in a procedure similar to the offline phase; and the only difference was
that the intermediate distinguishing points before reaching the endpoint were
also recorded. We look up the 256 distinguishing points generated typically in an
online chain by the optimized binary search, which took less than 1 s normally.
Since GPU can modify the host memory via DMA, the host can check the
generated distinguishing points in real time before the whole task on computing
distinguishing points in GPU is finished. It is advisable to use an additional
thread to check the calculated distinguishing point and perform table lookup of
these distinguishing points. Therefore, table lookups are actually parallel with
online computations on distinguishing points. Since a table lookup takes a shorter
time than a computation on distinguishing points, virtually it does not need
any time. The total online attack time is approximately the sum of the online
computation time of distinguishing points and the online regeneration time of
false alarms.

6.4.3 Configuration on SSDs
We used SSDs instead of general hard disks (HDDs), because SSD access is
faster than CPU RAM access. Redundant Array of Independent Disks (RAID)
is a data storage virtualization technology that combines multiple disk drive
components into a logical unit for the purposes of data redundancy and per-
formance improvement. The most common RAID configurations are RAID 0
(striping), RAID 1 and variants (mirroring), RAID 5 (distributed parity) and
RAID 6 (dual parity). We have tested and compared RAID0 and RAID5. The
stripe size is defaulted to be 128 KB, and the 10 SSDs of about 480 GB each
used in our attack are viewed as a single virtual huge disk to users by being
connected to an Intel SSD controller RS2WG160 which can control up to 16
SSDs. A RAID 0 splits data evenly across two or more disks (striped) without
parity information for speed. RAID 0 is not resistant to any error or failure
in disk, since it does not provide data redundancy. In most situations RAID 0
yielded the highest read and write performance, and its read and write speeds
were tested to be approximately 3.2 GB/s and 1.8 GB/s, respectively.

6.4.4 Table Sorting for Fast Lookup
A unified rainbow table is sorted by the endpoints. In practice, there is a con-
straint on the maximum size of a file, so a dramatically large table has to be
divided into a number of reasonably large parts to store. In our attack, we divide
a unified rainbow table into 512 parts by dividing the space of the endpoints into
512 intervals equally, with each part of the table corresponding to a unique inter-
val. During offline precomputation phase, after generating a starting-endpoint
pair we simply store it into the part corresponding to the interval that the end-
point locates in; and during online attack phase, we can readily identify which
part of the table the endpoint of an online chain is from, without searching it
over all the parts of the table; then, binary search is performed in the identified
part of the table.
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6.4.5 Software Speedup of Table Access
A straightforward binary search (i.e. lookup) on an endpoint in the unified rain-
bow table with the 512 parts described in Sect. 6.4.4 takes 0.0073 s on SSD on
average, (and 0.1400 s on HDD, thus the speedup is 0.1400

0.0073 ≈ 19 times). Gen-
erally, given an A5/1 keystream in our attack, for an online chain we need to
compute r×s×v = 256 distinguishing points and thus need to search 256 times
in the unified rainbow table. Thus, the table lookups on all the 51 segments
of a 114-bit keystream generally take 0.0073 × 256 × 51 ≈ 96 s on SSD (and
0.1400 × 256 × 51 ≈ 1828 s on HDD), regardless of the online computational
time on f and its variants. We optimised the straightforward binary search with
several software techniques on disk access: (1) Cached binary search with multi-
threading, which is 96

31.1 ≈ 3.09 times of the standard binary search; (2) Endpoint
indexing, which achieves a speedup of 31.1

4.0 ≈ 7.78 times on the cached binary
search; and (3) Multithreading with thread pool, which achieves a speedup of
4.0
0.43 ≈ 9.31 times on the indexed and cached binary search. Taking all the three
techniques into consideration, the final speedup is 3.09×7.78×9.31 ≈ 223 times
compared to the straightforward binary search, that is, the table lookup time
on all the 51 segments of a 114-bit keystream is reduced from the original 96 s
to 96

223 ≈ 0.43 s finally for our unified rainbow table. Our table lookup speed (on
our SSD) is now 256×51

0.43 ≈ 30, 363 searches per second, which is higher than the
table lookup speed of 20, 000 searches per second (i.e. 100, 000 searches in 5 s)
reported in Nohl’s work.

6.4.6 Design Criteria on Compute Unified Device Architecture
(CUDA)

NVIDIA’s Compute Unified Device Architecture (CUDA) [28] is a programming
model that integrates host code and GPU code in the same C/C++ source files.
CUDA provides convenient lightweight programming abstractions of the actual
parallelism implemented by the hardware architecture. Our attack used several
key criteria introduced in [2,23,29] for optimising GPU, namely thread packing,
arithmetic intensity and resource usage, warp divergence, the communication
between host and device, the on-chip memory for storing lookup tables, and
GPU error rate estimation.

6.5 Experimental Results

With the f function and parameters defined in Sect. 6.1, we first generated a
unified rainbow table of about 1.6 TB on the workstation under the computing
framework described in Sect. 6.4, which took about 54 days and involved about
252.68 computations of the f function. The table became 984 GB (≈ 0.96 TB)
after we sorted and removed starting-endpoint pairs with already existing end-
points, which took less than one day. That is, it took a total of about 55 days
to make the 984 GB table on our GPGPU. The 984 GB table covered a total of
about 251.94 initial states (with possible duplication).
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Then, we implemented and optimised a unified rainbow table attack based on
the 984 GB table and downlink keystreams (of 114 bits long each). Based on four
thousand tests, on average the attack had an online attack time of 9 s (of which:
5 s for computing online chains with one GPU, in parallel with table look-ups;
and 4 s on false alarms with this GPU) with a success probability of 34 % when
using 4 keystreams (204 segments); or an online attack time of 9 s with a success
probability of 56 % when using 8 keystreams (408 segments), where two GPUs
were used in parallel (i.e. one GTX690), and each of the two GPUs dealt with 4
keystreams for online chains (in parallel with table lookups) with 5 s and spent
4 s on false alarms.

At last, we targeted to generate three more tables of 984 GB with three
different sets of the f variants, but at the moment the three other precomputation
tables only had a size of 0.140 TB, 0.093 TB and 0.093 TB, respectively, (after
sorting and removing degenerate starting-endpoint pairs). Using the four tables
with a total size of 0.96+0.140+0.093+0.093 ≈ 1.29 TB, we got an experimental
attack that used 4 keystreams (204 segments) and had an online attack time of
9 s (of which: 5 s for computing online chains with one GPU, in parallel with
table look-ups of about 2 s; and 4 s on false alarms) with a success probability of
43 %. The attacks indicate that unified rainbow table cryptanalysis has a good
performance as well.

Note that more cryptanalytic results can be extrapolated from the above
experimental results, for example: If one more table of 984 GB was generated
(i.e., a total of 1.92 TB), we could expect an attack that had an online attack
time of 5+4 = 9 s with a success probability 1−(1−34%)2 ≈ 56% when using 4
keystreams, where two of the six GPUs were used in parallel (i.e. one GTX690),
and each of the two GPUs dealt with a table for online chains (in parallel with
table lookups) and false alarms; or an online attack time of 5 + 4 = 9 s with a
success probability 1 − (1 − 56%)2 ≈ 81% when using 8 keystreams, where two
GTX690s (i.e. four GPUs) were used in parallel, and each of the two GTX690s
dealt with a table for online chains (in parallel with table lookups) and false
alarms.

7 Conclusions

In this paper, we have presented a unified TMTO cryptanalysis, called unified
rainbow table cryptanalysis, have described its general combination with distin-
guished points, and have discussed their TMTO as well as TMDTO curves under
the worst scenario. Finally, we applied unified rainbow table cryptanalysis to the
A5/1 stream cipher, by working out a crucial technique that made the precom-
putational workload feasible to have an acceptable success probability. We made
a unified rainbow table of 984 GB in about 55 days on a GPGPU computer with
3 NVIDIA GeForce GTX690 cards at a total cost of about 15,000 United States
dollars, and implemented a unified rainbow table attack on A5/1, that had an
online attack time of 9 s with a success probability of 34 % (or 56 %) when using
4 (respectively 8) keystreams.
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Unified rainbow table cryptanalysis is of theoretical significance as a unified
TMTO cryptanalysis framework, although it offers a trivially more comprehen-
sive TMTO curve than the previously published four general TMTO methods
and can offer the second best TMDTO curve when combined with distinguished
points. From its success probability formula, we can have success probability
formulas for rainbow table, thin rainbow table and thick rainbow table crypt-
analyses, which take into account some possible redundancy among different
columns and the distinctions among different function variants. The presented
unified rainbow table attack on A5/1 is the first rainbow-type TMTO attack on
A5/1 that reveals crucial techniques and implementation details, and is of prac-
tical significance, for the practical experimental results show again that A5/1 is
rather insecure in reality.
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