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Abstract Here we give an overview of a worldwide effort, called the ENIGMA

Consortium (http://enigma.ini.usc.edu), which unites scientists worldwide to deter-

mine how variants in our genetic code influence the brain, and how 12 major diseases

affect the brainworldwide.At the timeofwriting,ENIGMAinvolves over 500 scientists

from 185 institutions worldwide, working together on around 30 projects to discover

factors that may help or harm the brain. By pooling genome-wide genomic data and

brain imaging from over 33,000 people, ENIGMA has been able to identify single-

nucleotide differences in the genome that are associatedwith differences in human brain

structure and function. Given the broad interest in brain connectivity and the factors that

affect it, we outline some tactics adopted by ENIGMA to discover specific genes that

affect the brain; thenwe describe howENIGMA is extending thesemethods to discover

genetic influences on brain connectivity.

Background to ENIGMA

ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) is a world-

wide network of researchers who work together to investigate various questions

about the brain. The consortium pools brain imaging and genetic data from over

200 institutions around the world. The main goals of ENIGMA are to discover

factors that help and harm the brain; the sheer size of the dataset is unprecedented,

making it possible to see which effects on the brain are robust and consistent by

pooling data worldwide. The idea for ENIGMA originated in late 2009 and the

consortium has since published some of the largest brain imaging studies in the

world—both in terms of the total number of individuals genotyped and scanned

(now over 33,000) and in terms of the number of scientists collaborating [several

hundred co-authors, in Stein et al. (2012), Thompson et al. (2014), and Hibar et al.

(2015)]. Also, by pooling brain imaging and genomic data from tens of thousands of

people, we were able to overcome several technical and sociological barriers; here
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we outline some of the strategies employed and the main findings and lessons

learned. As befits a chapter in a book on brain connectivity, we also summarize the

tactics that ENIGMA is beginning to employ to discover genetic influences on brain

connectivity.

Genetic Influences on the Brain

By 2009, nearly 100 studies had been published showing that numerous measures

of brain structure are heritable (Blokland et al. 2012). In other words, individual

differences in our genetic code do affect specific features of the brain, such as the

overall volume of the brain, the size of the hippocampus, and even measures of

functional activity based on EEG or functional MRI. To establish this, researchers

began by studying family-based cohorts or twins who were scanned with anatom-

ical or functional MRI; when people with greater genetic similarity were compared,

their brains were found to be more similar, on average, than were unrelated people

of the same age and sex.

To formalize these ideas, the classical twin design has often been used to

estimate the heritability of a behavioral trait by studying both identical and fraternal

twins (siblings or other family members are often evaluated as well; Boomsma

et al. 2002). Based on structural equation models, or even based on simpler

approaches involving correlations, twin studies are able to estimate what fraction

of the observed variability in a brain measure is due to genetics, that is, due to the

genetic differences among individuals. Many measures of brain structure, such as

the total amount of gray or white matter in the brain or the overall volume of the

ventricles, were found to be heritable; that is to say, genetic factors are involved in

determining their eventual values. Note that this type of genetic analysis does not

require the direct examination of the DNA sequence, only the study of resem-

blances among family members with different degrees of familial relatedness (e.g.,

identical twins, siblings, etc.).

Soon afterwards, 3D “maps” of heritability began to be produced for a variety of

brain measures, such as regional gray matter volumes in the cortex (Thompson

et al. 2001), cortical thickness (Joshi et al. 2012), surface area (Chen et al. 2012),

and fiber microstructure in diffusion-weighted MRI scans (Chiang et al. 2009). The

proportion of variance due to genetic factors is not expected to be completely uniform

across the brain. In general, genetic variation accounts for around half of the observed

variance for many brain measures, in some cases more, making neuroimaging mea-

sures an attractive target for in-depth genetic analysis (Glahn et al. 2007).

The high heritability of brain structure is in line with many behavioral genetic

studies showing substantial genetic effects on behavior and even risk for neurolog-

ical and psychiatric illnesses, such as Alzheimer’s disease and schizophrenia.

Genetic studies have shown that numerous traits relating to personality, cognition,

and even risk for neurological or psychiatric disease are influenced by genetics to

some degree. The influence of genetic versus environmental factors on cognition
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and intellectual performance was one of the most hotly debated scientific topics of

the twentieth century (Jensen 1969; Lewontin et al. 1984). Of course, even if we

concede that genes play some role in behavior, several caveats to heritability

calculations apply: genetic variants do not influence the brain independently of

other factors, and their effects may depend on a person’s age, sex, level of nutrition,
education, or many other contextual factors in the population (Visscher et al. 2008).

Although they are not necessarily heritable, epigenetic factors, such as methylation

and acetylation, act on the genome to switch off or promote the action of certain

parts of our genetic code. Also, an individual’s environment may be correlated to

some degree with their genotype; for example, people with a natural aptitude for

certain kinds of activity may seek out environments that promote those activities.

This makes the effects of genes and environment difficult or impossible to disen-

tangle. Gene x Environment interactions are also found, where a gene’s effect on
the brain or behavior is accentuated or suppressed under certain conditions. In fact,

much work in the fields of pharmacogenomics and personalized medicine depends

on the notion that people with certain genetic risk factors may be less or more

responsive to medication or other kinds of therapy. As such, the quest to identify

genetic variants that relate to brain measures is likely to accelerate our genetic

understanding of brain disease and mental illness. With this in mind, ENIGMA has

several projects that relate brain measures to genomic variation and to disease, a

topic that we will return to later.

Finding the Genes Involved

Knowing that a brain measure is heritable—or influenced by genetic factors—is the

first step on the long road towards identifying specific differences in the genome

that influence it. By 2009, genetic “sequencing” had become relatively inexpensive,

and it was possible to reliably identify a person’s individual DNA sequence at each

of over one million genetic locations, based on a person’s blood or saliva sample.

Although well over 99 % of the genetic code is identical across healthy individuals,

people do differ substantially in specific areas of the genetic code: there are

deletions, expansions, and even single-nucleotide or single “letter” spelling differ-

ences in the base pair sequence. Some of these genetic differences do not affect the

protein product, if the gene is expressed at all. Other genetic differences render the

protein product dysfunctional or modify its activity, and they may influence brain

function and behavior and our risk for disease.

Genotyping companies began to offer genotyping services whereby over a

million common genetic variants—or single nucleotide polymorphisms (SNPs)—

could be assessed cheaply; in the United States, for example, some personalized

genomics companies offered to send a person a million “letters,” or nucleotides, of

their genetic code for $99 (in U.S. dollars). This ability to genotype common

variants in the genome led to a surge in the popularity of genome-wide association

studies (GWAS), efforts to identify markers or common variants in the human
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genome that are statistically associated with a certain trait, such as obesity, schizo-

phrenia, depression, or Alzheimer’s disease. Many of these genomic screens were

very successful. For instance, certain “risk genes,” such as APOE, CLU, and
TREM2, have alternative sequences wherein one form is more commonly found

in patients with Alzheimer’s disease (Harold et al. 2009; Jonsson et al. 2013). The

quest to find these risk-associated genetic variants is motivated by finding new drug

targets or, in the short term, evaluating a person’s risk for a specific disease, which

can help in clinical trial design.

Again, several caveats apply. Common variants are not the only source of

genetic variations that have an impact on the brain; in fact, rare variants—or even

private variants found only within a single family or individual—have been found

that associate with risk for autism or other disorders (Sanders et al. 2012; Purcell

et al. 2014). When GWAS was first feasible on a large scale, studies of tens of

thousands of individuals began to unearth common genetic differences associated

with cholesterol levels in the blood and with bone density, obesity, or stroke, and a

range of other common conditions. In each study, the genome was scanned for

sequence variations associated with a single trait, such as a person’s height, body
mass index, or a psychiatric diagnosis such as schizophrenia or bipolar illness, for

example. Because of the high risk of false positives—searching millions of letters

of the genetic code would likely detect many false associations—geneticists began

to enforce a very high statistical threshold to implicate a genetic variant in a

disorder, often requiring tens of thousands of subjects to find an association and

replicate it.

GWAS of the Brain

Around 2009, GWAS began to be performed on brain measures [see supplementary

information in Medland et al. (2014)], such as temporal lobe volume (Stein

et al. 2010). Although some of the top “hits” in these studies seemed convincing

from a mechanistic point of view, many geneticists argued that the power to detect

common genetic variants that affect the brain was very limited, even in samples of

approximately 1000 subjects. As brain imaging data are expensive and time-

consuming to collect, only the largest national initiatives could even achieve

sample sizes of 1000 subjects; the Alzheimer’s Disease Neuroimaging Initiative

(ADNI; Jack et al. 2008), for example, was one of the largest studies ever attempted

with neuroimaging. ADNI still took many years to recruit and scan a cohort of

800 people at 58 sites across North America. Power calculations suggest that

cohorts of 10,000 or more subjects should be needed to zero in on genomic regions

with reliable associations to brain measures, unless of course their effect sizes are

extremely large. And so began a debate as to whether imaging would offer a more

efficient way to detect influential genetic variants.
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Counterarguments and Power

Two arguments were commonly advanced to suggest that large samples might not

be required for successful genetic studies of brain images, but the evidence for each

argument began to wane. The first was that some image-derived measures might be

more highly reproducible than psychiatric diagnostic tests or cognitive scores; some

measures from images (such as the density of connections between brain regions)

might be closer to the biology of the gene action as well and therefore show a

stronger effect. For example, a growth factor gene, such as BDNF, might influence

the cell numbers or cell volumes in a specific structure of the brain, such as the

hippocampus. If so, then the statistical association between common variants

influencing the function of that gene and the size of the brain structure should be

fairly easy to identify in a database of brain scans. As we shall see, this optimism

had to be tempered; at least for the brain measures assessed so far, sample sizes

needed for successful genetic association studies have been about the same as those

needed to discover risk genes for clinical conditions such as Alzheimer’s disease or
schizophrenia, though less than those for major depression, and have been on the

order of tens of thousands. Even so, one should bear in mind that the large samples

required to detect effects does not mean effects are trivial or unimportant. Rare

variants with large effect, for example TREM2, appear to double a person’s risk for
Alzheimer’s disease (Guerreiro et al. 2013; Jonsson et al. 2013) and cause brain

tissue loss at twice the normal rate (Rajagopalan et al. 2013). Despite the fact that

only 1 % of people carry this risk allele, the aggregate effect on society is no doubt

substantial, perhaps similar to other mental disorders with similar prevalence but

with devastating impact.

A second argument was that we should focus on candidate genes when looking

for factors that affect the brain, rather than performing a completely open-ended,

genome-wide search. Because certain growth factors in the brain—BDNF, and

NGF, for example—have polymorphic variants within their genes, they could be

natural candidates for affecting volumes of the brain and perhaps other more subtle

features of brain function, such as functional activation or metabolism. Except for

major risk genes such as APOE, a risk factor for late-onset Alzheimer’s disease,
ENIGMA’s data would ultimately show that many of these candidate genes, long

thought to affect brain measures, did not appear to do so in much larger sample

sizes. This finding was confirmed in samples of 10,000 brain scans or more, samples

large enough to detect effects accounting for as little as 1 % of the variance in a

brain measure.

Between 2009 and 2012, over 20 cohorts worldwide came together to form

ENIGMA. The initial study (called “ENIGMA1”; Stein et al. 2012) found common

variants near the TESC gene that were associated with hippocampal volume

measured in MRI scans of the brain. The SNPs involved also affected gene

expression in living brain tissue, as confirmed by analysis of post-mortem brain

tissue. Carrying one form of the gene was associated with a hippocampal volume

that was smaller by an amount equivalent to about 3 years of brain aging, a small
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but substantial effect on a brain scan; the possible cognitive effects of this genetic

change, and their effects on disease risk, are now the target of study. Other findings

of ENIGMA1 included an association between intracranial volume in healthy

subjects and a genetic variant in HMGA2, a gene that had formerly been associated

with height and whose role in cell proliferation was beginning to be understood.

ENIGMA would not have been able to demonstrate that these associations were

robust without the help of another large consortium, CHARGE (Cohorts for Heart

and Aging Research in Genomic Epidemiology), whose GWAS studies of the aging

brain in five large elderly cohorts were crucial in establishing the generality of the

findings. In fact, when the two consortia exchanged their top findings for genetic

variants associated with hippocampal and intracranial volumes, their top five hits

were the same. The most associated SNPs in each consortium were the same ones,

even though the studies assessed different individuals and were designed indepen-

dently (Bis et al. 2012).

Non-biological Information Arising from ENIGMA

After ENIGMA’s first study, some hypotheses had to be revised about which genes

might affect brain measures and how easy it would be to detect their effects. Some

of the “hallowed” candidate genes in psychiatric genetics—COMT, for example—

were initially hailed as explaining a fair proportion of the risk for psychiatric

illness, only to be found less relevant or not well supported in follow-up studies

[see Button et al. (2013) for an analysis of this “winner’s curse” effect]. Perhaps for
the same reasons, many genes expected to influence brain structure were not found

to do so, even in ENIGMA’s highly powered study. Only APOE had a convincing

effect on hippocampal volume, with many growth factors and common psychiatric

risk genes not showing demonstrable effects in much larger sample sizes than

previously studied. Although it is not possible to rule out an effect that is

undetected, the effects of these genes would likely be less than 1 % of the measured

variance, much smaller than some originally thought.

On the bright side, the power to replicate findings across the whole diverse range

of cohorts and populations in ENIGMA was surprising and encouraging. Most

studies contributing to ENIGMA were designed with other goals in mind, on

different scanners and some on different continents. As the data were pooled after

the fact, substantial work went into showing that reproducible and accurate mea-

sures could be made of the same brain regions across sites and scanners [see

Supplemental Materials in Stein et al. (2012)]. On the genomic side, ENIGMA’s
use of reference panels such as HapMap3 and the 1000 Genomes datasets to

“impute” genetic data collected from different genotyping chips also made it

possible to pool data across sites, attaining a power not previously imagined for a

brain imaging study.
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But Do the ENIGMA Genes Affect Disease Risk?

Shortly after the initial study was published, a second initiative was started to screen

the genome for common variants associated with volumes of seven other subcor-

tical structures (the project was called “ENIGMA2”; Hibar et al. 2015) and 34 other

cortical structures (ENIGMA3; in progress). In the course of these studies, a

collaborative partnership began with the Psychiatric Genomics Consortium

(PGC) to see if any of the brain-relevant genes were “enriched” in the PGC’s
own screens for genes associated with psychiatric illnesses such as schizophrenia.

ENIGMA studies of schizophrenia, epilepsy, obsessive compulsive disorder, and

Alzheimer’s disease are currently underway. There is some optimism that these

enrichment analyses may show that some of the same genes that affect the structure

of the brain also create risk for disease. Several disease risk genes are known to be

convincingly associated with brain differences: many of the top 20 or so

Alzheimer’s risk genes (according to alzgene.org) are associated with differences

in brain structure, metabolism, or pathology identifiable with brain imaging. Some

of the logistics involved in looking up ENIGMA’s genes in other psychiatric

GWAS involves performing “checksum” tests to exclude people who have taken

part in both GWAS studies; such participants could cause spurious associations,

making it important to screen out non-independent data.

In parallel, ENIGMA launched several working groups to identify brain mea-

sures that showed the greatest patient vs. control differences in cohorts of patients

with schizophrenia (Turner et al. 2014; van Erp et al. 2015), bipolar illness (Hibar

et al. 2014), depression (Schmaal et al. 2014, 2015), and ADHD (Hoogman

et al. 2014). Some of these studies now number 4000–8000 subjects, making

them the largest studies ever of their respective disorders. Clearly, the power to

identify correlates of behavioral and cognitive dysfunction, and relevant modula-

tors of illness such as medication effects, makes these efforts highly informative.

All these studies are in their earlier phases now, but ultimately they may yield new

sources of information to distinguish psychiatric profiles based on brain imaging

and genetics and for differential diagnosis and even perhaps prognosis.

Searching Brain Images for Statistical Effects

In brain imaging studies more generally, it is common to align a group of subjects’
images to a standardized coordinate space and try to find parts of the brain with

consistent activations or brain regions whose activity relates to modifiable param-

eters of the experimental design. One such approach, called statistical parametric
mapping, or SPM, can identify brain regions where brain signals relate to some

external predictor, such as a task performed in the scanner, or psychiatric diagnosis.

To do this, often a regression model is fitted at thousands to millions of different
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locations in a 3D brain image and the significant regions are shown, after some

suitable correction for the multiple statistical tests made in the image.

Brain-Wide Genome-Wide Scanning

Although it may seem a daunting task, Stein et al. (2010) proposed a method to

screen every voxel (location) in the brain and every genotyped variant in a genomic

screen to search both images and genomes at once for promising associations. The

sheer number of computations can exceed one billion statistical tests. The first such

efforts found no genuinely replicated associations and were computationally feasi-

ble only on a massively parallel computer cluster.

Due to the massive number of statistical tests, the significance threshold that

needs to be achieved to control for false positives is around a billion to one (see

Medland et al. 2014). Even so, this threshold was achievable and far exceeded by

several “hits” (i.e., genetic associations) in ENIGMA2, making the approach

feasible statistically as well. Although voxel-wise GWAS is a tour de force com-

putationally, it can be combined with other techniques for dimension reduction to

focus the search on promising signals. These methods can be statistical, based on

genetic clustering or prioritizing brain measures with highest heritability, or they

can be based on biology and known genetic pathways. Such efforts are reviewed in

Thompson et al. (2013, 2014, 2015).

Genetic Screening of the Connectome

Based on the power that has been achieved so far through ENIGMA to discover

common genetic influences on brain structure, it should now be clear that genome-

wide analysis can also be extended to measures beyond that of individual neuro-

anatomical structures to discover factors that influence how regions of the brain are

connected or work together, i.e., measures of brain connectivity. Brain connectivity

can be modeled in terms of networks describing how different regions of the brain

function together (functional connectivity) or how they are physically connected in

terms of the strength, integrity, or pattern of the white matter fibers (structural

connectivity) (Fig. 1).

Family and twin studies found that specific connections and global organiza-

tional measures are heritable in both functional and structural networks. Glahn

et al. (2010) found that the resting state functional network, derived from blood

oxygen level-dependent functional MRI imaging, is remarkably heritable; Smit

et al. (2010) used EEG-based measures of connectivity to study the heritability of

measures of network “clustering” and path length. Fornito et al. (2011) examined

local and global measures of efficiency and connection distance, along with overall

density for resting state networks. In a similar investigation of functional
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connectivity in children, however, van den Heuvel et al. (2013) did not detect

significant heritability for certain local measures while robustly finding that more

global measures of network organization were heritable. Structural connectivity

and patterns of organization are also influenced by genetic factors. Jahanshad

et al. (2013b) showed that a fraction of the total number of detected connections

are indeed highly heritable, while Bohlken et al. (2014) studied the network’s
topology to establish heritability for other global measures of fiber connections.

The genetic influences on these brain measures have also been established by

exploring the effect of known disease risk genes on the connectome. Candidate

gene analyses have even suggested that connectome properties may be associated

with genetic risk factors for diseases and disorders such as autism (Scott-Van

Zeeland et al. 2010; Dennis et al. 2011), schizophrenia (Braskie et al. 2012), and

dementia (Brown et al. 2011; Jahanshad et al. 2012); given the history of candidate

gene associations in psychiatric genetics, these findings will need to be replicated

Fig. 1 Various forms of connectivity measures extracted from brain images; all these methods

allow us to study the brain from a higher dimensional perspective and observe correlations and

connections between regions. In the more classical approaches, voxelwise maps of activity or

DTI-based integrity measures can be mapped out. In addition to MRI-based imaging, electrodes

can be placed around the brain to obtain functional activation or electrophysiological signals.

Structural or functional connections between different regions can be estimated. A broad search

over all possible connections can lead to mapping the information in a matrix to form a mathe-

matical graph representation. Global properties of this matrix can then be thought of as measures

that describe the network as a whole. For example, one measure of interest examines the shortest

path lengths in the network or the paths with the lowest numbers of connections between one

region, or node, and all the others
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and assessed in larger samples. There is clear potential for using connectivity

measures as targets for genetic analysis or perhaps even for successfully discover-

ing disease risk genes through a genome-wide search.

While functional connectivity measures also appear to be promising targets for

genetic study, here we focus our discussion on expanding structural connectivity

analyses for large-scale genetic analyses in ENIGMA. Figure 2 shows the structural

connectivity matrix from an individual: it stores information on the proportion of

detected fibers connecting each pair of brain regions. Jahanshad et al. (2013a, b)

proposed a method to map structural connectivity based on diffusion-weighted MRI

and prioritize the resulting connections for a genome-wide screen to identify

common variants that affect brain connectivity. Not all possible connections are

found in all individuals and not all parts of the brain are directly connected to all the

others, so the connectivity matrices are relatively sparse (see Fig. 2). As such, a

matrix that represents some measure of the quality or density of connections

between all pairs of regions on the cortex may represent a number of possible

connections that is equal to the square of the number of regions, in theory. For

example, breaking up the cortex into 70 regions (Desikan et al. 2006) would lead to

a connectivity matrix of almost 5000 elements, but only around 1 % of these might

show high reproducibility and heritability in a population.

Using a classical twin model based on identical and fraternal twins, Jahanshad

et al. (2013a, b) identified the heritable connections within structural connectivity

Fig. 2 The structural connectivity matrix. Using standard anatomical MRI and a variant called

diffusion-weighted MRI for fiber tracking, we can map out the structural connectivity network of

the brain. To do this, we combine a cortical parcellation (top left) with a set of fiber pathways

computed using tractography algorithms (bottom left). The resulting connections between all pairs
of cortical regions are organized into a connectivity matrix (right). Its rows and columns corre-

spond to the cortical regions and the magnitudes of the elements represent properties of the

connections detected between them, such as fiber integrity or density
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matrices of several thousand elements and carried forward only the approximately

50 heritable connections into a genome-wide screen. The gene showing a genome-

wide and connectome-wide level association with a particular connection within the

connectome, SPON1, was subsequently also associated with cognitive decline in an
independent study, albeit at a different locus (Sherva et al. 2014). This gene is also

implicated in amyloid processing (Hafez et al. 2012), a key component of

Alzheimer’s disease pathology.
Clearly, the ability to pursue such an approach on a large scale, within

ENIGMA, depends on several factors: a working group, ENIGMA-DTI, was set

up to assess its feasibility. First, unless diffusion-weighted MRI measures show

greater genetic effect sizes than other traits assessed so far, there must be tens of

thousands of DTI scans available from people with GWAS for such a study to be

well powered. Second, the format of the connectivity matrix must be sufficiently

standardized and agreed on in advance, to allow the exchange and pooling of brain

connectivity data across sites.

Encouragingly, by mid-2014, the ENIGMA-DTI working group had amassed

around 10,000 DTI scans. Pilot studies showed that the data could be analyzed in a

consistent way (Jahanshad et al. 2013a; Kochunov et al. 2014). As the ENIGMA3

project involves a cortical volumetric analysis, the current plan is for ENIGMA to

use those cortical regions as the basis for a structural connectivity analysis, using

the same voxel-wise analysis of the connections as advocated in Stein et al. (2010)

and Jahanshad et al. (2013b). It will be interesting to see if similar sample sizes, tens

of thousands, are needed to find and replicate genetic associations with measures of

structural brain connectivity. It could be that mathematical tactics for dimension

reduction, or network-based measures, are also attractive targets for genetic anal-

ysis; so far the relative merits of each of these measures remains to be seen.

Caveats for Multi-site Genomic Analysis of the Connectome

In addition to the caveats noted for pooling multi-site structural MRI data, several

additional caveats make the analysis of connectivity challenging. First, the choice

of tractography methods can result in different matrices; the method only detects

fibers that the algorithm can identify, so many true connections may be missed and

some “false positive” connections will also be detected. As with standard MRI,

these factors are largely influenced by the signal to noise ratio and resolutions of the

images. Often, an arbitrary threshold is implemented to remove the false positive

connections, but short fibers can be filtered out. If a connection appears to be weak

or inconsistent across subjects, this connection may also be removed. Interestingly,

Fornito et al. (2011) found that, for resting state networks at different thresholds, the

degree of heritability varied for different global measures, and heritability was not

uniform across all nodes; there were various levels of genetic influence for each

measure. Lastly, while seemingly intuitive, the results do depend on the

parcellation of the cortex, the way the cortical surface is split up into regions of
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interest. Depending on the goals of the study, parcellation schemes can be improved

to maximize power.

Before embarking on large-scale collaborative efforts combining connectivity

matrices and network metrics, confounding factors such as these should be properly

investigated as is currently being done in ENIGMA’s working groups, such as the

ENIGMA-DTI and EEG working groups, among others. For example, in single site

studies, Buchanan et al. (2014) performed test-retest reliability analyses to explore

the reliability of measures after exploring a variety of commonly used approaches.

Dennis et al. (2012) and Zhan et al. (2013) explored the consequences of altering

the thresholds used to define networks as well as different methods of tractography,

respectively.

Future Directions: Adaptive Connectomics and EPIC

In Prasad et al. (2014), we introduced a method called “EPIC” (Evolving Partitions

in Connectomics) to compute brain connectivity in such a way as to be optimally

sensitive to statistical effects in a population, such as the effect of Alzheimer’s
disease or depression. Clearly, the brain can be divided into regions in many

different ways, such as spectral clustering (Craddock et al. 2012), hierarchical

clustering (Blumensath et al. 2013), or even genetic clustering (Chen et al. 2012).

Each one leads to a different definition of brain connectivity between the resulting

regions. Although the set of possible partitions is truly astronomical in number,

EPIC offers a principled approach to identify the optimal set of brain regions to find

specific statistical effects on the connectivity of the resulting regions. Put another

way, if we are seeking brain regions whose connectivity is disrupted in Alzheimer’s
disease, the algorithm will merge and split parts of the brain until it reaches a set of

connections that best differentiates Alzheimer’s disease patients from controls.

With this adaptive method in mind, it is easy to see how the brain could be

partitioned in such a way to maximize the heritability of the connections, automat-

ically de-selecting unfavorable measures before performing a genome-wide screen.

If that were done, genomic screens of the connectome might be more efficient,

allowing a two-way interplay between discovered genes and the search for connec-

tions they might affect.

Still further potential is available once a genome-wide hit is detected; in that

case, it should be possible to merge and split cortical sectors so that the genetic

effect of a SNP or set of SNPs is more powerfully detected. In other words, one

could adjust the cortical partition to maximize the proportion of variance that can be

attributed to SNPs or common genetic variants. These high-dimensional searches of

the connectome and genome at once will draw upon the full breadth of ingenuity of

mathematicians and geneticists alike.

With the scale of ENIGMA and other consortia now planned, it seems likely that

we may crack the “Enigma code” of the brain’s connectivity network, using

intelligent algorithms and the concerted efforts of the worldwide scientific

158 P.M. Thompson et al.



community. Identifying the genetic influences on the structure and function of the

human brain can allow us to understand what makes us human and help uncover the

mechanisms causing psychiatric illness.
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Joshi AA, Leporé N, Joshi SH, Lee AD, Barysheva M, Stein JL, McMahon KL, Johnson K, de

Zubicaray GI, Martin NG, Wright MJ, Toga AW, Thompson PM (2012) The contribution of

genes to cortical thickness and volume. Neuroreport 22:101–105

Kochunov P, Jahanshad N, Sprooten E, Nichols TE, Mandl RC, Almasy L, Booth T, Brouwer RM,

Curran JE, de Zubicaray GI, Dimitrova R, Duggirala R, Fox PT, Hong LE, Landman BA,

Lemaitre H, Lopez L, Martin NG, McMahon KL, Mitchell BD, Olvera RL, Peterson CP, Starr

JM, Sussmann JE, Toga AW, Wardlaw JM, Wright MJ, Wright SN, Bastin ME, McIntosh AM,

Boomsma DI, Kahn RS, den Braber A, de Geus EJ, Deary IJ, Pol HEH, Williamson D,

Blangero J, van ’t Ent D, Thompson PM, Glahn DC (2014) Multi-site study of additive genetic

effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical

approaches for data pooling. Neuroimage 95:136–150

Lewontin RC, Rose SPR, Kamin LJ (1984) Not in our genes: biology, ideology, and human nature.

Pantheon Books, New York

Medland SE, Jahanshad N, Neale BM, Thompson PM (2014) Whole-genome analyses of whole-

brain data: working within an expanded search space. Nat Neurosci 17:791–800

Prasad G, Joshi SH, Thompson PM (2014) Optimizing brain connectivity networks for disease

classification using EPIC. IEEE 11th International Symposium on Biomedical Imaging,

Beijing, China

Genetics of the Connectome and the ENIGMA Project 161



Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, O’Dushlaine C,

Chambert K, Bergen SE, Kähler A, Duncan L, Stahl E, Genovese G, Fernández E, Collins

MO, Komiyama NH, Choudhary JS, Magnusson PK, Banks E, Shakir K, Garimella K,

Fennell T, DePristo M, Grant SG, Haggarty SJ, Gabriel S, Scolnick EM, Lander ES, Hultman

CM, Sullivan PF, McCarroll SA, Sklar P (2014) A polygenic burden of rare disruptive

mutations in schizophrenia. Nature 506:185–190

Rajagopalan P, Hibar DP, Thompson PM (2013) TREM2 Alzheimer risk gene carriers lose brain

tissue faster. N Engl J Med 369:1565–1567

Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG,

DiLullo NM, Parikshak NN, Stein JL, Walker MF, Ober GT, Teran NA, Song Y, El-Fishawy P,

Murtha RC, Choi M, Overton JD, Bjornson RD, Carriero NJ, Meyer KA, Bilguvar K, Mane
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