
The Virtual Puppet Master: Adaptive
Streaming on Top of an SDN-Enabled

Virtual Infrastructure

Roberto Canonico, Enrico De Maio, Pasquale Di Rienzo,
and Simon Pietro Romano(B)

Università degli Studi di Napoli Federico II, Napoli, Italy
{roberto.canonico,spromano}@unina.it,

{enr.demaio,p.dirienzo}@studenti.unina.it

Abstract. In this paper we present the Virtual Puppet Master, an
orchestration framework for the dynamic deployment of real-time ser-
vices. We show how to leverage both virtualization and Software Defined
Networking in order to seamlessly implement a scalable live streaming
architecture supporting effective, on demand deployment of a hierarchical
distribution tree, as well as live migration of network nodes. The archi-
tecture is illustrated both from the design and from the implementation
perspective. A first qualitative assessment of the overall functionality of
the framework is also introduced.

1 Introduction

This paper aims to demonstrate how the combined use of virtualization and
Software Defined Networking (SDN) can significantly ease the deployment of
advanced network services in cloud-based scenarios. We will focus on live stream-
ing over the Internet, which is by no doubt one of the killer applications for
today’s OTT (Over The Top) operators, due to its stringent requirements in
terms of both scalability and dynamic deployment of the delivery infrastructure.

The framework we present has been called Virtual Puppet Master (VPM) to
indicate its capability to dynamically create, configure, monitor and modify a
hierarchical distribution tree made of a number of nodes, each playing a specific
role in the overall streaming chain connecting a single source to a distributed set
of clients. The architecture is entirely built around the concept of virtualization
and naturally lends itself to a cloud-based deployment. The SDN paradigm comes
into play for all functions associated with the creation and dynamic management
of an overlay network of content delivery nodes. It also proves fundamental when
implementing support for the so-called ‘live migration’ of a subset (i.e., both
nodes and links) of the overall distribution tree.

The paper is organized as follows. In Sect. 2 the SDN paradigm will be
briefly introduced. In Sect. 3 we will discuss the design of our framework, called
Virtual Puppet Master, from a design perspective. Section 4 will dig into our
implementation choices. Section 5 will present some qualitative results obtained
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 825–836, 2015.
DOI: 10.1007/978-3-319-27308-2 66



826 R. Canonico et al.

after deploying a real-world test scenario through the VPM approach. Finally,
Sect. 6 will conclude the paper, by also discussing directions of our future work.

2 Software Defined Networking

The acronym SDN stands for “Software Defined Networks” and it represents an
innovative networking approach aimed to give network administrators method-
ologies to design, build and manage networks within dynamic and fast-paced
environments. The basic trait of SDN consists in decoupling the part of a switch
that handles decisions, called control plane, from the part that just refers to the
forwarding table, named data plane. In an SDN-compliant switch the forward-
ing table is updated by obeying to directives coming from external entities. The
entity in charge of instructing an SDN-based switch is named controller, and
it is basically a software component that, on a side, interacts directly with one
or more switches through a well-defined protocol (at the time of this writing,
the OpenFlow protocol [4]) and, on the other side, checks requests from busi-
ness applications. In other words, an SDN controller has two interfaces: (i) a
southbound API, used by OpenFlow to communicate with SDN switches; (ii)
a northbound API, used for interactions with business applications. Most con-
trollers typically implement this last API as a REST service.

SDN offers an abstraction of the underlying network. By using a controller, its
northbound API in particular, the real network is abstracted from the business
application. This feature makes programmers’ job easier as well, because they
just have to learn one API for all switches.

OpenFlow is, at the moment, the SDN-defined controller-switch protocol and
is implemented by all known SDN switches implementations.

3 The Virtual Puppet Master: Design Considerations

In this section we will examine the design of the VPM infrastructure. We will
introduce the technologies used, motivating their choice and showing the final
architecture. The code name we chose for the research project is Virtual Puppet
Master because of its ability to alter, from behind the scenes, the network in
which an application is deployed. Hosts belonging to the network are, in fact,
just like puppets in a show: they think they have total control over their actions
and choices, while in reality they are manipulated by an orchestrating external
entity taking decisions on their behalf.

Adaptive streaming is such an exhaustive example that we decided to build
our architecture with this type of scenario in mind. The defined architecture
had to comply to a number of both functional and non-functional requirements.
Among such requirements, we herein cite scalability, reconfiguration, fault toler-
ance, application agnosticism, user friendliness, customization and monitoring.

Given the agility and scalability requirements, we opted for a hierarchical
design, in particular a tree. Due to the absence of loops, this topology allows for
simpler routing and management algorithms, as just one path connecting two



The Virtual Puppet Master: Adaptive Streaming 827

nodes will always exist. However, the availability of just one path also means
that, in case of failures, some nodes will not be reachable, which conflicts with
the fault tolerance requirement. For this reason, we chose to give the user the
opportunity to specify redundancy links among switches, so that in case a switch
crashes, an alternative path will be found.

We opted for an overlay network architecture. As hosts are virtual, it seems
just appropriate to make the network they are plugged in virtual as well. Vir-
tual machines have the illusion of belonging to the same network, while host
nodes reside on different local networks. The fact that VMs belong to the same
network means that, for any application running on them, there is no need to
worry about network details like addresses translations and port forwarding.
This makes guest cooperation immediate, a very desirable requirement on a
cloud computing infrastructure.

When an SDN controller is present into the network, the traffic has to
be explicitly allowed by flow rules. This means that just creating connections
between switches does not automatically make a stream flow. We decided to
build our network logic around this concept: in order to make a stream flow
from the root to a leaf, the user has to explicitly ask for it. In our logic, we
will define a path as a sequence of switches and links starting from the root and
terminating in a leaf. Each switch has flow rules installed allowing a packet to
jump to the next hop. In other words, a path can be defined as such only if the
flow rules allow packets to travel across it. About the tree, we will distinguish
among three types of nodes: (i) Root node (unique); (ii) Relay node(s); (iii) Leaf
node(s). A VM present on one of these nodes will become respectively a root,
a relay or a leaf VM. The user will thus be asked to mark a node with one
of these types. This approach leads to the creation of what in the literature is
called a role-based tree. According to the node type and depending on whether a
VM belonging to the installed application is present or not, the flow installation
procedure will slightly change. If a node is marked as root or lies along the path
but does not host any VM, an application packet will have to cross it and go
directly to the next hop. On the contrary, if a VM is present and the node is
not a root, application packets will have to be forwarded first to the VM and
eventually from the VM to the next hop.

Migrating a VM from a hypervisor to another can be a very difficult opera-
tion in this kind of infrastructure. This is due to the fact that a guest might be
in the middle of a communication with an external client or another VM and,
by migrating it, this communication might be lost. So, a full ‘network’ migration
is needed. Based on the above considerations, for what concerns the migration
algorithm, we took inspiration form a recent work about the live migration of
ensembles (shortened in LIME) whose details are explained in [2]. The referenced
paper illustrates in detail how to effectively perform this operation by prelimi-
narily cloning the network instead of just moving it right away. This approach
leads to the best performance as the VM, once migrated, can immediately start
its services, since packets are already flowing to its new location. So, when a
migration request is received, we first check if there is any flow from the root



828 R. Canonico et al.

to the leaf where that VM is currently hosted. If the answer is yes, we check if
there is already a flow towards the new switch that this VM will be attached to
(this is done because another VM might be already running there). If the answer
is yes also in this case, we do nothing as there is already a path towards that
leaf. On the contrary, if there is no path, we first compute it like if the VM were
already there and install flow rules on switches to enforce it. After this opera-
tion, we start the migration process. Note that, during migration, packets will
be replicated on the two paths (or cloned, in the original LIME terminology).
Once migration is successfully completed, the old path is removed. The migrated
VM will receive data right away because packets will be already flowing: in this
way, latency is minimized.

4 VPM Implementation

The VPM has been designed as a management application capable to provide
the network administrator with means to: (i) alter the state of the network
by creating topologies and redundancy links, or by issuing specific flow rules;
(ii) monitor hypervisors, VMs and network state; (iii) migrate a VM from a
hypervisor to another; (iv) add/remove resources (like hypervisors) on demand.

We decided to adopt a Model-View-Controller design pattern, implemented
as a web application. The fact that the application is accessible by a common
browser makes it portable across different operating systems, with no particular
installation or technology, besides standard JavaScript and HTML5.

In the following of this section we will briefly introduce the most important
choices we took when dealing with the implementation of the VPM.

For the virtualization part of our architecture, we chose KVM (Kernel-based
Virtual Machine) [5], mainly because of its robustness to hardware heterogeneity
when it comes to VM migration, as well as for the support of full hardware
virtualization. KVM is also supported by OpenStack [6], our first-choice cloud
platform. As KVM is just for the virtualization part, we have used Qemu1 to
emulate network and storage. Qemu was chosen as it is the de facto user-level
application for KVM. In particular, network emulation is needed to implement
the overlay network we talked about in the previous section. Storage emulation
is done as well, to make a shared ISCSI disk available to VMs as a local disk. We
also relied on libvirt2, a universal API developed by the RedHat Corporation that
allows applications to interface with a lot of different virtualization solutions, by
also providing monitoring tools to check both guests and hosts status.

In order to migrate a VM, a disk sharing technology is needed. Here we opted
for ISCSI, a particular type of Storage Area Network (SAN) and block-level disk-
sharing technique.

Openvswitch is the OpenFlow switch implementation of our choice. It is a
software implementation of an OpenFlow switch, released under the Apache 2.0
license and available for all Linux distributions as a kernel module. Openvswitch
1 http://www.qemu.org.
2 http://www.libvirt.org.

http://www.qemu.org
http://www.libvirt.org


The Virtual Puppet Master: Adaptive Streaming 829

Fig. 1. Openvswitch setup

obviously supports OpenFlow. Though, it implements its own management pro-
tocol as well. By management protocol we mean that Openvswitch offers the user
a way to interact with its internal structure, thus allowing to create switches,
ports and links between switches. This feature has nothing to do with OpenFlow,
but it is needed as, according to our requirements, we need to provide the user
with a way to create networks by connecting switches.

In order to properly isolate the overlay from the physical network, we opted
for the design illustrated in Fig. 1, making use of the Openvswitch capability of
creating multiple bridges. Our implementation specifies ‘br0’ as default gateway
so that the Linux network stack can implement GRE (Generic Routing Encap-
sulation) tunneling by making use of the ‘eth0’ interface, inaccessible without
this workaround.

As the figure indicates, each node has two local bridges, br0 and br1, con-
nected with patch ports. While br0 has a working NIC attached (eth0) and can
exchange packets with the external network, br1 is isolated, with GRE tunnels
as its only way to communicate. We opted for this setup because it is a very
convenient and clear way to separate business traffic from VMs traffic. Bridges
br1 are the only ones belonging to the overlay network and, because of that,
they are also the only ones connected to the OpenFlow controller. In this way
we make sure to examine and handle just the packets addressed to our applica-
tion, hence saving a lot of overhead. Patch ports will be used on leaf nodes of the
distribution tree, when a packet will need to ‘jump’ from the overlay network to
the physical network. Just in this specific case, a special flow rule will be issued,
allowing that packet to flow across the patch port, thus arriving at the bridge
br0 (and eventually at eth0). This setup, commonly known as isolated bridge, is
widely used in production environments.

Fro what concerns the control layer, we opted for Floodlight, an Apache
licensed Java-based OpenFlow controller. It is fully extensible, based on a plu-
gin system. This means that if there is some unavailable feature, it is possible
to create it. We extensively used this system for VPM as we needed custom



830 R. Canonico et al.

Fig. 2. VPM-Floodlight Notification service

behavior for some features. We implemented our own Floodlight module to per-
form some management operations. Our communication protocol makes use of
the Observer design pattern (see Fig. 2): at start, the management application
asks the controller to be notified of events and communicates a callback URL.
Each time a significant event happens, the plugin makes a POST request to the
specified URL containing data about that particular event. This solution decou-
ples the management application from the plugin as the latter does not need to
contain any static reference to the former.

In order for our management application to create links between OpenFlow
switches, we needed a Java implementation of OVSDB, the Open vSwitch Data-
base Management Protocol. Instead of creating it, we took the implementation
done by the ‘opendaylight-ovsdb’ group and modified it. Opendaylight [1] is a
collaborative SDN project which includes a Java-based OpenFlow controller with
a rich set of plugins. One of them, in particular, interacts with a remote OVSDB
database. We decided to make a stand-alone library version of the plugin by
removing all the dependencies from the controller and taking just the protocol
implementation part.

The management application is the core of the whole system. The user inter-
face, as already anticipated, is a mix of HTML and JavaScript controls, while
the backend is implemented in Java, through servlets. Exchanged messages are
instead formatted as JSON objects.

The Dashboard tab, as the name suggests, is aimed to give the user an
overview of the network nodes, here represented just for what concerns the
hypervisor part (for the whole network there is in fact a dedicated tab). A
list of registered hypervisors is shown (see Fig. 3). Offline ones are marked gray
while online ones can be marked with different colors according to their cur-
rent CPU utilization percentage (depending on two dynamically configurable
threshold values).



The Virtual Puppet Master: Adaptive Streaming 831

Fig. 3. The VPM dashboard tab Fig. 4. The VPM network tab

Inside the Network tab, the user can create connections between switches in
order to build a tree network topology with some redundancy links. To allow
users to draw topologies, we made use of a JavaScript library called mxGraph,
coupled to a server component capable to receive and process graphs sent by the
client. This tab will show every switch currently attached to the controller (see
Fig. 4), which are candidates for the final topology. Note that, being a VPM
node both a hypervisor and a switch, these switches represent hypervisors as
well and in fact, by hovering the mouse on a generic device, a list of installed
VMs will appear. In order to create a connection, the user has only to drag the
mouse from one switch to the other, while to set the role a right click on a switch
will open a context menu on which it is possible to choose if that switch is a
root, a relay or a leaf. We decided to let the user draw a generic topology, be
it a tree or not; anyhow, when the “send tree” button is pressed a server side
algorithm will compute the topology to actually make a tree. Spare links will be
identified as redundancy connections.

With reference to tree creation, we used Kruskal’s Minimum Spanning Tree
algorithm [3] combined with some application logic. In fact, this algorithm is
unaware of a node type and, by just giving it a generic topology, we would have
no guarantees that the role of a certain node is respected. Moreover, the user
could have made errors in the topology creation, like relays not connected to any
leaf, which would inevitably bring to an erroneous topology. So, before giving
the topology to the algorithm we first remove any dangling branches, which are
branches ending with a relay or a node whose role was not set. Then, to make
sure that the computed tree is the one the user wanted, we appropriately set
link weights according to the type of its endpoints. In particular, each type is
associated with a value, as follows: (i) Root: 0; (ii) Relay: 1; (iii) Leaf: 2. A link
weight is set to the sum of its edge values. Finally, we provide such a topology as
an input to the actual Kruskal’s algorithm. This process will compute the correct
tree. Only links which belong to the tree will be actually translated into GRE



832 R. Canonico et al.

tunnels (by using our custom library), because they are the only links needed
for our traffic to flow. Redundant links will be stored and used upon necessity.

On the Path tab the user can establish a path starting from the root and
ending in a specific leaf, or delete an existing path. After selecting a root, the user
is allowed to also select a leaf. In a dedicated panel, any existing path between
these nodes will be shown. In order to create a path it is also required to set
an external IP of a receiving node belonging to the physical network relative
to the leaf node. This field is required in order to make the packets of a flow
“jump” from the overlay to the physical network. Any kind of IP, be it unicast,
multicast or broadcast, is allowed. When a new path is defined, a backend servlet
will install specific flows on the selected switches along the path.

On the Migration tab users are able to migrate a virtual machine from one
host to another. Since only guests, situated on leaves, are allowed to be migrated,
they will be the only ones to be shown. In order to perform such an operation,
the user has to simply drag and drop the desired VM from the source to the
destination hypervisors. In the backend, the Libvirt API is leveraged to per-
form the migration process, while calls to a dedicated path manager component
implement the LIME-inspired migration algorithm we explained in Sect. 3. A
further servlet can be periodically polled by the client to retrieve information
about the progress status of a specific migration.

5 Qualitative Tests

In this section we will first present the testing environment and then describe
the streaming demo application. Finally, by using screenshots, we will give an
overview of the final result. As VPM is still in a beta release state, please note
that testing is just functional. Quantitative evaluations, involving throughput
and latency measurements, are the subject of our future work.

We wanted our testing platform to be portable, so we simulated a 5 host
virtual environment inside of an HP Proliant N54L 708245-425 micro server.
This server is equipped with an AMD Turion II Neo N54L dual core proces-
sor, with 8 GB RAM, 2 network interface cards, and 2 Hard Disks (80 and
150 GB respectively). In order to achieve the best performance, we installed a
bare metal hypervisor, VMWare vSphere ESXi 5.5, to simulate “physical hosts”
through VMs. Due to the absence of any local user interface, this hypervisor
can only be remote-controlled by its dedicated client software. This client-server
architecture, which is common to most type I hypervisors, is necessary to make
the virtualization as more efficient as possible. In Fig. 5 you can see an overview
of our testbed.

HDs are organized this way: 160 GB are shared across VMs and used to
simulate their virtual hard disks, while 80 GB are allocated to a specific VM
with a raw device mapping technique (as this VM will represent our ISCSI
target, it needs dedicated storage). Hosts are divided in 5 VMs, numbered from
platino0 to platino5, having 1 GB RAM and 20 GB HD each. Among them,
platino0 is designed to be an ISCSI target as well, and it mounts a dedicated



The Virtual Puppet Master: Adaptive Streaming 833

Fig. 5. The VPM Testbedb Fig. 6. Streaming demo topology

80 GB HD as an external peripheral. There is an additional VM mounting an
open source firewall called pfSense3, which provides NAT and DHCP functions
as well. This VM creates a 192.168.1.x/24 LAN while providing external access
through its physical WAN interface. A second NIC, not displayed in the figure,
is also allocated to pfSense. This NIC is attached to an external router so that
it becomes part of the virtualized LAN as well, along with any physical host
currently attached to it. With this setup we allow for more complex scenarios,
where any number of devices can become part of our testbed.

Each virtualized node is an Ubuntu server 13.10 (Saucy Salamander). We
have chosen this distribution because of its low minimum requirements and also
due to the fact that almost all needed software is already present in its default
repositories, making the setup process significantly faster. Two bridges, br0 and
br1, are set up like we saw in Sect. 3. In order to create the overlay network
inside a Qemu instance, a proper XML file is processed through the libvirt API.
By using the software open-iscsi, each node mounts the ISCSI target located
at platino0, so 5 LUNs (Logical Unit Numbers), each one representing an already
configured VM, are available.

Guest VMs come with an Ubuntu server 13.10 OS installed as well. The
streaming technology supported is GStreamer4, an Open Source multimedia
framework already present in the Ubuntu default repositories. In particular,
the gst-launch utility was used to create a live stream of a sample video file.
Two bash scripts have been created, the former of which is used on the root VM,
while the latter works for both relay and leaf nodes.

By using our web GUI, we created the topology shown in Fig. 6. Figure 6
shows that the created topology presents some redundant links, colored in black.
Two leaves are specified, one with a direct connection to the root node (platino2)
and another one using an additional node as relay.

The demo streaming application works as follows: the root VM will just
broadcast the live stream to the network broadcast address, 10.0.0.255. Under
3 http://www.pfsense.org.
4 http://gstreamer.freedesktop.org.

http://www.pfsense.org
http://gstreamer.freedesktop.org


834 R. Canonico et al.

normal circumstances, this would imply the flooding of the entire network and
would render the relay job of VMs useless, because the stream would just natu-
rally flow to every switch ignoring any halfway entity. For our testing purposes
this is just ideal, because without explicit flow rules these packets would not
travel at all. What we have implemented is a logic that we called sink or swim,
which can be expressed as follows: (i) if no flow rule is issued on the switch,
the flow will just stop at the current hop, and will not be propagated through
the device network interfaces (‘sink’); (ii) if a flow rule is issued with an output
action for specific interfaces, the flow will travel just across said interfaces even
though it should be broadcast (‘swim’). Figure 7 shows an example. Even though
the root guest specified the network broadcast as destination, you can note how
the stream just flows towards the leftmost leaf, like it would do in a unicast sce-
nario. This is also a very good demonstration of VPMś ability to ‘fool’ virtual
hosts.

Fig. 7. “Sink or Swim” paradigm

As a preliminary test, we decided to boot only the VMs on the root and
leaf nodes. This means that relay nodes will act as a “pass-through” nodes, by
just sending packets to the next hop along the path. We hence started a stream
and, after verifying that no external user could receive it, we activated a path to
the rightmost leaf, specifying 192.168.1.181 as external destination IP address
(Fig. 8).

On a leaf node, which contains a VM, we instead find two rules: one to forward
packets to the VM and another to relay them from the VM to the next hop.
The “action” field in the last flow rule enforces the rewriting of the destination
IP to 192.168.1.181 before relaying the packet to the external network. After
this operation, we can verify that the stream correctly arrives at destination, as
illustrated in Fig. 9.



The Virtual Puppet Master: Adaptive Streaming 835

Fig. 8. Creating a path Fig. 9. Stream correctly received

As a further test, we booted up the relay VM on the relay node, to verify
the correct operation of the Notification System. This action triggered the “add
VM” event, with a subsequent alert message destined to the VPM.

We also made sure that the VPM had successfully changed flows belonging
to the switch on which the new VM was booted. This test was a success, also
leading to the same flow configuration we described for the leaf switch (except
for the recipient address translation rule).

Fig. 10. VPM migration testing Fig. 11. Video degradation effects

We finally forced the migration of the VM situated on the rightmost leaf
to the leftmost one, while the user on the external node was watching the live
stream (see Fig. 10).

Migration was successful and, looking at each involved switch, we noticed
that flows were not present anymore on the right path and a new path, towards
the new leaf, had been automatically created. About downtime, it was estimated,
over a mean on 10 migration attempts with the same video source, to be about
2 s, which is perfectly reasonable for a live streaming application. During these
2 s, the user just experienced some frame losses (as it can be appreciated in
Fig. 11), but continuity of service was preserved and the overall impact was
acceptable.



836 R. Canonico et al.

6 Conclusion

In this paper we presented the Virtual Puppet Master, an architecture for the
orchestration of advanced services on top of SDN-enabled clouds. We discussed
both design and implementation of the architecture and provided information
about the results of preliminary tests we conducted on a small-scale testbed.

Our future work on the VPM framework will be aimed at quantitatively
assessing the performance attainable by the system in a large-scale deployment.

Acknowledgments. This work was partially funded by the Italian Ministry of Educa-
tion, University and Research (MIUR) within the framework of projects PON01 01007
“PLATform for INnOative services in future internet” (PLATINO) and PON04a2 C
(SMART HEALTH).

References

1. Feamster, N., Rexford, J., Zegura, E.: The road to sdn. Queue 11(12), 20:20–20:40
(2013)

2. Keller, E., Ghorbani, S., Caesar, M., Rexford, J.: Live migration of an entire net-
work (and its hosts). In: Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, pp. 109–114. HotNets-XI, ACM, New York (2012)

3. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

4. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008)

5. Medina, V., Garćıa, J.M.: A survey of migration mechanisms of virtual machines.
ACM Comput. Surv. 46(3), 30:1–30:33 (2014)

6. Sefraoui, O., Aissaoui, M., Eleuldj, M.: Openstack: toward an open-source solution
for cloud computing. Int. J. Comput. Appl. 55(3), 38–42 (2012)


	The Virtual Puppet Master: Adaptive Streaming on Top of an SDN-Enabled Virtual Infrastructure
	1 Introduction
	2 Software Defined Networking
	3 The Virtual Puppet Master: Design Considerations
	4 VPM Implementation
	5 Qualitative Tests
	6 Conclusion
	References


