
GPGPU Virtualisation with Multi-API
Support Using Containers

John Walsh(B) and Jonathan Dukes

School of Computer Science and Statistics, Trinity College Dublin,
The University of Dublin, College Green, Dublin 2, Ireland

{John.Walsh,Jonathan.Dukes}@scss.tcd.ie
http://www.scss.tcd.ie/

Abstract. Virtualisation of GPGPUs using PCI-Passthrough is limited
to costly specialised hardware. API-Interception provides an alternative
software-based approach to GPGPU virtualisation that has been shown
to provide good performance and increased utilisation on High Perfor-
mance and High Throughput Computing systems. Furthermore, user
applications can transparently access many non-local GPGPU resources.
However, current API-Interception implementations have either limited
batch system support or none at all. This paper introduces a new multi-
component system that supports multiple API-Interception implemen-
tations on several batch systems. The system consists of: (a) a factory
component that produces lightweight Linux Containers using Docker,
where each Container supports one or more API-Interception implemen-
tations and controls a single GPGPU; (b) a registry service that man-
ages the Container resources; and, (c) a set of plugin scripts that bridge
between the batch system and the registry. This paper also evaluates the
performance of benchmarks on the prototype.

Keywords: Linux Container · Docker · Virtual GPGPU · API-
Interception · Registry batch systems · Utilisation

1 Introduction

Over the last decade High Performance Computing (HPC) and High Through-
put Computing (HTC) have seen a shift towards massively parallel computa-
tion using many-core accelerators, such as General Purpose Graphics Processing
Units (GPGPUs) and Intel’s Xeon Phi, as a way to boost application perfor-
mance [6]. At the same time, Machine Virtualisation and Cloud Computing have
led to a growth in loosely-coupled and highly-scalable parallel computing models
such as Map/Reduce. Indeed other benefits of Cloud Computing include user-
customisable execution environments and improved resource isolation. Although
these features could be beneficial to HPC/HTC systems, HPC and Machine Vir-
tualisation/Cloud Computing would appear to be somewhat juxtaposed – full
Machine Virtualisation can decrease application performance [18]. Furthermore,

c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 802–812, 2015.
DOI: 10.1007/978-3-319-27308-2 64



GPGPU Virtualisation with Multi-API Support Using Containers 803

despite the benefits that Cloud can offer, it is not always practical or desir-
able to integrate cloud solutions (e.g. OpenStack) into existing HPC/HTC envi-
ronments. However, an alternative approach using Containers (isolated process
namespaces) looks promising [9,10,21].

This paper introduces a new lightweight system that adds a GPGPU virtu-
alisation management layer on top of existing HPC infrastructures. This system
virtualises GPGPUs (vGPGPU) and allows them be treated as floating generic
consumable resources (FGCR), i.e. vGPGPU’s are no longer logically bound to
a machine. The extent to which a Local Resource Management System (LRMS),
such as Torque [7]/MAUI [2], SLURM [5], can manage and schedule FGCR-
based jobs is dependent on the choice of LRMS, so a new registry service has
been developed to aide vGPGPU management. Two forms of GPGPU virtualisa-
tion are used in conjunction to create the vGPGPUs: lightweight machine virtu-
alisation using Containers; and API-Interception. The former provides resource
isolation whilst maintaining performance, and the latter allows one or more phys-
ical GPGPUs on remote machines to be seamlessly accessed as if they were local.
Indeed, this form of combined GPGPU virtualisation may also help application
developers avoid the need to use multiple APIs such as MPI. The proposed app-
roach builds on existing virtualisation software to provide access to vGPGPUs.
The contributions of this work are encapsulated in a system model consisting
of: (a) a new vGPGPU Factory service to orchestrate the creation of vGPGPU
VMs; (b) an external vGPGPU resource management service that enhances the
existing LRMS and provides vGPGPU resource allocation where no such support
exists in the LRMS; and (c) support for multiple API-Interception implementa-
tions and GPGPU hardware types within the one LRMS.

Section 2 looks at HPC and resource management, Cloud Computing
for HPC, Virtualisation and GPGPU Virtualisation, and related work. This
describes the influences and motivating factors behind the proposed model. The
design and implementation is presented in Sect. 3, and two LRMS case-studies
are discussed. Section 4 uses several benchmarks to examine the performance of
the combined GPGPU vitualisation. Finally Sect. 5 summarises the objectives,
how these have been achieved and the experimental findings before suggesting
potential future work to improve and further evaluate the prototype.

2 Background and Related Work

HPC focuses on delivering the optimal computational power and capability pos-
sible, thereby allowing user jobs to execute as quickly as possible. HPC systems
may be shared among hundreds or thousands of users from different scientific
backgrounds and with different application needs. Such sharing requires man-
agement tools to optimise utilisation without overcommiting resources, and this
is typically the responsibility of an LRMS (or batch system). The LRMS will
queue user jobs until it determines that the specified job resources are available
for it to execute. Typical resources include CPUs, but may also include network
cards and GPGPUs that are implicitly bound to a machine called a worker-
node (WN). A second type of resource, which can be accessed from any WN, is



804 J. Walsh and J. Dukes

called a floating resource. An example of a floating resource is a software licence.
Non-floating resources can be configured either as a property of a WN, or they
can be declared as a generic consumable resource. Properties are used to define
the nature of a resource, whereas generic consumables are used to declare that
the resource can be used concurrently on its associated WN a finite number of
times. Floating Generic Consumable Resources (FGCR’s) are used to declare
that a set of resources can be used from any WN, but can only be used concur-
rently at most by the configured amount. FGCRs are often used to maintain a
global count of how many times a finite resource is concurrently used. Support
for micro-managing FGCRs may need to be provided by some system external
to the LRMS. The level of support for integrating external resource management
systems with an LRMS is not uniform.

Cloud Computing is geared towards loosely-coupled and on-demand comput-
ing tasks. It attempts to optimise utilisation of physical machine resources by
allowing CPU, disk and other resources to be assigned to one or more Virtual
Machines (VMs). VMs have their own independent machine environment, and
they can be highly customised to execute specific user applications or services.
Some Cloud Computing providers, such as Amazon, cater for HPC provisioning
of hardware, including GPGPUs. Economic models have also shown the cost of
running some HPC applications in a Cloud environment may be significantly
cheaper than in a dedicated HPC environment [11]. However, the performance
of HPC in Cloud is still an issue: namely, machine virtualisation has an impact
on application performance.

These concerns can be alleviated by allowing the cloud management system
to provision the physical machine (bare-metal provisioning), however this does
not optimise resource utilisation. An alternative method using Containers avoids
full virtualisation of the machine in software. Containers are restricted process
namespaces executing on top of an existing operating system. They can have
their own network address, and are used to allow processes to run as isolated
micro-services. Executing processes in a Container has negligible impact on its
performance. Furthermore, Containers can be configured to directly access indi-
vidual hardware devices such as GPGPUs. Multiple solutions exist to build and
deploy Containers [1,3]. Docker has received much attention because it allows
container images to be layered upon one another, and it supports machine image
templates. These facilitate rapid Container deployment.

GPGPU Virtualisation models can be classified into four categories: API-
Interception, Kernel Device Passthrough, PCI-Passthrough, and PCI-Switching.

API-Interception is a software method for virtualising GPGPU resources.
GPGPU hardware is normally accessed through calls to an API such as CUDA
or OpenCL. These calls may be intercepted (or hooked) before being directed
to a physical GPGPU. This technique is used to provide transparent access
to remotely installed GPGPUs as if they were local. Remote virtual GPGPUs
use a frontend/backend model in which the frontend intercepts all API calls
(and their data) and transfers them over the network to a selected backend
for execution. Several API-Interception implementations have been developed



GPGPU Virtualisation with Multi-API Support Using Containers 805

for both CUDA (e.g. rCUDA [17], GridCUDA [15]) and OpenCL (VCL [8],
dOpenCL [13], SnuCL [14]) runtime libraries. However, some not been actively
developed in recent years and do not implement recent changes to their respective
APIs.

Kernel Device Passthrough allows a GPGPU device (e.g. /dev/nvidia0)
to be passed into a VM, and has the advantage of working with all GPGPUs.
Impact on performance is negligible – 0% for Containers [20] and 3% for gVir-
tus [19].

PCI-Passthrough allows physical hosts to cede control of PCI-devices to a
VM. This requires hardware support on the CPU, GPGPU, motherboard, and
VM hypervisor. Relatively few GPGPUs can exploit this method. A recent study
concluded that PCI-Passthrough has negligible performance impact [20].

PCI-Switching is a low-level technology that allows a physical machine
equipped with additional specialist hardware to be assigned external PCI devices
attached to the switch. Although this technology allows very flexible hardware
(re)configurations, equipment cost is a significant disadvantage.

Some GPGPU virtualisation methods may be layered on top of each other,
for example, a VM-encapsulated GPGPU using Kernel Device Passthrough,
PCI-Passthrough or PCI-Switching can provide the first layer, with the API-
Interception backend services providing the second layer. This combination
allows the VM’s GPGPU to be accessed remotely from a frontend node.

The prototype model presented in Sect. 3 is related to prior work that inte-
grates rCUDA and VCL into SLURM. The weaknesses of these implementations
are that: (i) they are SLURM specific; and (ii) if both systems are integrated with
SLURM, both solutions attempt to manage the same vGPGPUs independently,
so there are potential resource management conflicts. The prototype is designed
to support several LRMSs and API-Interceptions technologies by using a single
external vGPGPU management system. The use of LRMS prolog and epilogue
scripts to extend the capabilities of the LRMS is inspired by ViBatch [16].

3 vGPGPUs as LRMS Resources

This paper proposes combining Kernel Device Passthrough (using Containers)
with API-Interception, i.e. the Containers are assigned to a unique GPGPU,
and one or more API-Interception software installed – these are backend VMs.
Worker-nodes are configured at runtime as API-Interception frontends. The
backend VMs are treated as a set of FGCRs, and are independent of the WNs.
This section describes a model that facilitates API-Interception based vGPGPU
resources usage on a range of different LRMSs. It consists of three new compo-
nent parts: (a) the vGPGPU Factory subsystem creates backend VMs; (b) the
Registry, which is used to aide both the installation and management of the
backend VMs; and (c) a set of LRMS-specific script-based plugins that act as a
bridge between the user’s vGPGPU job, the LRMS, and the Registry.

These vGPGPUs should be easy to use, with much of the complexity hidden
from the user. To aid this, a simple set of new key/value job attributes are



806 J. Walsh and J. Dukes

supported, namely: the number of nodes (CPU cores), the number of vGPGPUs
per node, and the type of API-Interception used in the job.

3.1 The vGPGPU Factory

The vGPGPU Factory is a service that either creates new backend VMs or
restarts existing ones. The service executes on nodes with physical GPGPU
hardware, and starts by examining the hardware profile. Several properties (e.g.
the GPGPU OS device name/number, the device vendor) are evaluated when a
GPGPU is found. If a backend VM does not already exist, then a new one is con-
structed and labeled with a Universally Unique Identifier (UUID). The UUIDs
are derived either directly from the GPGPU hardware (Nvidia), or constructed
from a combination of the physical machine’s hostname and the GPGPU’s
OS device name (AMD). The Nvidia and AMD hardware dependent variables
(CUDA VISIBLE DEVICES or GPU DEVICE ORDINAL respectively) are set
to the GPGPU’s device number. Variables and GPGPU devices are passed into
the VM at build time, helping to restrict access to the specified device. This
construction method provides logical isolation of the VM’s GPGPU. Finally,
the GPGPU vendor value is used to determine which API-Interception software
is installed and started on the VM. This is VCL for all Nvidia- and AMD-
based VMs, and rCUDA for Nvidia-based VMs. The construction also ensures
that multiple API-Interception virtualisation stacks are supported according
to the hardware type. Docker [12] is used to build the VM and to install the
rCUDA/VCL software. In addition, network bridging using Pipework [4] is used
in preference to Docker’s native Network Address Translation (NAT) solution
because rCUDA did not function correctly under NAT, and because Pipework
allows IP address assignment to the VM. In this way the VM’s IP address can
be managed through the Registry and assigned to the VM when it is initially
created or instantiated.

3.2 vGPGPU Registry Service

The set of backend VMs form a pool of unmanaged resources. To add manage-
ment capabilities, a new web-based service, the vGPGPU Registry Service (or
Registry), has been developed. This helps manage two aspects of backend VMs:
their life-cycle and their allocation to jobs. The Registry augments the resource
management provided by the LRMS. The service implements a simple inter-
face (Fig. 1), and the state of the backend VMs are maintained in a persistent
database. The protocol and database schema are designed to be independent of
LRMS implementations. The assignment of the individual backend VMs to a job
is managed at runtime by requesting resources from the Registry. The request
returns a list of backend VM IP addresses. In this prototype implementation the
Registry interface is implemented using the HTTP protocol.



GPGPU Virtualisation with Multi-API Support Using Containers 807

Method Description

register Registers a new vGPGPU container that is being added to the pool.
Input: Container UUID, GPU Vendor, GPU Device Number; Output:
IP address of Container

unregister Unregisters a vGPGPU container that is being removed from the pool.
Input:Container UUID; Output: None.

request Request a vGPGPU allocation for a job. The Registry returns the in-
formation needed to construct the vGPGPU front-end. Input: JobID,
Number of vGPGPUs, Node Number, API-Interception Method; Out-
put: List of vGPGPU Container IP addresses.

release Release a vGPGPU allocation when it is no longer required by a job.
The released vGPGPUs become available for allocation to another job.
Input: JobID; Output: None.

query Return information such as the number of free vGPGPUs and the number
of vGPGPUs supporting a specified API (e.g. CUDA, OpenCL). Input:
QueryName, API-Interception Method; Output: Integer.

Fig. 1. vGPGPU Registry Service Interface

3.3 LRMS Integration

The LRMS plugin component is the only subsystem that requires specific cus-
tomisation. Two LRMS use-cases demonstrate this integration: (i) SLURM;
and (ii) Torque/MAUI. The key differences between the LRMSs affect how
vGPGPU jobs are handled and scheduled – these include support for non-CPU
resources (e.g. FGCRs), and how arbitrary job parameters are propagated into
the job’s execution environment. However, despite these differences, vGPGPU
jobs depend upon three LRMS-independent factors: (i) the number of frontend
nodes; (ii) the number of backend VMs required by each frontend; and, (iii) the
API-Interception to be used. The prototype assumes a natural mapping between
an LRMS node – which in practice is a CPU core – and a vGPGPU frontend
node. This implies that the number of frontend nodes is specified by declar-
ing the number of nodes (or cores) required. LRMS environment variables are
used to define the number of backend VMs (VirtualGPGPUPerNode) and the
API-Interception required (VirtualGPGPUType). These can be passed from the
LRMS to the frontend WN, where they are used by job prolog/epilogue scripts.
The scripts transparently hide the complexity of configuring the vGPGPU job
environment and interact with the Registry to allocate backend VMs.

Use-case 1: SLURM

The flow of a SLURM-based vGPGPU job is illustrated in Fig. 2. In Step (1) the
number of frontend nodes is specified by requesting normal SLURM nodes; back-
end VMs are specified by requesting one or more vgpgpu licences; and the Virtu-
alGPGPUPerNode and VirtualGPGPUType variables are also exported to the
WN environment. The job will remain in a waiting state until the specified
number of nodes and vgpgpu licences are available – this is managed entirely by



808 J. Walsh and J. Dukes

Submit 
Job

#SBATCH -L vgpgpu:2 
—export VirtialGPGPUType=rCUDA 
…

Job Submission Node LRMS Node

Wait for
CPUs and
Licences

WN Node

Prolog
Req. vGPGPUs

Execute Job

Epilog
deallocate 
vGPGPUs

Exit Job

(2)

(4)

(3)

(1)

(5)

Deallocate
Licence

Allocate
Licence

Fig. 2. The flow of a vGPGPU job through the SLURM LRMS

SLURM. During Step (2) a SLURM task prolog script will transparently exe-
cute. This checks that both VirtualGPGPUPerNode and VirtualGPGPUType
are defined. If they are defined, then the prolog script requests a list of backend
VMs from the Registry and then sets up the API-Interception execution environ-
ment. In Step (3) the GPGPU job will execute as normal; Finally, in Step (4), a
SLURM task epilogue is transparently invoked to signal to the Registry that the
backend VMs be made available for another job. However, the licence counter
will not be incremented until the job exits in Step (5).

Use-case 2: Torque/MAUI

Torque/MAUI is a more complex use-case because it has limited support for
generic consumable resources (implemented as a MAUI software patch), and
limited support for FGCRs – it can only decrement a consumed resource by
1 at a time. To bypass these limitations, a new job pre-processing service and
monitoring service have been developed. The flow of a Toruqe/MAUI vGPGPU
job is illustrated in Fig. 3. In Step (1) the number of frontend nodes is defined to
be the number of nodes; the VirtualGPGPUPerNode and VirtualGPGPUType
are declared as variables, and these will be exported to the WN environment.
In Step (2) a pre-processing filter examines the job definition; if the Virtual-
GPGPUPerNode and VirtualGPGPUType variables are set, an additional job
directive is inserted to instruct Torque to place the job into a holding state;
furthermore, the filter injects an additional call to a prolog script. The held job
can only be released by an external Monitor. Once the job is released, Step (3),
the prolog requests a list of backend VMs from the Registry and configures the
job environment. Finally, in Step (4) the job is executed and the job exits. The
Torque/MAUI implementation does not execute an epilogue script – backend
VM recovery is left to the Monitor service.

The Monitor service continuously executes on the node where the LRMS
runs. It has LRMS operator privileges, allowing it to unhold jobs. During each
iteration, the Monitor implements garbage collection of completed vGPGPU job
backend VMs and releases them for further use. The Monitor queries the number
of free resources, and then iterates over the list of held jobs; if there are sufficient
free backend VMs, then the Monitor requests that the required backend VMs
are allocated to that job on its behalf, and the job is then released from its hold



GPGPU Virtualisation with Multi-API Support Using Containers 809

Submit 
Job

#PBS -v VirtialGPGPUType=rCUDA
#PBS -v VirtualGPGPUPerNode=2
…

Job Submission Node LRMS Node

Pre-process 
&
Hold Job

Worker Node

Prolog
Config Env

Execute Job Exit Job

(2)

(4)

(3)

(1)

Monitor Allocates
vGPGPUs & unholds job

Wait for 
CPUs

Fig. 3. The flow of a vGPGPU job through the Torque/MAUI LRMS

state. Unheld jobs must wait for available CPU cores. Only one job is released
at a time, and this ensures there requests are free of race conditions.

4 Evaluation

To investigate whether the extra virtualisation layers (Docker and rCUDA/VCL)
impact the performance and viability of the prototype, it is necessary to exam-
ine how applications behave. Two simple experiments were selected. The first
examines the performance of a compute-intensive GPGPU application with min-
imal communication, while the second is a bandwidth intensive application that
moves data from the WN to the GPGPU and back. Five scenarios were stud-
ied to help compare how each layer impacts performance, namely: (i) Native
performance with direct access to the GPGPU (Local); (ii) WN access with
rCUDA running locally on the WN (Local-rCUDA); (iii) WN access to a local
GPGPU through rCUDA and a Docker container (Local-rCUDA/Docker); (iv)
WN access to remote GPGPU using rCUDA only (Remote-rCUDA); and (v) WN
access to a remote GPGPU using rCUDA and Docker (Remote-rCUDA/Docker).
The network fabric uses 1-Gbit/Sec Cat5e Ethernet. The GPGPUs were Nvidia
GTS 450s. The compute intensive application was executed 1,000 times for each
scenario, while the bandwidth intensive application was executed 100 times.

Experiment 1:
The Black-Scholes application is provided by Nvidia to demonstrate how GPG-
PUs can be used to calculate the price of European financial market options.
This application is distributed with the Nvidia CUDA Software Development
Kit. Input values and initial conditions are hard-coded into the application,
and a total of 8,000,000 options are calculated. There is minimal data transfer
between the CPU and the GPGPU, so this application is a good indicator of how
well an application will perform when it is not dependent on network I/O. The
results in Table 1 show the total time taken to run each GPGPU scenario. The
ratio between the time taken to run and the corresponding time taken on the
local GPGPU is shown. The results consistently indicate that in both Local and
Remote GPGPU cases, the combination of rCUDA and Docker has a negligible
impact on the overall runtime in comparison to just using rCUDA alone.



810 J. Walsh and J. Dukes

Table 1. Execution data for Nvidia Black-Scholes application (1, 000 invocations)

Access method Total time
(1000 jobs)

Relative
performance

average per-
job GPUTime
(msec)

Average per-
job memory
bandwidth

Local 2773.52s 1.0 3.59 22.26 GB/s

Local-rCUDA 2810.99s 1.014 3.60 22.25 GB/s

Local-rCUDA/Docker 2831.12s 1.021 3.60 22.24 GB/s

Remote-rCUDA 3524.73s 1.271 3.60 22.24 GB/s

Remote-rCUDA/Docker 3524.69s 1.271 3.60 22.25 GB/s

Experiment 2:
The BandwidthTest application also comes from the Nvidia Software Develop-
ment Kit. Its purpose is to measure the memcopy bandwidth of the GPGPU and
memcpy bandwidth across the PCI-e bus. In the case of rCUDA and Docker, the
application should generate significant network I/O that will have an impact on
its performance. The results for these application runs are tabulated in Table 2.

Table 2. Execution data for Nvidia BandwidthTest application (100 invocations)

Access method Total time Relative Host to Device to host

(100 jobs) performance device bandwidth bandwidth

Local 55.10s 1.0 3224.27 MB/s 3268.48 MB/s

Local-rCUDA 72.96s 1.32 2924.77 MB/s 1701.18 MB/s

Local-rCUDA/Docker 92.90s 1.69 1227.15 MB/s 1632.54 MB/s

Remote-rCUDA 665.05s 12.07 114.89 MB/s 120.61 MB/s

Remote-rCUDA/Docker 665.10s 12.07 114.87 MB/s 122.52 MB/s

The results show that even locally, rCUDA and Docker will have a noticeable
impact on the application performance. The performance of remote GPGPUs
under is very poor under 1-Gbit/Sec Cat5e Ethernet, with the bandwidth test
taking over twelve times longer than running the same application locally.

5 Conclusions and Future Work

The prototype meets its core-objective to provide a lightweight model that inte-
grates multiple API-Interception technologies into several batch systems. The
experimental data shows that: (i) when local (i.e. contained to the same phys-
ical hardware) vGPGPU jobs execute computationally intensive applications,
neither rCUDA nor Docker have an impact. There is a performance impact of



GPGPU Virtualisation with Multi-API Support Using Containers 811

circa 25% in both remote cases (where the frontend node is on separate hard-
ware to the backend VM); and (ii) the bandwidth experiment results show that
the performance degradation due to rCUDA and Docker is compounded at a
local level, but Docker’s impact is masked in the remote case.

Both results imply that the 1-Gbit/Sec Cat5e network infrastructure is prob-
lematic, and further tests are needed to see if any improvements can be made to
the TCP/IP performance under both rCUDA and Docker. Further experiments
also need to be carried out at a larger scale, and with low-latency networking
such as Infiniband. The GPGPU locality results (Tables 1 and 2) indicate that
if allocation preference were given to such local backends, then the job through-
put may increase. This hypothesis has yet to be tested. Finally, the relationship
between Nodes, CPU Cores and Cores per Node is more complex than that han-
dled by the prototype, so further work is needed to accomodate a broader range
of vGPGPU computing environment scenarios.

Acknowledgments. This work carried out on behalf of the Telecommunications
Graduate Initiative (TGI) project. TGI is funded by the Higher Education Author-
ity (HEA) of Ireland under the Programme for Research in Third-Level Institutions
(PRTLI) Cycle 5 and co-funded under the European Regional Development Fund
(ERDF).

References

1. LXC. https://linuxcontainers.org/
2. Maui. http://www.adaptivecomputing.com/resources/docs/maui/index.php
3. OpenVZ. http://openvz.org
4. Pipework. https://github.com/jpetazzo/pipework
5. SLURM. http://www.schedmd.com/slurmdocs/
6. Top 500 Supercomputers. http://www.top500.org/
7. Torque. http://www.adaptivecomputing.com/products/open-source/torque/
8. Barak, A., Shiloh, A.: The Virtual OpenCL (VCL) cluster platform. In: Proceed-

ings of Intel European Research & Innovation Conference, p. 196 (2011)
9. Duran-Limon, H.A., Silva-Banuelos, L.A., Tellez-Valdez, V.H., Parlavantzas, N.,

Zhao, M.: Using lightweight virtual machines to run high performance computing
applications: the case of the weather research and forecasting model. In: IEEE
4th International Conference on Utility and Cloud Computing, 2011, pp. 146–153
(2011). http://doi.ieeecomputersociety.org/10.1109/UCC.2011.29

10. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and linux containers. In: 2015 IEEE International Sym-
posium on Performance Analysis of Systems and Software, ISPASS 2015, Philadel-
phia, PA, USA, March 29–31, 2015, pp. 171–172 (2015). http://dx.doi.org/10.1109/
ISPASS.2015.7095802

11. Gupta, A., Kalé, L.V., Gioachin, F., March, V., Suen, C.H., Lee, B., Faraboschi,
P., Kaufmann, R., Milojicic, D.S.: The who, what, why, and how of high perfor-
mance computing in the cloud. In: IEEE 5th International Conference on Cloud
Computing Technology and Science, CloudCom 2013, pp. 306–314 (2013). http://
dx.doi.org/10.1109/CloudCom.2013.47

https://linuxcontainers.org/
http://www.adaptivecomputing.com/resources/docs/maui/index.php
http://openvz.org
https://github.com/jpetazzo/pipework
http://www.schedmd.com/slurmdocs/
http://www.top500.org/
http://www.adaptivecomputing.com/products/open-source/torque/
http://doi.ieeecomputersociety.org/10.1109/UCC.2011.29
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/CloudCom.2013.47
http://dx.doi.org/10.1109/CloudCom.2013.47


812 J. Walsh and J. Dukes

12. Holla, S.: Orchestrating Docker. Packt Publishing, Birmingham (2015)
13. Kegel, P., Steuwer, M., Gorlatch, S.: dOpenCL: Towards uniform programming

of distributed heterogeneous multi-/many-core systems. J. Parallel Distrib. Com-
put. 73(12), 1639–1648 (2013). http://dblp.uni-trier.de/db/journals/jpdc/jpdc73.
html#KegelSG13

14. Ganesalingam, M.: Type. In: Ganesalingam, M. (ed.) The Language of Mathemat-
ics: A Linguistic and Philosophical Investigation. LNCS, vol. 7805, pp. 113–156.
Springer, Heidelberg (2013)

15. Liang, T., Chang, Y.: Gridcuda: A grid-enabled CUDA programming toolkit. In:
25th IEEE International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2011, pp. 141–146 (2011). http://dx.doi.org/10.
1109/WAINA.2011.82

16. Oberst, O., Hauth, T., Kernert, D., Riedel, S., Quast, G.: Dynamic extension of
a virtualized cluster by using cloud resources. J. Phys. Conf. Ser. 396(3), 032081
(2012). http://stacks.iop.org/1742-6596/396/i=3/a=032081

17. Peña, A.J., Reaño, C., Silla, F., Mayo, R., Quintana-Ort́ı, E.S., Duato, J.: A
complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput.
40(10), 574–588 (2014). http://dx.doi.org/10.1016/j.parco.2014.09.011

18. Regola, N., Ducom, J.C.: Recommendations for virtualization technologies in high
performance computing. In: Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, pp. 409–416. CLOUD-
COM 2010 (2010). http://dx.doi.org/10.1109/CloudCom.2010.71

19. Vella, F., Cefala, R., Costantini, A., Gervasi, O., Tanci, C.: GPU computing in
EGI environment using a cloud approach. In: International Conference on Com-
putational Science and Its Applications (ICCSA) 2011, pp. 150–155 (2011)

20. Walters, J., Younge, A., Kang, D.I., Yao, K.T., Kang, M., Crago, S., Fox, G.: GPU
passthrough performance: a comparison of KVM, Xen, VMWare ESXi, and LXC
for CUDA and OpenCL applications. In: IEEE International Conference on Cloud
Computing, IEEE (2014)

21. Xavier, M.G., Neves, M.V., Rose, C.A.F.D.: A performance comparison of
container-based virtualization systems for mapreduce clusters. In: 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing,
PDP 2014, pp. 299–306 (2014). http://dx.doi.org/10.1109/PDP.2014.78

http://dblp.uni-trier.de/db/journals/jpdc/jpdc73.html#KegelSG13
http://dblp.uni-trier.de/db/journals/jpdc/jpdc73.html#KegelSG13
http://dx.doi.org/10.1109/WAINA.2011.82
http://dx.doi.org/10.1109/WAINA.2011.82
http://stacks.iop.org/1742-6596/396/i=3/a=032081
http://dx.doi.org/10.1016/j.parco.2014.09.011
http://dx.doi.org/10.1109/CloudCom.2010.71
http://dx.doi.org/10.1109/PDP.2014.78

	GPGPU Virtualisation with Multi-API Support Using Containers
	1 Introduction
	2 Background and Related Work
	3 vGPGPUs as LRMS Resources
	3.1 The vGPGPU Factory
	3.2 vGPGPU Registry Service
	3.3 LRMS Integration

	4 Evaluation
	5 Conclusions and Future Work
	References


