
An OS-Oriented Performance Monitoring
Tool for Multicore Systems

Juan Carlos Saez(B), Jorge Casas, Abel Serrano,
Roberto Rodŕıguez-Rodŕıguez, Fernando Castro, Daniel Chaver,

and Manuel Prieto-Matias

Facultad de Informática, Complutense University of Madrid, Madrid, Spain
{jcsaezal,jorcasas,abeserra,rrodriguezr,fcastror,dani02,mpmatias}@ucm.es

Abstract. Hardware performance monitoring counters (PMCs) have
proven effective in characterizing application performance. Because
PMCs can be only accessed directly at the OS privilege level, kernel-level
tools must be developed to enable the end user and userspace programs
to access PMCs. A large body of work has demonstrated that the OS
scheduler can perform effective runtime optimizations in multicore sys-
tems by leveraging per-thread performance-counter data. Notably, while
existing tools greatly simplify collecting PMC application data from user
space, they do not provide a simple mechanism making it possible for
the thread scheduler to use performance counters for its own purpose.

To address this shortcoming we present PMCTrack, a novel tool for
the Linux kernel that provides a simple architecture-independent mech-
anism making it possible for the OS scheduler to access per-thread PMC
data. Despite being an OS-oriented tool, PMCTrack still allows gath-
ering PMC values from user space, enabling kernel developers to carry
out the necessary offline analysis and debugging to assist them during
the scheduler design process. In addition, the tool provides both the
scheduler and the userspace PMCTrack components with other insight-
ful metrics available in modern processors that are not directly exposed
as PMCs, such as cache occupancy or energy consumption. In this paper,
we analyze different case studies that demonstrate the potential benefits
of PMCTrack.

Keywords: Performance monitoring counters · PMCTrack · OS sched-
uler · Linux kernel · Asymmetric multicore · Cache monitoring · Intel
CMT

1 Introduction

Most modern complex computing systems are equipped with hardware Perfor-
mance Monitoring Counters (PMCs) that enable users to collect application’s
performance metrics, such as the number of instructions per cycle (IPC) or the
Last-Level Cache (LLC) miss rate. These PMC-related metrics aid in identifying
possible performance bottlenecks, thus providing valuable hints to programmers
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 697–709, 2015.
DOI: 10.1007/978-3-319-27308-2 56



698 J.C. Saez et al.

and computer architects. Notably, direct access to PMCs is typically restricted to
code running at the OS privilege level. As such, a kernel-level tool, implemented
in the OS itself or as a driver, is usually in charge of providing userspace tools
with a high-level interface enabling to access performance counters [4,7,16].

Previous work has demonstrated that the OS can also benefit from PMC
data making it possible to perform sophisticated and effective runtime opti-
mizations on multicore systems [8,9,13,19,20,25]. While public-domain tools to
access PMCs make it possible to monitor application performance from user
space, they do not provide an architecture-independent API empowering the OS
itself to leverage PMC information in different subsystems, such as the thread
scheduler. As a result, many researchers turned to architecture-specific ad-hoc
code to access performance counters when implementing different scheduling
schemes [8,9,13]. This approach, however, leads the scheduler implementation
to be tied to certain processor models, and at the same time, forces developers to
deal with (or even write themselves) the associated low-level routines to access
PMCs on each architecture targeted by the scheduler.

To overcome these limitations, we propose PMCTrack, an OS-oriented PMC
tool for the Linux kernel. PMCTrack’s novelty lies in the monitoring module
abstraction, an architecture-specific extension responsible for providing any OS
scheduling algorithm that leverages PMC data with the performance metrics it
requires to function. This abstraction makes it possible to implement architecture-
independent OS scheduling algorithms. Notably, in doing so, the developer does
not have to deal with the platform-specific low-level code to access PMCs on a
given architecture, which greatly simplifies the implementation.

PMCTrack is also equipped with a set of command-line tools and user space
components. These userland tools assist OS-scheduler designers during the entire
development life cycle by complementing the existing kernel-level debugging
tools with PMC-related offline analysis and tracing support. Moreover, due to
the flexibility of PMCTrack’s monitoring modules, any kind of metric provided
by modern hardware but not exposed directly via performance counters, such as
power consumption or an application’s cache footprint, can also be exposed to
the OS scheduler or to user applications as PMCTrack’s virtual counters.

To demonstrate the effectiveness and flexibility of our proposal, we analyze
three case studies on real multicore hardware. The first case study showcases the
ability of PMCTrack’s monitoring modules to aid in the implementation of state-
of-the art thread schedulers for asymmetric single-ISA multicore systems [9,11,
19,20,24] in the Linux kernel. The second one focuses on cache-usage monitoring
via PMCTrack’s support for Intel Cache Monitoring Technology [14]. Leveraging
this technology, we propose a technique to build applications’ Miss-Rate Curves
(MRCs) on a real system. The third case study illustrates PMCTrack’s ability to
carry out energy and power consumption measurements on different processor
models. The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 outlines the design of PMCTrack. Section 4 focuses on the case
studies to evaluate our design and finally Sect. 5 concludes.



An OS-Oriented Performance Monitoring Tool for Multicore Systems 699

2 Related Work

Hardware performance monitoring counters are usually exposed to the software
as a set of privileged registers. For example, in x86 processors, PMCs can be
accessed from the system software via Model-Specific Registers (MSRs) [6].
Other processor architectures, such as ARM, give more freedom to the processor
implementer on how these counters are ultimately exposed to the OS [1].

Several tools [4,7,15,16,23] have been created for the Linux kernel over the
last few years, enabling to hide the diversity of the various hardware interfaces
and providing users with convenient access to PMCs from user space. Overall,
these tools can be divided into two broad categories. The first group encompasses
tools such as OProfile [4], perfmon2 [7] or perf [16], which expose PMCs to the
user via a reduced set of command-line tools. These tools do not require to
modify the source code of the application being monitored; instead they act as
external processes with the ability to receive PMC data of another application.
The second group of tools provides the user with libraries to access counters
from an application’s source code, thus constituting a fine-grained interface to
PMCs. The libpfm [7] and PAPI [15] libraries follow this approach.

The perf [16] tool, which relies on the Linux kernel’s Perf Events subsystem,
is possibly the most comprehensive tool in the first category currently avail-
able. Not only does perf support a wide range of processor architectures, but
also empowers users with striking software tracing capabilities enabling them
to keep track of a process’ system calls or scheduler-related activity, or various
network/file-related operations executed on behalf of an application. Despite
the potential of perf and the other aforementioned tools, neither of them imple-
ment a kernel-level architecture-agnostic mechanism enabling the OS scheduler
to leverage PMC data for its internal decisions. PMCTrack has been specifically
designed to fill this gap. As PMCTrack, perf has also the capability to expose
non-PMC hardware-related data exposed by modern hardware to the user, such
as the LLC occupancy. However, we found that the complexity of Linux Perf
Events subsystem, on which perf is based, makes it difficult to add the necessary
support. We elaborate on this issue in Sect. 4.2. Instead, PMCTrack’s monitoring
modules constitute a more straightforward vehicle to expose this kind of metrics
to users and to the OS scheduler.

3 Design

Figure 1 depicts PMCTrack internal architecture. The tool consists of a set of
user and kernel space components. At a high level, end users and applications
interact with PMCTrack using the available command-line tools or via libpm-
ctrack. These components communicate with PMCTrack’s kernel module by
means of a set of Linux /proc entries exported by the module.

The kernel module implements the vast majority of PMCTrack’s function-
ality. To gather per-thread performance counter data, the module needs to be
fully-aware of thread scheduling events (e.g., context switches, thread creation).



700 J.C. Saez et al.

In addition to exposing application’s performance counter data to the userland
tools, the module implements a simple API to feed with per-thread monitoring
data to any scheduling policy (class) that requires performance-counter informa-
tion to function. Because both the core Linux Scheduler and scheduling classes
are implemented entirely in the kernel, making PMCTrack’s kernel module aware
of these events and requests requires some minor modifications to the Linux ker-
nel itself. (Augmenting a recent version of the Linux kernel – 2.6.38 and above –
to support PMCTrack entails including two new source files to the kernel tree,
and adding less than 20 extra lines of code.) These modifications, referred to as
PMCTrack kernel API in Fig. 1, comprise a set of notifications issued from the
core scheduler to the module. To receive key notifications PMCTrack’s kernel
module implements the pmc ops t interface shown in Listing 1. Most of these
notifications get engaged only when PMCTrack’s kernel module is loaded and
the user (or the scheduler itself) is using the tool to monitor the performance of
specific applications.

Fig. 1. PMCTrack architecture

PMCTrack’s kernel module consists of various components. The architecture-
independent core layer implements pmc ops t interface and interacts with PMC-
Track userland components. This layer relies on a Performance Monitoring Unit
(PMU) backend to carry out low-level access to performance counters, as well
as for translating user-provided counter configuration strings into internal data
structures for the platform in question. At the time of this writing, PMC-
Track includes four backends providing the necessary support for most mod-
ern Intel and AMD processors, for some ARM Cortex processor models and for
the Intel Xeon Phi Coprocessor. PMCTrack’s kernel module also includes a set
of platform-specific monitoring modules. The primary purpose of a monitoring
module is to provide the end user or a scheduling algorithm implemented in the



An OS-Oriented Performance Monitoring Tool for Multicore Systems 701

kernel with high-level performance metrics or other insightful runtime informa-
tion potentially exposed by the hardware (via PMCs or by other means), such
as power consumption or a process’s last-level cache occupancy.

3.1 Usage Models

PMCTrack can be used to gather performance counter data from the OS sched-
uler (using an in-kernel interface) and from user space.

(A) Accessing PMC data from the OS scheduler. This feature enables any
scheduling algorithm in the kernel (i.e., scheduling class) to collect per-thread
monitoring data, thus making it possible to drive scheduling decisions based on
tasks’ memory behavior or other microarchitectural properties. Turning on this
feature for any thread from the scheduler’s code boils down to activating a flag in
the thread’s descriptor. A scheduling algorithm relying on PMCTrack typically
enables in-kernel monitoring for all threads belonging to its scheduling class.

To ensure that the implementation of the scheduling algorithm that leverages
this feature remains architecture independent, the scheduler does not configure
nor deals with performance counters directly. Instead, one of PMCTrack’s mon-
itoring modules is in charge of feeding the scheduling policy with the necessary
high-level performance monitoring metrics, such as a task’s instruction per cycle
ratio or its last-level cache miss rate.

PMCTrack may include several monitoring modules compatible with a given
platform. However, only one can be enabled at a time: the one that provides the
scheduler with the PMC-related information it requires to function. In the event
several compatible monitoring modules are available, the system administrator
may tell the system which one to use by writing in a special /proc file. The
scheduler can communicate with the active monitoring module to obtain per-
thread data via the following function from PMCTrack’s kernel API:

int pmcs_get_current_metric_value(struct task_struct* task,

int metric_id, uint64_t* value);

For simplicity, each metric is assigned a numerical ID, known by the scheduler
and the monitoring module. To obtain up-to-date metrics, the aforementioned
function may be invoked from the tick processing function in the scheduler.

Monitoring modules make it possible for a scheduling policy relying on per-
formance counters to be seamlessly extended to new architectures or processor
models as long as the hardware enables to collect necessary performance data.
All that needs to be done is to build a monitoring module or adapt an existing
one to the platform in question. From the programmer’s standpoint, creating a
monitoring module entails implementing an interface very similar to pmc ops t.
Specifically, it consists of several callback functions enabling to notify the module
on activations/deactivations requested by the system administrator, on threads’
context switches, every time a thread enters/exits the system, whenever the
scheduler requests the value of a per-thread PMC-related metric, etc. The pro-
grammer typically implements only the subset of callbacks required to carry out



702 J.C. Saez et al.

the necessary internal processing. Notably, in doing so, the developer does not
have to deal with performance-counter registers directly. Specifically, the pro-
grammer indicates the desired counter configuration (encoded in a string) to the
PMCTrack architecture-independent core. Whenever new PMC samples are col-
lected for a thread, a callback function of the monitoring module gets invoked,
passing the samples as a parameter. Due to this feature, a monitoring module
will only access low-level registers to provide the scheduler or the end user with
other hardware monitoring information not modeled as PMCs, such as energy
consumption.1 This information is exposed to the user via virtual counters.

(B) Using PMCTrack from userspace. In addition to the in-kernel API presented
above, PMCTrack also enables to gather PMC data from user space by using
the pmctrack command line tool or libpmctrack.

The pmctrack command allows the user to gather an applications’s perfor-
mance data at regular time intervals (a.k.a., time-based sampling - TBS) or by
using the interrupt-on-counter-overflow feature available on most modern per-
formance monitoring units (a.k.a., event-based sampling - EBS). This command
enables to specify counter and event configurations using mnemonics in much the
same way as existing user-oriented tools [4,7,16]. In addition, the program sup-
ports monitoring both multithreaded and single-threaded applications and has
event-multiplexing capabilities (several event sets can be monitored in a round-
robin fashion). To complement this command-line tool with real-time visualiza-
tion of high-level performance metrics (such as the IPC or the LLC miss rate) we
also created PMCTrack-GUI, a Python front-end for pmctrack. Figure 2 shows
a screenshot of PMCTrack-GUI. This application extends the capabilities of the
PMCTrack stack with other relevant features, such as an SSH-based remote
monitoring mode or the ability to plot user-defined performance metrics.

Libpmctrack enables to characterize performance of code fragments via
PMCs in sequential and multithreaded programs. Libpmctrack’s API makes it
possible to indicate the desired PMC configuration to the PMCTrack’s kernel
module at any point in the application’s code or within a runtime system. The
programmer may then retrieve the associated event counts for any code snip-
pet (via TBS or EBS) simply by enclosing the code between invocations to the
pmctrack start count() and pmctrack stop count() functions.

Not only do libpmctrack and the pmctrack command enable the user to
gather PMC application data but also have the ability to provide users with any
other relevant information exported by the active monitoring module as a virtual
counter. In Sects. 4.2 and 4.3 we leverage this capability. To feed libpmctrack and
the pmctrack program with PMC and virtual-counter data, the PMCTrack’s
kernel module stores this information in kernel-space ring buffers.

Despite the fact that some features of the pmctrack command and libpmc-
track are also available in existing tools [15,16], the design of PMCTrack coupled
with the virtual counter abstraction makes it simpler to expose any new insight-
ful information provided by the hardware to userland tools. Specifically, in tools
1 Most modern Intel processors and many ARM development boards provide energy

consumption readings via separate registers or sensors (see Sect. 4.3).



An OS-Oriented Performance Monitoring Tool for Multicore Systems 703

Fig. 2. PMCTrack-GUI Fig. 3. PMCTrack monitoring modules

such as perf [16] or PAPI-C [15], the Linux kernel and the associated userspace
components must be typically modified to benefit from new hardware monitor-
ing facilities. In PMCTrack, by contrast, this extra support can be provided
by creating a new monitoring module (modifying PMCTrack’s kernel loadable
module), which can be done even without rebooting the system.

4 Case Studies

4.1 Scheduling on Asymmetric Single-ISA Multicore Systems

Previous research has highlighted that asymmetric single-ISA multicore (AMP)
processors, which couple same-ISA complex high-performance big cores with
power-efficient small cores on the same chip, have been shown to significantly
improve energy and power efficiency over their symmetric counterparts [10]. The
ARM big.LITTLE processor [2] and the Intel Quick-IA prototype [3] demon-
strate that AMP designs have drawn the attention of major hardware players.

Despite their benefits, AMPs pose significant challenges to the OS scheduler.
One of the main challenges is how to effectively distribute big-core cycles among
the various applications running on the system. Previous work has proposed
thread scheduling algorithms to optimize throughput and fairness on AMPs
[9,11,19,20,24]. Notably, the key to optimizing both metrics is to factor in the
big-to-small speedup (aka, speedup factor) of the various threads when making
thread-to-core mappings. A thread’s speedup factor is defined as IPSbig

IPSsmall
, where

IPSbig and IPSsmall are the thread’s instructions per second ratios achieved on
big and small cores respectively.

Three different schemes have been explored to determine per-thread
speedup factors (SFs) online. The first approach boils down to measure
SFs directly [10,24], which entails running each thread on big and small
cores to track the IPC (instructions per cycle) on both core types. Pre-
vious work has demonstrated that this approach, known as IPC sampling,



704 J.C. Saez et al.

is subject to inaccuracies in SF estimation associated with program-phase
changes [21]. The second approach relies on estimating a thread’s SF using
its runtime properties collected on any core type at runtime using PMCs
[9,19]. Unfortunately, estimating SFs via PMCs requires to derive predictions
models specifically tailored to the platform in question [9,19]. The third tech-
nique is PIE [24], a hardware-aided mechanism enabling accurate SF estimation
from any core type. Notably, the required hardware support for PIE has not yet
been adopted in commercial systems.

To leverage the first two approaches, which can be used in off-the-shelf AMPs,
the OS scheduler needs to access PMCs in the platform in question. By using
the approach depicted in Fig. 3, PMCTrack monitoring modules make it possible
to aid in creating an architecture-independent implementation of the scheduler.
Overall, the various schemes to obtain threads’ SFs can be implemented as sep-
arate PMCTrack monitoring modules: one that leverages IPC sampling and sev-
eral others that provide SF-estimation on the various platforms supported by the
scheduler. Apart from the architecture-agnostic scheduler implementation, this
design approach provides three additional benefits. First, the scheduler imple-
mentation is completely decoupled from the underlying scheme to determine the
SF; the kernel developer or the system administrator can decide which scheme
to use by activating the corresponding monitoring module. Second, existing SF-
enabled modules can be modified and new ones can be created for a particular
scheduler even without rebooting the system. Third, since the SF can be seam-
less exposed as a virtual counter to PMCTrack’s command-line tools, per-thread
SF and PMC traces can be gathered from user space for debugging purposes.
Notably, in previous work [20] we leveraged this potential of PMCTrack moni-
toring modules to implement state-of-the-art asymmetry-aware scheduling algo-
rithms [9,11,19,24] in the Linux kernel.

4.2 Cache Monitoring

Intel’s Cache Monitoring Technology (CMT) [6] is a new feature, introduced in
the Intel Xeon E5 2600 v3 product family, that allows an operating system or
a Hypervisor/Virtual Machine Monitor (VMM) to determine the current last-
level cache (LLC) usage of the various applications running on the platform.
At a high level, CMT works as follows. The OS or VMM assigns a certain ID,
referred to as the Resource Monitoring ID (RMID)2, to each application/VM.
Cache occupancy is monitored by CMT-enabled hardware on a per-RMID basis,
so the OS or the VMM can read LLC occupancy for a given application/VM at
any time. To make this possible, the processor needs to be aware of the RMID of
every thread (or virtual CPU) currently running on the system. To this end, the
hardware exposes a per-core privileged register that stores the RMID associated
with the thread currently running on it. The OS is in charge of updating per-core
RMID registers when threads’ context-switches take place.
2 Because the amount of RMIDs available is limited by the hardware implementation,

the OS must be equipped with a carefully crafted RMID allocation policy.



An OS-Oriented Performance Monitoring Tool for Multicore Systems 705

 0

 20

 40

 60

 80

 100

m
ix1

m
ix2

m
ix3

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

m
ix10

m
ix11

m
ix12

LL
C

 U
sa

ge
 (

%
)

Benchmarks
applu331
ilbdc
swim

raytrace
streamcluster
x264

lbm
mcf

Fig. 4. Breakdown of LLC occupancy for different
mixes.

5 10 15 20

2

2.5

3

3.5

Cache Occupancy (MB)

LL
C

 M
P

K
I

0 10 20 30
0

5

10

15

Cache Occupancy (MB)

LL
C

 M
P

K
I

Fig. 5. MRCs for the lbm
(top) and omnetpp (bot-
tom) applications.

A patch [5] has been recently created to augment perf [16] with Intel-CMT
capabilities. This support is expected to be included in future Linux kernel
releases. We found that PMCTrack’s implementation is simpler and exhibits
some important advantages over perf’s implementation. First, our implementa-
tion is done in a loadable kernel module rather than on the kernel itself, which
greatly simplified the development. Second, it uses less than 500 lines of code
against the 1500 lines used by the perf patch for the Linux kernel [5]. Moreover,
perf’s implementation entails making changes to 7 different source files from the
Linux kernel, whereas our implementation requires adding a new file to PMC-
Track’s sources, and changing another source file to register the new monitoring
module. Third, because Intel-CMT support is encapsulated in a monitoring mod-
ule, any shared-resource contention-aware scheduling policy implemented in the
Linux kernel could easily retrieve an application’s LLC usage (via PMCTrack’s
API) and perform effective thread-to-core mappings [14]. At the same time, the
monitoring module exposes the LLC usage to the userspace tools as a virtual
counter.

(A) LLC occupancy analysis. We first performed an analysis on the LLC occu-
pancy of 12 multiprogram workloads consisting of sequential programs (lbm and
mcf from the SPEC CPU 2006 suite) and parallel applications (from SPEC
OMP 2012 and PARSEC). All multithreaded applications run with 4 threads.
To carry out the experiment, we employed a 14-core “Haswell-EP” Xeon E5-
2695 v3 processor operating at 2.3 GHz, which features a 35 MB last-level (L3)
cache.

Figure 4 shows the average per-application LLC occupancy for the entire
execution of the various workloads. Our experiment reveals that some appli-
cations, like the swim SPEC OMP parallel program, use a great portion of
the LLC (65–95 %) when running concurrently with sequential applications or
with other multithreaded SPEC OMP or PARSEC programs. Conversely, other



706 J.C. Saez et al.

parallel programs, like ilbdc from the SPEC OMP suite, typically occupy a much
more reduced portion of the L3 cache regardless of the co-runner application. As
expected, other applications account for significantly different portion of LLC
depending on the co-runner.

(B) MRCs online generation. As a more sophisticated application of PMCTrack
and CMT, we now introduce a technique to generate Miss Rate Curves (MRCs)
online. The MRC reports an application’s cache occupancy on a given cache level
(usually the LLC) vs. a certain related performance metric, like the number
of Misses Per Kilo Instructions (MPKI). MRCs can be employed for different
purposes, such as to efficiently distribute a shared cache among threads [18,22].
Several mechanisms have been proposed [18,22] for building these curves, but
they all pose different limitations, such as requiring hardware support or relying
on code instrumentation.

We now describe an online technique that leverages Intel’s CMT to generate
the MRCs of co-running applications. Overall, the proposed technique works as
follows. Using PMCTrack we gather the MPKI and the LLC occupancy of the co-
running applications periodically, thus obtaining different discrete MRC points.
Then, when enough points have been collected, we apply regression analysis to
obtain the whole MRCs for the applications. Note, however, that when several
applications share a cache, they usually reach an equilibrium state in the dis-
tribution of the cache. To obtain points in the whole range of cache sizes, we
slow down co-runner applications by applying duty-cycle modulation techniques
to the cores where they run. This allows other applications to increase their
occupancy, which in turn, makes it possible for us to explore different MPKI
values for the whole cache size range. Figure 5 illustrates two examples of curves
obtained with this technique. The MRC for the lbm application shows a steep
MPKI fall for small cache occupancy values and then saturates from a certain
cache size point on. Conversely, the MRC for the omnetpp program, shows a
linear MPKI drop for the whole range of cache sizes.

4.3 Measuring Power and Energy Consumption

PMCTrack also has the ability to interact with power and energy measure-
ment facilities of modern high-performance Intel processors [6] and low-power
ARM big.LITTLE systems [2]. The necessary support is provided by a set of
PMCTrack monitoring modules. As such, energy-related information is readily
available at runtime to both the OS scheduler and to the end users via virtual
counters.

On Intel systems we turned to the Running Average Power Limit (RAPL)
feature [6], which employs a software power model based on hardware monitoring
to approximate energy usage. Specifically, energy consumption can be gathered
independently for different power domains (core-level, processor package/un-
core and DRAM). Figure 6(a) and (b) show power consumption measurements
reported by PMCTrack on the Intel Xeon E5 v3 processor described in the previ-
ous section. Specifically, the data illustrate both package-level and DRAM power



An OS-Oriented Performance Monitoring Tool for Multicore Systems 707

 0

 10

 20

 30

 40

 50

 60

bwaves

cactusADM

calculix

dealII

gam
ess

Gem
sFDTD

grom
acs

lbmleslie3d

m
ilc
nam

d
povray

tonto
wrf

zeusm
p

P
ac

ka
ge

 +
 D

R
A

M
 P

ow
er

 C
on

su
m

pt
io

n 
(W

)

PKG POWER
DRAM POWER

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

applu331

botsalgn

botsspar

bt331
bwaves

fm
a3d

ilbdc
im

agick

kdtree

m
d
m

grid331

nab
sm

ithwa

swim

P
ac

ka
ge

 +
 D

R
A

M
 P

ow
er

 C
on

su
m

pt
io

n 
(W

)

PKG POWER
DRAM POWER

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

bwaves

cactusADM

calculix

dealII

gam
ess

Gem
sFDTD

grom
acs

lbmleslie3d

m
ilc
nam

d
povray

soplex

tonto
wrf

zeusm
p

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n 

(W
)

Cortex A15
Cortex A7

(c)

Fig. 6. Average power consumption gathered via Intel RAPL for (a) FP SPEC
CPU2006 (b) and SPEC OMP 2012 benchmarks. (c) Average per-cluster power con-
sumption for FP SPEC CPU 2006 benchmarks on an ARM big.LITTLE processor.

measurements for several floating-point sequential programs (SPEC CPU2006)
and parallel applications (SPEC OMP 2012). As evident, sequential programs
exhibit almost constant package consumption across the board, since the appli-
cation is using only one core in the processor package.

PMCTrack also provides support for 32-bit ARM big.LITTLE processors
featuring one cluster of Cortex A15 big cores and another cluster of Cortex A7
small cores. In our evaluation, we used the ARM CoreTile Express development
platform, which is equipped with a set of sensors enabling to measure power
and energy consumption on a per-cluster basis. Figure 6(c) shows the observed
average cluster power consumption of floating-point SPEC CPU 2006 bench-
marks when running alone on the various core types. Information retrieved via
the aforementioned sensors reveals that big A15 cores yield up to 4.9x the power
consumption of small A7 cores. Still, both ARM cores exhibit significantly lower
package-level power consumption for the same benchmarks compared to that of
the high-performance Intel processor we used (Fig. 6(a)).

To validate the results shown in Fig. 6, we measured power consumption
using perf [16] and lm-sensors [12] on the Intel and the ARM systems respectively.
(Unlike PMCTrack, neither of these tools enables to monitor energy consumption
on both platforms.) The results, omitted due to space constraints, reveal similar
measurements to those reported by PMCTrack (deviations no greater than 1 %).

5 Conclusions and Future Work

In this paper we have proposed PMCTrack, a tool enabling the OS scheduler to
leverage performance monitoring counter (PMC) information in decision mak-
ing. By using PMCTrack’s monitoring module abstraction, the implementation
of any scheduling policy that relies on per-thread PMC data to function remains
fully platform independent. Not only do monitoring modules provide the OS
scheduler with PMC-related metrics but also have the ability to feed it with
virtually any insightful information exposed by modern hardware and not nec-
essarily provided via PMCs, such as the LLC occupancy or the energy/power



708 J.C. Saez et al.

consumption. Despite being an OS-oriented tool, PMCTrack is also equipped
with a set of userland tools that allow to gather hardware-performance monitor-
ing information from user space in various ways.

In an earlier work [20], we leveraged the potential of PMCTrack’s monitoring
modules in assisting scheduling algorithms for asymmetric single-ISA multicore
systems implemented in the Linux kernel. By using PMCTrack’s in-kernel API
and libpmctrack, we plan to evaluate OS and runtime-level scheduling schemes
that leverage information on cache occupancy and power consumption.

PMCTrack’s source code has been released3 under the GPLv2. Additional
information on PMCTrack will be available at PMCTrack’s official website [17].

Acknowledgements. This work has been supported by the Spanish government
through the research contract TIN2012-32180 and the HIPEAC3 (see footnote 3) Euro-
pean Network of Excellence.

References

1. ARM: Arm Architecture Reference Manual. http://infocenter.arm.com/
2. ARM: Benefits of the big.LITTLE Architecture. http://www.arm.com/files/

downloads/Benefits of the big.LITTLE architecture.pdf
3. Chitlur, N., et al.: QuickIA: exploring heterogeneous architectures on real proto-

types. In: Proceedings of HPCA 2012, pp. 1–8 (2012)
4. Cohen, W.: Tuning programs with oprofile. Wide Open Mag. 1, 53–62 (2004)
5. Flemming, M.: perf: Intel cache QoS monitoring support (2014). https://lkml.org/

lkml/2015/1/23/590
6. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual Volumes 3A

and 3B. http://www.intel.com/products/processor/manuals
7. Jarp, S., Jurga, R., Nowak, A.: Perfmon2: a leap forward in performance monitor-

ing. J. Phys. Conf. Ser. 119, 042017 (2008)
8. Knauerhase, R., et al.: Using OS observations to improve performance in multicore

systems. IEEE Micro 28(3), 54–66 (2008)
9. Koufaty, D., Reddy, D., Hahn, S.: Bias scheduling in heterogeneous multi-core

architectures. In: Proceedings of Eurosys 2010, pp. 125–138 (2010)
10. Kumar, R., et al.: Single-ISA heterogeneous multi-core architectures for multi-

threaded workload performance. In: Proceedings of ISCA 2004, pp. 64–75 (2004)
11. Li, T., et al.: Operating system support for overlapping-ISA heterogeneous multi-

core architectures. In: Proceedings of HPCA 2010, pp. 1–12 (2010)
12. Lm-sensors: HW monitoring by lm-sensors (2015). http://www.lm-sensors.org/
13. Merkel, A., et al.: Resource-conscious scheduling for energy efficiency on multicore

processors. In: Proceedings of EuroSys, pp. 153–166 (2010)
14. Nguyen, K.: Benefits of intel(r) cache monitoring technology in the intel(r)

xeon(tm) processor e5 v3 family (2014). https://software.intel.com/en-us/blogs/
2014/06/18/benefit-of-cache-monitoring

15. Papi: Overview. http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:Overview
16. Perf: Wiki tutorial on perf (2015). https://perf.wiki.kernel.org/index.php
17. PMCTrack: project official website. http://pmctrack.dacya.ucm.es/

3 https://github.com/jcsaezal/pmctrack.

http://infocenter.arm.com/
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf
http://www.arm.com/files/downloads/Benefits_of_the_big.LITTLE_architecture.pdf
https://lkml.org/lkml/2015/1/23/590
https://lkml.org/lkml/2015/1/23/590
http://www.intel.com/products/processor/manuals
http://www.lm-sensors.org/
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:Overview
https://perf.wiki.kernel.org/index.php
http://pmctrack.dacya.ucm.es/
https://github.com/jcsaezal/pmctrack


An OS-Oriented Performance Monitoring Tool for Multicore Systems 709

18. Qureshi, M., et al.: Utility-based cache partitioning: a low-overhead, high-
performance, runtime mechanism to partition shared caches. In: MICRO (2006)

19. Saez, J.C., et al.: Leveraging core specialization via OS scheduling to improve
performance on asymmetric multicore systems. ACM Trans. Comput. Syst. 30(2),
38 (2012). Article 6

20. Saez, J.C., et al.: ACFS: a completely fair scheduler for asymmetric single-ISA
multicore systems. In: Proceedings of ACM SAC 2015 (2015)

21. Shelepov, D., et al.: HASS: a scheduler for heterogeneous multicore systems. ACM
OSR 43(2), 66–75 (2009)

22. Tam, D.K., et al.: RapidMRC: approximating L2 miss rate curves on commodity
systems for online optimizations. In: Proceedings of ASPLOS 2009, pp. 121–132
(2009)

23. Taniça, L., Ilic, A., Tomás, P., Sousa, L.: SchedMon: a performance and energy
monitoring tool for modern multi-cores. In: Lopes, L., et al. (eds.) Euro-Par 2014,
Part II. LNCS, vol. 8806, pp. 230–241. Springer, Heidelberg (2014)

24. Van Craeynest, K., et al.: Fairness-aware scheduling on single-ISA heterogeneous
multi-cores. In: Proceedings of PACT 2013, pp. 177–187 (2013)

25. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing cache contention in mul-
ticore processors via scheduling. In: Proceedings of ASPLOS 2010, pp. 129–142
(2010)


	An OS-Oriented Performance Monitoring Tool for Multicore Systems
	1 Introduction
	2 Related Work
	3 Design
	3.1 Usage Models

	4 Case Studies
	4.1 Scheduling on Asymmetric Single-ISA Multicore Systems
	4.2 Cache Monitoring
	4.3 Measuring Power and Energy Consumption

	5 Conclusions and Future Work
	References


