
A Multi-layer Framework for Graph Processing
via Overlay Composition

Alessandro Lulli2, Patrizio Dazzi1(B), Laura Ricci2, and Emanuele Carlini1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
Consiglio Nazionale delle Ricerche (ISTI-CNR), Pisa, Italy

{patrizio.dazzi,emanuele.carlini}@isti.cnr.it
2 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

{lulli,ricci}@di.unipi.it

Abstract. The processing of graph in a parallel and distributed fash-
ion is a constantly rising trend, due to the size of the today’s graphs.
This paper proposes a multi-layer graph overlay approach to support
the orchestration of distributed, vertex-centric computations targeting
large graphs. Our approach takes inspiration from the overlay networks,
a widely exploited approach for information dissemination, aggregation
and computing orchestration in massively distributed systems. We pro-
pose Telos, an environment supporting the definition of multi-layer graph
overlays which provides each vertex with a layered, vertex-centric, view
of the graph. Telos is defined on the top of Apache Spark and has been
evaluated by considering two well-known graph problems. We present a
set of experimental results showing the effectiveness of our approach.

1 Introduction

The current production of data is far beyond what has been experienced before.
For example, in 2012 was created 2.5 exabytes (2.5×1018) of data every day [14].
This data comes from multiple and heterogeneous sources, ranging from scien-
tific devices to business transactions. In many of these contexts, data is modelled
as a graph, such as social network graphs, road networks and biological graphs.
Clearly, data of this size makes often infeasible to process these graphs by exploit-
ing the computational and memory capacity of a single machine. Indeed, these
problems are usually faced by exploiting parallel and distributed computing
architectures.

Many solutions for the parallel and distributed processing of large graphs
have been designed so far. Most of the methodologies currently adopted fall in
two main approaches. On the one hand, low-level techniques (such as send/receive
message passing or, equivalently, unstructured shared memory mechanisms) are
often complex, error-prone, hard to maintain and, usually, their tailored nature
hinder their portability. On the other hand, it can be observed a wide use of
the MapReduce paradigm proposed by Dean and Ghemawat [9], and inspired
by the well-known map and reduce paradigms that, across the years, have been
provided by a number of different frameworks [1,7,8].
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 515–527, 2015.
DOI: 10.1007/978-3-319-27308-2 42

516 A. Lulli et al.

The MapReduce paradigm is often used in contexts that are different from
the ones for which it has been conceived. In fact, some of the most notable
existing implementations of such paradigm (e.g. Apache Hadoop and Apache
Spark) are often used to implement algorithms which could be more fruitfully
implemented by means of different parallel programming paradigms or different
ways to orchestrate their computation. This is especially true when dealing with
large graphs [13]. In spite of this, some MapReduce based frameworks achieved
a wide diffusion due to their ease of use, detailed documentation and very active
communities of users. As a consequence, in the last years, several solutions based
on the MapReduce have been adapted for performing analysis on large graphs
in a native way, supporting data streams, large graphs analysis, etc. Some of
these solutions have been inspired by the BSP bridging model [20], such as the
Pregel framework [13], GraphX [24] and Giraph [6]. A common trait shared by
these frameworks is that they provide the possibility to describe graph process-
ing applications from the point of view of a vertex in the graph. Every vertex
processes the same function independently and can only access its local context
which limits its knowledge to its neighbourhood, without having a global view
on the graph. In vertex-centric frameworks the complexity of the distribution
and communication is cut off from the data scientist, who can only focus on the
algorithmic issues.

In this paper we propose Telos, a high-level multi-layer programming envi-
ronment that raises the level of abstraction of vertex-centric graph processing
frameworks by supporting the composition of graph-based overlays. By means of
its support to compositionality it also promotes the reuse and the combination of
existing solutions and algorithms. Our approach takes inspiration by the similar-
ities existing between large graphs and massively distributed architectures, e.g.,
P2P systems. In fact, an effective, efficient and interesting approach adopted
in these systems to orchestrate the computation and spread the information
strongly relates with (multi-level) overlay networks. An overlay can be thought
as an alternative network, built upon the existing physical network, connecting
nodes by means of logical links established according to a well-defined goal. It
can be noticed how, by construction, the building blocks of overlays match the
key elements of graphs. In fact, vertices can be seen as networked resources and
the edges as links. This view gives the possibility to dynamically define graph
topologies different from the original one, so enabling each vertex to choose the
most promising neighbours to speed-up the convergence of the distributed algo-
rithm.

We highlight three main aspects that can be adopted to graph processing:
(i) Local knowledge: each node maintains a limited amount of information and
a limited neighbourhood. During the computation each node relies only its own
data and the information received from such neighbourhood; (ii) Multiple views:
the definition of multi-layer overlays drives the node neighbourhood selection
accordingly to specific goals, a concept successfully exploited in peer-to-peer net-
works [2,10]; (iii) Approximate solutions: algorithms running on top of overlays
usually are conceived to deal with approximated data and to find approximated

A Multi-layer Framework for Graph Processing 517

solutions. Telos defines a distributed framework able to support all previous
strategies. Finally, the contributions of this paper can be summarized as the
following:

– the definition of a high-level multi-layer programming framework targeting
computations on large graphs;

– the presentation of our publicly available implementation of the framework1

on top of Apache Spark [26] providing both a high level API to define custom
layers and some built-in layers.

– a threefold evaluation of our framework to assess the scalability and two proof-
of-concepts directed to exploit a multi layer evolving topology and to improve
the quality of the result of a state of the art balanced k-way partitioning
algorithm.

2 The Telos framework

The vertex-centric model is an approach to define computation for processing
large scale graphs that have become more and more adopted in the last years,
even in very different contexts. According to such model each computation is
organised in a BSP-like fashion [20]. A BSP computation consists of three main
pillars. Concurrent computation every participating computing entity (a ver-
tex in our case) may perform local computations, i.e., computing by making
use of values stored in the local memory/storage. Barrier synchronisation after
conducting its local computation every vertex waits until all other ones have
reached the same point. Communication vertices exchange data between them-
selves before they reach the barrier. Each message sent at superstep S is received
at superstep S + 1.

During a superstep, each vertex receives messages sent in the previous iter-
ation and executes a user-defined function that can modify its own state. Once
the computation of such function is terminated, it is possible for the computing
entity to send messages to other entities. The communication model is based
on a barrier at the end of each superstep. Each message sent at superstep S is
received at superstep S+1. In other words, before the superstep S+1 can begin,
all vertices must have executed the superstep S.

This approach has been fruitfully exploited for computing data analysis on
large graphs. Indeed, in some ways, programming according to the vertex-centric
model recalls the definition of epidemic (or gossip) computing. A widely used
approach in massively distributed systems that leads the nodes of a network to
work independently but having a common, overall, aim. Indeed, according to a
gossip protocol, nodes build network overlays by means of the information they
exchange one each others, similarly to the vertices in the vertex-centric model
that communicate to each other thought their graph neighbourhood.

An overlay consists of a logical communication topology, built over an under-
lying network, that is maintained and used by nodes. Many gossip protocols are
1 https://github.com/hpclab/telos.

https://github.com/hpclab/telos

518 A. Lulli et al.

1
43

2

1
43

2

1
43

2 Layer C

Layer B

Layer A

Layer C
N={2,3}

Layer B
N={3}

Layer A
N={2}

Vertex 1

Layer C
N={1,4}

Layer B
N={4}

Layer A
N={1,3,4}

Vertex 2

Layer C
N={1,4}

Layer B
N={1,4}

Layer A
N={2}

Vertex 3

Layer C
N={2,3}

Layer B
N={2,3}

Layer A
N={2}

Vertex 4

VERTEX VIEW

OVERLAY VIEW

Fig. 1. Layered architecture and interactions

combined into layers [12]. The communication can be exploited over multiple
overlays with each overlay devoted to the computation of a peculiar task. As
an example, Vicinity [22] is a two-layered protocol aimed at discovering similar
nodes in a network in a fully distributed fashion. In Vicinity, one layer obtains
a random sampling of nodes from the network, and the other layer keeps the
nodes more similar with a given context.

Following the evolution of the gossip protocols, the main idea of Telos is
to augment the classic vertex-centric frameworks by adding the support to a
multiple layers architecture. Each vertex is associated with multiple protocols
(i.e. one for each user-defined functions) which are organised into layers. In Fig. 1
is depicted a visual representation of this concept in the overlay view. For each
protocol, a vertex v maintains a local context and a neighbourhood, the former
represents the “state” of the vertex v considering a given protocol, whereas
the latter represents the set of vertices that are exchanging messages with v in
that protocol. Both the context and the neighbourhood can change during the
computation and across the supersteps, given the possibility of building evolving
“graph overlays”.

Telos enables three different types of interactions that involve the vertices
belonging to the graph: (i) intra-vertex: it is the access of a vertex v when
executing the protocol p to the context of a protocol different from p on v; Fig. 1
represents this interaction in the vertices by showing that the context of each
vertex is treated separately. (ii) intra-protocol: it is a message from a vertex v
to a vertex u sent to the same protocol p. Intra-protocol messages sent during
the super-step S will be received by the vertex u at super-step S + 1 (following
the BSP model). (iii) extra-protocol: a vertex v when executing the protocol p
requesting the context of protocol m on vertex u, with p �= m, sends a request
message to u. Upon the reception of the message, the context of vertex u at
protocol m is sent back. This kind of messages are handled directly by Telos and
no additional operations must be provided by the users.

Telos brings to the vertex-centric model many of the typical advantages of a
layered architecture: (i) modularity, protocols can be composed and it is easy to
improve functionality by adding layers; (ii) isolation, a modification of a protocol

A Multi-layer Framework for Graph Processing 519

does not affect the logic of the protocols on the other layers; (iii) reusability,
protocols can be general enough to be reused for many and possibly different
computations. More in detail, Telos ease the task, for programmers, of combining
different protocols. Each protocol is managed independently by Telos and all the
communications and the organisation of the records are all in charge of Telos,
which it manages in a fully distributed manner. Currently, the Telos framework
is built on top of Spark [26]. To realise data management and distribution,
the Spark framework exploits the Resilient Distributed Dataset (RDD) [25], on
top of which are defined collective operations such as map, reduce and join. We
developed Telos on top of the standard Spark’s API, as an additional abstraction
that organises the layered vertex-centric view. All the tasks for managing RDDs
(including checkpointing and persistence) are transparent to the programmers
and managed by our framework. The framework coordinates the protocols and
masquerades the underlying support to ease the application development. The
framework handles all the burden required to create the initial set of vertices and
messages and provides to each vertex the context it requires for the computation.
Communications are completely hidden to the programmer as well. Telos handles
data dispatch to the target vertices (and the corresponding layers). In addition,
the framework manages also minor activities like the control on the maximum
number of steps to perform and the persistence of intermediate data in case of
failures.

2.1 Protocols

Protocols are first-class entities in Telos, they drive the computation and organ-
ise the topologies in each layer of the framework. Each protocol orchestrates the
context of the vertices, such as their local state and their neighbourhood, in a
vertex-centric view of the graph. In fact, each protocol is in charge of (i) mod-
ifying the state of the vertices, (ii) defining a representation of the state of the
vertices, which are eventually sent as messages to other vertices, and (iii) defining
custom messages aimed at supporting the orchestration of the nodes.

Table 1 reports the API that a Protocol object can implement. The Protocol
interface abstracts the structure of the computation running on each vertex. The
core logic of a Protocol is contained in the compute() method. Once called, say
at superstep S, the compute() method can access to the state of the vertex at
superstep S − 1 and all the messages received by such vertex in step S, as well.
The contract of the compute() method requires to return a new vertex context
and a set of messages that will be dispatched to the target vertices at the super-
step S + 1. Note that the receivers of the messages are not necessarily part of
the neighbourhood of vertex v at super-step S, namely the vertex v can send
messages also to vertices not belonging to its neighbourhood. The termination
of a Protocol is coordinated by a “halt” vote. At the end of its computation
each vertex votes to halt, and when all vertices voted to halt, the computation
terminates.

The frequency at which a protocol is activated (w.r.t. the supersteps) is reg-
ulated by getStartStep() and getStepDelay() methods. These methods are

520 A. Lulli et al.

Table 1. The Protocol API

Function Description

setStartStep() Defines the first step on which the compute() is called

setStepDelay() Defines the delay in terms of steps between two successive
calls of compute()

beforeSuperstep() Defines aggregators and combiners to be run before the
compute()

afterSuperstep() Defines aggregators and combiners to be run after the
compute()

compute() Defines the protocol behaviour. Receives messages sent at
the previous step, modifies the state, creates new
messages and eventually votes to halt

init() To define custom initialization procedures

createContext() Sets the initial context of a vertex

createInitMessages() Sets the initial messages

useful when a computation involves different protocols characterised by different
converge time, i.e., the amount of steps it needs to converge to a useful result. By
means of these methods it is possible to regulate the activations of the protocols
with respect to the amount of elapsed supersteps. Figure 2 graphically depicts the
behaviour of these methods. In the figure, Protocol A is activated at each super-
step, i.e., if invoked, its implementation of getStepDelay() method, will return
1, whereas the very same call on Protocol B will return 2. In a pretty similar fash-
ion the method getStartStep() drives the first activation of a protocol. Going
back to the aforementioned figure, when called on Protocol A it will return 0,
whereas it will return 1 if called on Protocol B. Finally, beforeSuperstep() and
afterSuperstep() allow to define aggregators and combiners to be executed
before and after the execution of the protocol. Telos comes with two built-in
protocols for building dynamic topologies or exploiting properties of graphs:

Protocol A

Protocol B

t t t t
0 1 2 3

t t
N-1 N

.

.

.t
4

t
5

t
6

t
N-2

Fig. 2. The effect of getStartStep() and getStepDelay() methods

Random Protocol. The aim of this protocol is to provide to each vertex a random
vertex identifier upon request. The vertex identifier must be taken uniformly and
randomly in the space of identifiers of graph vertices. Telos provides two versions

A Multi-layer Framework for Graph Processing 521

of this protocol, the first implementing a gossip random peer sampling protocol
[21], the second implementing a distributed random number generator2.

Ranking Protocols. These protocols are widely exploited in gossip frameworks to
create and manage topology overlays [10,22]. The overlays are created and main-
tained according to a ranking function which measures the similarities between
two vertices. In Telos we implemented a generic ranking protocol able to take as
input the ranking function. It dynamically keeps in the neighbourhood of each
vertex the more similar vertices according to the user defined ranking function.
As an example, if every vertex is represented as a point in a two dimensional
space and the similarity metrics is the euclidean distance, the ranking protocol
eventually keeps in the neighbourhood of each vertex the k closest vertices.

3 Evaluation

To evaluate the effectiveness of our approach we conducted a set of three exper-
iments. In Sect. 3.1 we validate the framework, in Sect. 3.2 we evaluate its scal-
ability, and finally Sect. 3.3 tests our framework in a real scenario presenting a
multi-layer solution for graph partitioning.

3.1 Torus Overlay

The aim of this experiment is to validate our approach. To this end we show
a layered architecture built by means of our Telos framework to port concepts
from the massively distributed systems to large graph processing solutions. As
a proof-of-concept we built an experiment that organises the vertices and the
edges of a graph according to a determined ranking function. Exploiting rank-
ing functions to organise the overlay topology is a widely adopted approaches
in highly distributed systems that we believe would be also useful in graph
processing systems to drive the orchestration of the computation. In this case
we a torus shaped overlay. The implementation is a two-layers approach. The
bottom layer implements a random protocol, and the upper layer implements
the ranking protocol. We tested the implementation on a graph made of 20K
vertices. The results in Fig. 3 show the evolution of the graph in real time. The
topology recalls the shape of a torus already at super-step 10. At super-step 20
no edges connects “distant” vertices in the torus. This experiment shows that, if
properly instrumented, Telos can correctly manage multiple layers and can build
the requested topology in a fewer number of super-steps.

3.2 Scalability

This experiment evaluates how the Telos framework manages larger input graphs
when increasing the number of cores involved in the computation. For this exper-
iment, we built two Erdos-Renyi random graphs (1 M vertices 5 M edges the first,

2 http://www.cs.rit.edu/ark/pj2/doc/edu/rit/util/package-summary.html.

http://www.cs.rit.edu/ark/pj2/doc/edu/rit/util/package-summary.html

522 A. Lulli et al.

(a) step 0 (b) step 5 (c) step 10 (d) step 15 (e) step 20

Fig. 3. Evolution of Torus Computation at different Supersteps

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 8 16 24 32 40

T
im

e

CoreNumber

1,000,000
500,000

Fig. 4. Scalability as a function of the
number of cores

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 100 200 300 400 500 600 700 800 900 1000

M
in

C
ut

Superstep

NoRank
Rank

Fig. 5. Convergence of edge-cut over
supersteps

500K vertices 1.5 M edges the second) generated with the Snap library [11]. We
run the torus overlay experiment described in Sect. 3.1 with both graphs vary-
ing the number of cores: {8, 16, 24, 32, 40}, and measuring of the convergence
time. Results are presented in Fig. 4. Values are normalised, independently for
each graph, in the range [1 ; 100], with 100 being the highest execution time.
Each value is the average of 3 independent runs computed by using quad-cores
workstations. Considering the 500K graph, it can be observed that using more
than 16 cores does not brings any benefit. When considering the larger graph,
we achieve performance benefits till 32 cores. In detail, with respect to 8 cores,
16 cores cut 15 % of the convergence time, and 24 cores cuts the 40 %.

3.3 Graph Partitioning

JA-BE-JA [16] is a distributed algorithm for resolving the balanced k-way graph
partitioning problem and it works as the following. Initially, it creates k logi-
cal partitions on the graph by randomly assigning colours to each vertex, with
the number of colours equals to k. Then, each vertex attempts to swap its own
colour with another vertex according to the most dominant colour among its
neighbours, by: (i) selecting another vertex either from its neighbourhood or
from a random sample, and (ii) considering the “utility” of performing the colour
swapping operation. If the colour swapping would decrease the number of edges
between vertices characterised by a different colour, then the two vertices swap
their colour; otherwise, they keep their own colours. In a previous work [3] we

A Multi-layer Framework for Graph Processing 523

presented an implementation of JA-BE-JA in Apache Spark, outlining the adap-
tations that have been required in order to efficiently adapt the algorithm to
match a BSP-like structure. In its original formulation, JA-BE-JA assumes that
each vertex has complete access to the context of its neighbours and also their
neighbourhood. To enforce this assumption, we initially introduced specific mes-
sages to retrieve the neighbourhood of any vertex. However, we noticed that
forcing a strong consistency of such information slows down the performance
too much. As a consequence, we provided an alternative implementation (called
gp-spark) that introduces a degree of approximation to accelerate the compu-
tation, in which vertices piggyback their neighbourhood information in other
messages. This mechanism causes the vertices to apply the local heuristics on
possibly stale data, but increases the performance of the original approach pro-
viding a comparable quality of results with respect to the original version. The
original gp-spark works with a two layered architecture composed as following:
(i) the colour swapping protocol, that attempts the colour swapping targeting
either a vertex from the local neighbourhood or from the random sampling, and
(ii) the random sampling protocol that provides some random vertices to the
colour swapping protocol. Here, we present gp-telos, an improved version of
gp-spark that introduces a new layer with the border ranking protocol aimed to
boost the quality of results. The objective is to give to JA-BE-JA the possibility
to select from a better set of vertices when attempting colour swapping. The new
layer sorts the vertices according to a ranking function that favours vertices to be
connected with others that represent good swapping candidates. For instance, a
blue vertex having 3 red neighbours would be ranked high from a red vertex hav-
ing 3 blue neighbours. The ranking protocol orders the neighbourhood vertices
according to a function to sort vertices being better swapping candidates. We
compared the performance of gp-telos and gp-spark by means of the follow-
ing metrics: (i) edge-cut: the number of edges that cross the boundaries of each
subgraph. This metrics gives an estimation about the quality of the cut, with
lower values corresponding to a better cut, and (ii) convergence: the number
of supersteps required to achieve a substantially definitive edge-cut result. Our
aim is to show that Telos does not affect the performance in term of supersteps
to find a solution with respect to the gp-spark implementation. The experi-
ments have been conducted on two datasets taken from the Walshaw archive
[23] (3elt and vibrobox) and from the Facebook social network3. Figure 5 shows
the convergence time in term of supersteps for the 3elt dataset with K = 2.
Results with other datasets and different values of K are not included due to
space constraints but they exhibit similar trends. The results show evidence that
convergence is similar between gp-spark and gp-telos, as in both cases they
achieve an almost-definitive edge-cut around the 400th superstep. In particular,
after the 400th superstep gp-telos is stable, whereas gp-spark is converging
but it is improving the result in every step marginally. Also, gp-telos yields a
much better quality of results, achieving half the edge-cut of gp-spark. Table 2
presents the edge-cut obtained by gp-telos and gp-spark, averaging the results
3 http://socialnetworks.mpi-sws.org/.

http://socialnetworks.mpi-sws.org/

524 A. Lulli et al.

Table 2. Edge-cut value for gp-telos and gp-spark with the three datasets

K 3elt Vibrobox Facebook

gp-telos gp-spark gp-telos gp-spark gp-telos gp-spark

2 750 1,433 (+91%) 14,812 22,244 (+50%) 75,690 80,971 (+7%)

4 1,810 2,903 (+60%) 30,432 40,358 (+33%) 147,991 157,282 (+6%)

8 3,048 4,473 (+47%) 43,728 56,954 (+30%) 256,902 245,682 (−4%)

16 4,191 6,344 (+51%) 54,339 75,051 (+38%) 348,494 353,061 (+1%)

32 5,241 8,491 (+62%) 67,787 95,858 (+41%) 415,315 457,257 (+10%)

64 6,419 10,622 (+65%) 88,953 116,149 (+31%) 520,391 552,714 (+6%)

of 5 runs. We executed multiple runs by varying the number of the graph parti-
tions with the values K = {2, 4, 8, 16, 32, 64}. It can be noticed that gp-telos
obtains a better edge-cut in all the datasets and in all the configurations but
with the Facebook dataset and 8 partitions. However also in this configuration
gp-telos provides an edge-cut similar (just 4% less) to the one in the gp-spark
version. Overall, the gp-telos version provides a value between the 47 % and the
91 % better in the 3elt dataset and always better that the 30 % in the Vibrobox
dataset. These results suggest that the new layer helps improving the results,
and a layered vertex-centric approach can be used to carry out graph processing
computations.

4 Related Work

A comprehensive survey of the most important currently available vertex cen-
tric programming models and of the corresponding frameworks is presented in
[15]. While most of these provide a set of basic functionalities for vertex-centric
computations, several related frameworks and approaches have been developed
with the goal of extending and/or optimizing the basic frameworks.

Salihoglu and Widom [18] propose a set of interesting optimisations specifi-
cally targeting graph processing in Pregel-like solutions. These include perform-
ing the computation sequentially on the master node when number of nodes in
the active graph is under a given threshold and merging a sets of vertices to
form supervertices in order to optimize the communication cost. Both of these
focus on reducing the completion time and the communication volume by instru-
menting the support with automated recognition features, activated to speed-up
the computation. Another interesting approach that goes beyond the Pregel-like
solutions has been proposed by Tian et al. [19]. Their idea is to shift the reason-
ing from the point of view of a single vertex to the point of view of an aggregated
set of vertices. By means of this change of perspective they have been able, on
selected problems, to give a notable speeds-up in the computation. Both this
proposal and our approach are based on the idea of pushing, by design, a shift
in the paradigm that allows the implementation of more efficient solutions.

A Multi-layer Framework for Graph Processing 525

An interesting strategy to speed-up the computation is considering
approaches dealing with approximated data and returning approximated solu-
tion. Zhang et al. [27] proposed both an approximated and an exact solution
for k-nearest neighbours join developed according to the MapReduce paradigm.
Their approximated solution run orders of magnitude faster than the exact one.
The algorithm proposed in [4] reduces the completion time of the computation
of a well known graph algorithm, the problem of finding connected components,
by dynamically reducing the graph. Another algorithm, still implemented in
MapReduce, is presented by Riondato et al. [17]. The paper proposes a random-
ized parallel distributed algorithm to extract approximations of the collections
of frequent item-sets and association rules from large datasets. The approximate
solution still guarantees, with high probability, the quality of the results.

5 Conclusions

In this paper we presented Telos, a high-level programming framework that sup-
ports vertex-centric computations based on layered overlays aimed at large graph
processing, implemented on the top of Apache Spark. Telos takes inspiration from
approaches that have proved to be robust and efficient in massively distributed
systems that, somehow, recalls the structure of large graphs. We conducted an
experimental analysis to validate the feasibility of the approach and shows its
scalability with respect to the computational resources exploited. The experi-
ments demonstrated that dynamic topologies can be effectively exploited during
the computation. We believe that the ability of supporting multiple dynamic
layers can be useful in many contexts, as for example to cluster users that are
closer in a virtual environment [5] or for classical graph analysis problems, such
as connected components and centrality measures. As a future work we plan to
conduct a comprehensive analysis of the performance of the framework and a
comparison with other approaches targeting large graph computation. We also
plan to implement Telos on top of different parallel programming frameworks
to assess the performance of our proposed approach regardless the performances
provided by Apache Spark.

References

1. Aldinucci, M., Danelutto, M., Dazzi, P.: Muskel: an expandable skeleton environ-
ment. Scalable Comput. Pract. Exp. 8(4), 325–341 (2007)

2. Carlini, E., Coppola, M., Dazzi, P., Laforenza, D., Martinelli, S., Ricci, L.: Service
and resource discovery supports over p2p overlays. In: International Conference on
Ultra Modern Telecommunications and Workshops, ICUMT 2009, pp. 1–8. IEEE
(2009)

3. Carlini, E., Dazzi, P., Esposito, A., Lulli, A., Ricci, L.: Balanced graph partitioning
with Apache Spark. In: Lopes, L., et al. (eds.) Euro-Par 2014, Part I. LNCS, vol.
8805, pp. 129–140. Springer, Heidelberg (2014)

526 A. Lulli et al.

4. Carlini, E., Dazzi, P., Lucchese, C., Lulli, A., Ricci, L.: Cracker: crumbling large
graphs into connected components. In: 20th IEEE ISCC, International Symposium
on Computer and Communications. IEEE (2015)

5. Carlini, E., Dazzi, P., Mordacchini, M., Ricci, L.: Toward community-driven inter-
est management for distributed virtual environment. In: an Mey, D., et al. (eds.)
Euro-Par 2013. LNCS, vol. 8374, pp. 363–373. Springer, Heidelberg (2014)

6. Ching, A.: Giraph: large-scale graph processing infrastructure on hadoop. In: Pro-
ceedings of the Hadoop Summit, Santa Clara (2011)

7. Danelutto, M., Dazzi, P.: A java/jini framework supporting stream parallel com-
putations. In: Proceedings of the International Conference ParCo (2005)

8. Danelutto, M., Pasin, M., Vanneschi, M., Dazzi, P., Laforenza, D., Presti, L.: PAL:
exploiting java annotations for parallelism. In: Gorlatch, S., Bubak, M., Priol, T.
(eds.) Achievements in European Research on Grid Systems, pp. 83–96. Springer,
New York (2008)

9. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

10. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (2009)

11. Leskovec, J., Sosič, R.: SNAP: A general purpose network analysis and graph
mining library in C++, June 2014. http://snap.stanford.edu/snap

12. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S., et al.: A survey and
comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor.
7(1–4), 72–93 (2005)

13. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data, pp.
135–146. ACM (2010)

14. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data.
The management revolution. Harvard Bus. Rev. 90(10), 61–67 (2012)

15. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of
vertex-centric frameworks for large-scale distributed graph processing (2015).
arXiv:1507.04405

16. Rahimian, F., Payberah, A.H., Girdzijauskas, S., Jelasity, M., Haridi, S.: Ja-be-ja:
a distributed algorithm for balanced graph partitioning. In: IEEE 7th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2013), pp. 51–60.
IEEE (2013)

17. Riondato, M., DeBrabant, J.A., Fonseca, R., Upfal, E.: PARMA: a parallel random-
ized algorithm for approximate association rules mining in mapreduce. In: Interna-
tional Conference on Information and Knowledge Management, CIKM 2012, pp.
85–94 (2012)

18. Salihoglu, S., Widom, J.: Optimizing graph algorithms on pregel-like systems.
PVLDB 7(7), 577–588 (2014)

19. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think
like a vertex” to “think like a graph”. PVLDB 7(3), 193–204 (2013)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

21. Voulgaris, S., Gavidia, D., Van Steen, M.: Cyclon: inexpensive membership man-
agement for unstructured p2p overlays. J. Netw. Syst. Manag. 13(2), 197–217
(2005)

http://snap.stanford.edu/snap
http://arxiv.org/abs/1507.04405

A Multi-layer Framework for Graph Processing 527

22. Voulgaris, S., van Steen, M.: VICINITY: a pinch of randomness brings out the
structure. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275, pp.
21–40. Springer, Heidelberg (2013)

23. Walshaw, C.: The graph partitioning archive (2002). http://staffweb.cms.gre.ac.
uk/∼c.walshaw/partition/

24. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient distributed
graph system on spark. In: First International Workshop on Graph Data Manage-
ment Experiences and Systems, p. 2. ACM (2013)

25. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, p. 2 (2012)

26. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, p. 10 (2010)

27. Zhang, C., Li, F., Jestes, J.: Efficient parallel kNN joins for large data in MapRe-
duce. In: 15th International Conference on Extending Database Technology, EDBT
2012, pp. 38–49 (2012)

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

	A Multi-layer Framework for Graph Processing via Overlay Composition
	1 Introduction
	2 The Telos framework
	2.1 Protocols

	3 Evaluation
	3.1 Torus Overlay
	3.2 Scalability
	3.3 Graph Partitioning

	4 Related Work
	5 Conclusions
	References

