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Abstract. Being able to generate large synthetic graphs resembling
those found in the real world, is of high importance for the design of new
graph algorithms and benchmarks. In this paper, we first compare sev-
eral probability models in terms of goodness-of-fit, when used to model
the degree distribution of real graphs. Second, after confirming that the
MOEZipf model is the one that gives better fits, we present a method to
generate MOEZipf distributions. The method is shown to work well in
practice when implemented in a scalable synthetic graph generator.

1 Introduction

The analysis of large real graphs has attracted the interest of the industry and
academia due to its multiple applications, and as a consequence, many technolo-
gies for their analysis have emerged. In order to fairly compare the performance
and features of such technologies, several benchmarking initiatives have kicked
off [2,4,6]. In general, these initiatives use synthetic graph generators in seek for
the flexibility not always found in real datasets.

Being able to generate credible graphs that mimic the characteristics of the
real ones is of high importance, because they directly impact the performance
of the systems under test. One of these characteristics is the degree distribution
of the nodes in the graph. In general, it is widely accepted that in real networks
the degree sequence follows a power-law, since the majority of the nodes have
a small degree while just few of them are connected to many neighbours, thus
having a very large degree [7].

A particular power law distribution with support the strictly positive integer
numbers is the Zipf distribution. The Zipf’s law shows a linear shape in the
log-log scale, but in practice this is not always the case in real networks, where
it is only observed for degree values large enough. For low degree nodes, the plot
usually shows concavity, and less often, convexity [3]. One generalization of the
Zipf’s law that solves this issue is the Marshall-Olkin extended Zipf distribu-
tion (MOEZipf), which uses the Marshall-Olkin transformation to add an extra
parameter that gives more flexibility to the family.
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In this paper, we first prove by means of an analysis of several real graphs, the
suitability of the MOEZipf model as a degree distribution. Second, we propose a
method to generate degree sequences following the MOEZipf distribution, which
is implemented in a scalable graph generator (The LDBC Data Generator [4]),
showing that it works well in practice.

The paper is structured as follows: In Sect. 2, we introduce the MOEZipf
probability distribution. In Sect. 3 we show that MOEZipf adjusts well the dis-
tributions of real graphs. In Sect. 4, we propose a method to generate random
samples from a MOEZipf distribution. In Sect. 5, we show the results obtained
with Datagen using the proposed approach, in Sect. 6, we conclude the paper.

2 The MOEZipf Model

A random variable (r.v.) X is said to follow a Zipf distribution with scale para-
meter α > 1 if, and only if, its probability mass function (pmf) is equal to:

P (X = x) =
x−α

ξ(α)
, for x = 1, 2, 3, · · · , (1)

where ξ(α) =
∑+∞

k=1 k−α is the Riemann zeta function. The Zipf distribution
is often suitable to fit data that correspond to frequencies of frequencies or to
ranked data. This type of data shows a widespread pattern in their measurements
with a very large probability at one and a very small probability at some very
large values. Taking logarithms at (1), one obtains that the Zipf distribution
shows a linear pattern in the log-log scale since

log(P (X = k)) = −α log(x) − log(ξ(α)).

This linearity is useful to check whether the data may be well fitted or not
by means of the Zipf distribution, by just plotting the empirical probabilities.
However, in practice usually this linearity is just observed in the tail of the
distribution, while a concavity is observed at the beginning. The MOEZipf dis-
tribution is proposed in [8], as an approximate model to adapt this behavior.

A r.v. X is said to follow a MOEZipf distribution with parameters α and β
if, and only if, its survival function (SF) is equal to:

P (X > x) = G(x;α, β) =
β F (X)

1 − β F (X)
=

β ξ(α, x + 1)
ξ(α) − β ξ(α + 1)

, (2)

for β > 0, α > 1 and β = 1 − β. Being F (x) the SF of the Zipf(α) distribution.
The pmf of the MOEZipf may be computed by means of

P (X = x) = G(x − 1;α, β) − G(x;α, β)

=
x−α β ξ(α)

[ξ(α) − βξ(α, x)][ξ(α) − βξ(α, x + 1)]
, x = 1, 2, 3, · · · , (3)
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Table 1. Main characteristics of the nine real networks analysed.

Network Nodes Edges GCC ACC AD Type

Amazon 262K 1.24M 0.2361 0.4198 0.0027 Directed

CA roads 1.97M 5.53M 0.0604 0.0464 0.1260 Undirected

DBLP 317K 105M 0.3064 0.6324 0.2665 Undirected

Livejournal 4M 34.68M 0.1253 0.2843 0.045 Undirected

NotreDame 326K 1.5M 0.0877 0.2346 −0.0617 Directed

Patents 3.78M 16.52M 0.0671 0.0757 0.1332 Directed

TX roads 1.38M 3.84M 0.0602 0.0470 0.1304 Undirected

Wikipedia 2.39M 5.02M 0.0022 0.0526 −0.0853 Directed

Youtube 1.14M 2.99M 0.0062 0.0808 −0.0369 Undirected

where ξ(α, x) =
∑+∞

k=x+1 k−α is the Hurwitz Zeta function with parameter α.
When β = 1, in (3) one obtains the pmf of the Zipf(α) distribution. An advantage
of the MOEZipf distribution is that it shows a convexity or concavity behaviour
at the beginning of the distribution depending on whether 0 < β < 1 or β > 1
respectively, while keeping the linearity in the tail.

3 Real Graphs Analysis

This paper is motivated after the analysis of the degree distribution of nine
real networks coming from diverse domains1, using eight different probabilis-
tic models: Geometric, Poisson, Zipf, Right-truncated Zipf, Altmann, MOEZipf,
Negative Binomial and Discrete Weibull. Table 1 shows the number of nodes,
number of edges, global clustering coefficient (GCC), average clustering coef-
ficient (ACC), assortativity degree (AD) and directionality of the networks
analysed. For each directed networks, both the in-degree (In) and out-degree
(Out) sequences were analysed, making a total of 13 degree sequences.

The Zipf, the Right-truncated Zipf and the MOEZipf probability distribu-
tions have been considered mainly because of two reasons. On one side, because
the Zipf distribution is assumed to be the node degree distribution in most sci-
entific papers, and its Right-truncated version is a way to improve the fit in the
tail of the distribution. On the other side, because we are interested in proving
the suitability of the Zipf generalization: the MOEZipf distribution.

The Poisson and the Negative Binomial distributions have been included
for being the first the classical distribution for counts when the events take
place randomly and with the same probability, and the second its usual bi-
parametric alternative used when the data show more dispersion than it was
initially expected. However, we have observed this is not our case, since fitting
the Negative Binomial oftenly results in numerical problems and when not, the
fits are not satisfactory.
1 Networks downloaded from http://snap.stanford.edu/datarepository.

http://snap.stanford.edu/datarepository
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The reason for including the Geometric and the Discrete Weibull distribu-
tions is clearly different. These distributions may be seen, respectively, as the
discrete versions of the Exponential and the Weibull, which are the continuous
distributions associated to time to an event r.v.. One advantage of the Geomet-
ric is its simplicity and that it does not require the truncation at one, because
its support are the strictly positive integer numbers. The Discrete Weibull is
useful when the lifetime is measured counting cycles, shocks or revolutions. In
our case, it has sense think about that an individual being active or alive while
he is able to create connections with the others. From this point of view, the
distribution comes naturally if one thinks that the lifetime is measured counting
the number of connections performed. Finally, the Altmann distribution, also
known as Zipf-Alekseev distribution or Zipf with an exponential cuttoff, is used
in quantitative linguistics and it is also a bi-parameter generalization of the Zipf.
In this case, it is assumed that the support is finite and the tail decreases quickly
since the probabilities are multiplied by e−xβ .

In order to fit the degree sequence for a given graph, the maximum likelihood
parameter estimations were calculated by means of the mle function included in
the R software [9]. It is known that maximum likelihood parameter estimations
are good, because they are unbiased and have minimum variance. The models
were compared using the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) goodness of fit measures [1], which are defined as:

AIC = −2l(θ̂, k) + 2M
N

N − M − 1

and

BIC = −2l(θ̂, k) + Mlog(N)

respectively, where l(θ̂, k) is the value of the log-likelihood function evaluated at
θ̂, the maximum likelihood estimation of θ, for a given degree sequence k. M is
the number of parameters of each probabilistic model (in our case it is equal to
one or two) and N is the number of nodes of the network.

Table 2 shows the ΔAIC and ΔBIC for each network and all the models.
These values were computed by means of the difference between the value in the
current model and the value in the best model. Therefore, for each network the
best model is the one that has a zero value in ΔAIC and ΔBIC.

Our experiments reveal that the analysed degree sequences can be explained
with just three out of the eight models considered, which are: the MOEZipf, the
Discrete Weibull and the Altmann models. The MOEZipf model is the best in
54 % of the cases, followed by the Discrete Weibull in 38 % of the cases and the
Altmann in 8 % of the cases.

Figure 1 shows four degree sequences associated to the networks Amazon (In),
DBLP, Patents (Out) and Youtube respectively; jointly with the fit of the best
four models in each case. In all the cases the plots are in log-log scale. The best fit
for the Amazon (In) is given by the MOEZipf model with parameter estimations
α̂ = 3.0295 and β̂ = 27.1284, the second best model in this case is the Discrete
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Fig. 1. Observed degree sequences in the Amazon (In), DBLP, Patents (Out) and
Youtube networks jointly with the four best models in each case.

Weibull with parameters p̂ = 0.7519 and β̂ = 0.9271. The model that gives the
best fit to the DBLP degree sequence is the Discrete Weibull with parameter
estimations p̂ = 0.2622 and β̂ = 0.3881, followed by the MOEZipf model with
parameters α̂ = 2.2767 and β̂ = 4.8613. For the Patents (Out) degree sequence,
the best model is the MOEZipf with parameters α̂ = 3.196 and β̂ = 119.264
and, in second place, the Negative Binomial model with parameters γ̂ = 1.4873
and p̂ = 0.8317. The best model for the Youtube network is the MOEZipf with
parameters α̂ = 2.089 and β̂ = 2.4101, and the second best model is the Discrete
Weibull with parameters p̂ = 0.0044 and β̂ = 0.1424. The information about how
well a model behaves with respect to the others can be found in Table 2.

4 Generating MOEZipf Degree Samples

The proposed method for generating MOEZipf degree sequences is based on
the well known Inverse Principle [5]. Given a sequence of uniformly distributed
random values between 0 and 1, we obtain a sequence of values of the target
distribution using its inverse cumulative probability function (cpf). Given that,
the cpf is equal to one minus the SF, and that from (2) the SF of the MOEZipf
is easily deduced from the SF of the Zipf, one can obtain the desired value by
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applying the inverse principle to the Zipf distribution after properly modifying
the generated uniform random value.

Algorithm 1 shows the pseudocode associated to this procedure. Given fixed
values for α and β, we first initialize variable x to be equal to the first value in
the support of the MOEZipf which is one. After generating a value u uniformly
from 0 and 1, it is transformed to value u′ as follows:

u′ =
uβ

1 + u(β − 1)

If 1 − 1
u ≤ β, the final x value is equal to the first integer value such that

u′ ≤ Fα(x), where Fα(x) is the cpf of the Zipf distribution. Otherwise, the final
x is equal to the first value satisfying u′ ≥ Fα(x).

Algorithm 1. MOEZipf Generator
1: procedure SAMPLE MOEZIPF(α, β)
2: x ← 1
3: u ← uniform random number [0, 1]
4: u′ ← uβ

1+u(β−1)

5: loop
6: zc ← Fα(x)
7: if β < 1 and u−1

u
>= β then

8: if u′ >= zc then
9: return x

10: else
11: if u′ <= zc then
12: return x
13: x ← x + 1

5 Scalable MOEZipf Generation with Datagen

Datagen is the synthetic graph generator used in the LDBC Social Network
Benchmark [4]. It is designed to generate social undirected networks with differ-
ent degree distributions, with correlated attributes and edges connecting people
with similar characteristics in an homophylic way. Datagen is implemented using
the Map-Reduce parallel programming paradigm, and therefore is able to gen-
erate large graphs by running on small commodity clusters.

We have extended Datagen with the method proposed in Sect. 4 to generate
MOEZipf based graphs scalably2. We have generated seven synthetic graphs with
a degree distributions similar to those of the seven real degree sequences analysed
in Sect. 3 where the MOEZipf distribution is the best fitting model: Amazon (In),

2 The implemented plugin can be found at Datagen’s source code repository https://
github.com/ldbc/ldbc snb datagen.

https://github.com/ldbc/ldbc_snb_datagen
https://github.com/ldbc/ldbc_snb_datagen
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Table 3. Parameters of the MOEZipf distribution estimated from the original networks
vs the ones estimated from the networks generated using Datagen; the generation time
of each network.

Networks Original network Synthetic network Generation time (s)

estimated parameters estimated parameters

α̂ β̂ α̃ β̃

Amazon (In) 3.0295 27.1284 3.0332 27.3464 991

Amazon (Out) 9.5281 6390058.5115 9.1074 3057506.2967 1451

NotreDame (In) 2.0174 1.0657 2.0259 1.0873 1598

NotreDame (Out) 2.4215 15.6546 2.4229 15.7044 1587

Patents (Out) 3.196 119.264 3.1959 119.2742 4600

Wikipedia (In) 2.5479 1.045 2.5457 1.0431 5505

Youtube 2.089 2.4101 2.0981 2.4534 2200

Amazon (Out), NotreDame (In), NotreDame (Out), Patents (Out), Wikipedia
(In) and Youtube. To generate the graphs we have used the same number of
nodes, and configured the implemented MOEZipf degree sequence generation
with the same parameters as those estimated from the original networks. Note
that Datagen only generates undirected graphs, but for the purpose of this paper,
we are only interested in being able to mimic the degree distributions and to
prove that these can be generated in a scalable way.

Table 3 shows, for each one of the networks the following information. On the
one hand, the parameters α̂ and β̂ estimated from the original networks, which
are used to generate the synthetic ones. On the other hand, the parameters α̃
and β̃ estimated from the resulting synthetic networks. We see that, for six out
of seven cases, the resulting estimated parameters from the synthetic networks
are very similar to those from the original graphs. Only for the Amazon (Out)
degree sequence, there is a remarkable difference in the value of the β parameter.
This is because the log-likelihood function, l(β, α; k), as a function of β tends to
an asymptote as β increases. More exactly:

l(β, α; k) � N log(β) + g(α; k),

being g(α; k) a function that does not involve the β parameter. Thus, there are
not significant differences between the values of the log-likelihood function for
two β values if both are large enough. Finally, in the last column of Table 3
we see the time taken to generate these datasets in our test machine cluster,
composed by four quad-core nodes with 32 GB of RAM each and 2 TB spinning
disks. In general, we see that the generation model is able to accurately generate
degree sequences with the desired characteristics, in a scalable way.

Figure 2 shows two examples of degree distributions of two synthetically gen-
erated graphs. Specifically, the ones generated to mimic the characteristics of
the Patents (Out) and Youtube degree sequences. We also plot the theoretical
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Fig. 2. Synthetically generated graphs with similar characteristics to the Patents (Out)
(N= 3774767, α̂ = 3.196 and β̂ = 119.264) and Youtube (N = 1134890, α̂ = 2.089
and β̂ = 2.4101) graphs respectively.

MOEZipf degree distribution with the parameter estimations (α̃, β̃). In both
cases, we see that Datagen is able to generate a graph with a degree sequence
with the same characteristics of the real ones accurately.

6 Conclusions and Future Work

We have analysed a set of degree distributions from real networks using several
probability models. The (AIC) and BIC have been used to compare the different
tested models. We have shown that the MOEZipf distribution is the one that
better explains the degree distributions observed in real networks. Based on this
result, we have presented a method to generate MOEZipf degree sequences, and
implemented it as an extension to the LDBC graph generator, namely Datagen.
Our experiments have shown that with the Datagen implementation, we can
generate graphs with real degree distributions in a scalable way.

In this work, we have focused on generating realistic degree distributions.
Future work will consist in developing techniques to reproduce other networks’
structural characteristics, such as the clustering coefficient or the degree of assor-
tativity. Moreover, currently Datagen only supports the generation of undirected
graphs. In the future we will work on extending Datagen to generate directed
graphs with different in-degree and out-degree distributions.
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LDBC project (ICT2011-8-317548). M. Pérez-Casany also thanks the Spanish Ministry
of Education and Science for grant MTM2013-43992-R and Generalitat de Catalunya
for grant 2014 SGR 890 (AGAUR). The authors thank Oracle Labs for the strategic
support to the Graphalytics project.



502 A. Duarte-López et al.
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