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Abstract Recognition of the threats to biodiversity and its importance to society has
led to calls for globally coordinated sampling of trends in marine ecosystems. As a
step to defining such efforts, we review current methods of collecting and managing
marine biodiversity data. A fundamental component of marine biodiversity is
knowing what, where, and when species are present. However, monitoring methods
are invariably biased in what taxa, ecological guilds, and body sizes they collect.
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In addition, the data need to be placed, and/or mapped, into an environmental
context. Thus a suite of methods will be needed to encompass representative com-
ponents of biodiversity in an ecosystem. Some sampling methods can damage
habitat and kill species, including unnecessary bycatch. Less destructive alternatives
are preferable, especially in conservation areas, such as photography, hydrophones,
tagging, acoustics, artificial substrata, light-traps, hook and line, and live-traps. Here
we highlight examples of operational international sampling programmes and data
management infrastructures, notably the Continuous Plankton Recorder, Reef Life
Survey, and detection of Harmful Algal Blooms and MarineGEO. Data management
infrastructures include the World Register of Marine Species for species nomen-
clature and attributes, the Ocean Biogeographic Information System for distribution
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data, Marine Regions for maps, and Global Marine Environmental Datasets for
global environmental data. Existing national sampling programmes, such as fishery
trawl surveys and intertidal surveys, may provide a global perspective if their data
can be integrated to provide useful information. Less utilised and emerging sampling
methods, such as artificial substrata, light-traps, microfossils and eDNA also hold
promise for sampling the less studied components of biodiversity. All of these
initiatives need to develop international standards and protocols, and long-term plans
for their governance and support.

Keywords Marine � Sampling � Methods � Biodiversity � Monitoring

6.1 Introduction

Current concerns about the Earth’s ecosystems and the loss of biodiversity drives
the need to measure spatial and temporal variation in biodiversity from local to
global scales (Costello 2001; Andréfouët et al. 2008a; Ash et al. 2009). In the
ocean, over-fishing and other threats to species’ populations reduce resources for
society, have altered ecosystems, and put many mammals, birds, reptiles, and fish
in danger of extinction (e.g., Costello and Baker 2011; Hiscock 2014; Costello
2015; Webb and Mindel 2015). Global and regional scale assessments need data
that are either collected by similar methods and procedures, or produce variables
that can be integrated for analyses (Pereira et al. 2013). For example the EU
Marine Strategy Framework Directive (MSFD) requires extensive measures of
biodiversity and ecosystem functioning to monitor the health of European marine
waters and to guide measures that ensure that they achieve a Good Environmental
Status by 2021 (Boero et al. 2015). The World Ocean Assessment will emphasise
the need for more standardised reporting of information (Inniss et al. 2016). To
that end, variables that are ‘essential’ for the monitoring of biodiversity and
understanding ecosystem change are being developed (Box 6.1). As yet, how to
measure these variables, and manage and analyse the data, has not been elabo-
rated. Here, we review methods used for field observations and sampling marine
biodiversity, provide examples of methods and operational global monitoring
programmes, and how data systems have emerged to assist in data publication
and analysis. It cannot be assumed that established or popular methods are the
most cost-effective and suitable for monitoring biodiversity. Thus we outline the
potential of less prominent methods as well as those considered more conven-
tional. This synthesis thus provides an introduction to how marine biodiversity
may be monitored and assessed into the future.
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Box 6.1. Essential Ocean Variables (EOVs)

Under the leadership of the Intergovernmental Oceanographic Commission
(IOC) of UNESCO, the Global Ocean Observing System (GOOS) has
proposed to develop an integrated framework for sustained ocean observing
based on Essential Ocean Variables (EOVs). An EOV, should have by
definition, a high impact in responding to scientific and societal issues and a
high feasibility of sustained observation. These will include biogeochemical
and biological variables (ecosystem EOVs), to help understand marine
ecosystems, in addition to the existing physical ocean variables. At the
same time GEO BON has been developing the Essential Biodiversity
Variables (Pereira et al. 2013). GOOS in collaboration with GEO BON, has
established the GOOS Panel on Biology and Ecosystems (GOOS BioEco),
which is responsible for the development and assessment of ecosystem
EOVs. This includes documentation, best practice, readiness, implementa-
tion strategies, coordination of activities, and fitness-of-purpose of data and
information streams resulting from observations to improve their recom-
mendations to policy-making. GOOS BioEco is also considering societal
needs and human pressures affecting marine biodiversity and ecosystems to
identify the EOVs. The first GOOS Biology technical expert workshop in
Townsville, Australia in November 2013, resulted in a preliminary list of 42
candidate ecosystem EOVs. From these, 10 were selected for high impact
and feasibility within four major areas identified as key for a healthy and
productive ocean: (1) Productivity, (2) Biodiversity, (3) Ecosystem
Services, and (4) Human activities and pressures. Some of the candidate
EOVs that meet these requirements were chlorophyll, harmful algal blooms
(HAB), zooplankton biomass and abundance, and the extent and live cover
of marine communities such as coral reefs, mangroves, seagrasses, and salt
marshes.

6.2 Sampling Methods

An impressive variety of methods have been used to sample marine species,
including observations, nets, hooks, traps, grabs, sediment collection, sound,
chemicals and electricity (Table 6.1) (e.g., Santhanam and Srinivasan 1994;
Kingsford and Battershill 1998; Tait and Dipper 1998; Elliott and Hemingway
2002; Eleftheriou 2013; Hiscock 2014). All methods are selective, at least for body
size by excluding smaller and/or larger organisms. Such bias should be explicitly
recognised in the design and interpretation of field data. Because of methodological
biases a comprehensive sampling of marine biodiversity across habitats, body sizes
and trophic levels would need to use a variety of complementary methods. Such a
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Table 6.1 General methods of sampling marine biodiversity and their biases

Methods Bias

Pelagic Nets: sieve, gill, trammel
(tangle), pelagic and
demersal trawl, fyke (hoop),
drop, push, dip, trap

Body size based on size of
net opening (gape), mesh
size, towing speed, and
dimensions of trap

Visual by observer on boat Larger megafauna at or
above water surface

Visual by underwater video
and scuba, aerial (aircraft)
surveys

Larger species that swim
close to observation point, or
at sea surface

Plankton pumps,
powerstation screens

Capture depends on body
size, agility, and flow rates

Hooks, long-lines Bait selective, and body size
related to hook size

Acoustic (echo-sound) Species level recognition
only for some larger fish
species with distinct
reflectance

Benthos Dredges, benthic (beam,
otter) trawls, sledges

Body size based on net
opening and mesh size

Baited traps and pots Only animals attracted to bait
and contained within mesh
size of trap

Artificial substrata (panels,
mesh)

Taxa sampled depend on
substratum used and time
period of deployment

– Epifauna Visual census and
inspections by scuba,
snorkel, video, submersible,
Remotely Operated Vehicle
(ROV), photographs

Larger taxa identified to
species, cover of hard
substrata, and tubes, tracks
and burrows observed on
sediments

– Sediment infauna Grabs, cores, suction
samples

Body size captured within
sample and sieve. Some
animals may escape capture
as they are too large or
mobile

Mobile macrofauna,
especially in complex
habitats, reefs (rock, coral),
kelp forests, seagrass

Visual census and
inspections and hand
collection by snorkel, scuba,
video, stereophotography

Larger species identifiable by
eye in field or on video and
still photograph images

Poisons and anaesthetics
(sometimes combined with
suction samplers)

Collection of affected
animals biased by collection
method (e.g. if by hand then
body size)

Light-traps Capture plankton and mobile
benthos that are attracted to
light. Body size of catch
depends on trap size

(continued)
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suite of methods can produce an inventory of species present that reflect the
environment, habitats, and ecology of an area.

A species inventory provides the evidence of what species are present and an esti-
mate of species richness. Knowing which species are present is essential to distinguish
those that are of socio-economic or ecological importance, endemic, threatened with
extinction, introduced, or considered pests (McGeoch et al. 2016). Indeed, species
richness is by far the most common measure of ‘diversity’ used in science and con-
servation management (Gotelli and Colwell 2001; Costello et al. 2004).

For microbes, species identification can be impractical and so ad hoc ‘metage-
nomic’ and ‘barcoding’ style guidance on molecular ‘Operational Taxonomic
Units’ (OTU) are used as indicators of diversity. However, OTU are not stan-
dardised between studies, and values vary due to different resolution of the genes
analysed for different taxa. For some taxa they may indicate genus level and others
population level differences. For bacteria, the species concept used for eukaryotes is
doubtfully applicable, and while they have high genetic diversity, the number of
formally named ‘species’ is relatively low (Costello et al. 2013a, b). Thus, while an
indicator of genetic diversity, OTU should not be equated with ‘species’.

Various methods and metrics have been used to characterise the relative abun-
dance of species, including numbers of individuals, areal cover, and/or biomass
within samples (Hiscock 2014). Assessments of measures of biodiversity thus need
to consider that every sampling method is biased, and that different methods are
required to sample different components of biodiversity. Thus quantitative sampling
is best focused on measuring dynamics of particular species populations rather than
measuring biodiversity across species. Instead, the relative abundance of species may
be compared on semi-quantitative (e.g., log 10) abundance scales (e.g., Davies et al.

Table 6.1 (continued)

Methods Bias

Emergence traps, sediment
traps

Select benthic animals that
move up or down in water
column

Other Hydrophone Species that produce
distinctive sounds and when
they do so

Gut contents, faeces Prey that can be identified
from samples of animal gut
contents or faeces

Marking Tags: plastic, dyes, chemical,
branding, tattooing, fin clips,
ultrasonic, satellite, loggers

Tag suitability depends on
animal body size and
anatomy

Intertidal Visual, hand, shovel, rake,
photography, electric current
(sediments)

Limited to animals
remaining on seashore when
tide is out, and by body size
if hand-collected, by visual
counts, or if sediments are
sieved
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2001; Haegeman et al. 2013; Hiscock 2014). The more abundant and/or conspicuous
species define communities and biotopes and indicate how an ecosystem functions in
terms of habitat, productivity, and food-webs. Changes in the identity of the domi-
nant species can indicate changes in the community present in space and time, and
thus changes to the ecosystem. However, often the ecosystem effects of species are
unrelated to their abundance or body size. For example, top-predators are typically
low in abundance and density but large in body size. Thus a range of species of
different guilds and body sizes should be sampled to monitor ecosystems.

In addition to the bias of how samples are taken, results will depend on when and
where sampling takes place. The design of field surveys thus needs to be clear which
habitats, body sizes and taxa it has focused on, and what has been excluded; i.e., how
it has ‘stratified’ sampling. Perhaps the most effective way to place the data into an
environmental context is to map the geographic distribution of environmental vari-
ables (e.g., depth, salinity, temperature, substratum, topography) and habitats
(Costello 1992; Costello and Emblow 2005; Costello et al. 2005, 2010a; Hiscock
2014). These environmental variables can be mapped through ‘remote sensing’ from
satellites, aircraft and ships (Andréfouët et al. 2008b, 2011) and can include: seabed
depth, topography, and roughness; surface water colour (an estimate of phyto-
plankton biomass and dominance) and temperature; depth-profiles of density
(salinity) and temperature; acoustic signatures of zooplankton and pelagic mega-
fauna; and the distribution and extent of intertidal and shallow-water habitats such as
coral reefs, kelp and seagrass beds, mangrove forests, and salt-marshes. As the
technology improves and cost reduces, it is likely that ‘remotely operated’ and
‘autonomous’ vehicles (ROV, AUV) will become more commonly used for under-
water and aerial surveillance. The potential of sound signatures in the marine envi-
ronment as indicators of biodiversity is also being researched (Harris et al. 2015).
Although sensors borne on satellites and aircraft may have limited ability to identify
species they provide an invaluable environmental context for biodiversity, and may
indicate global large-scale patterns in biodiversity (De Monte et al. 2013). They thus
complement in situ observations and enable mapping of habitats and biotopes (e.g.,
Neilson and Costello 1999; Connor et al. 2006; Leleu et al. 2012; Remy-Zephir et al.
2012; Hiscock 2014). Other methods may identify species from images, such as
video and still photography (Table 6.1). Techniques for unsupervised image pro-
cessing continue to improve and may lead to an increased use of automated image
systems for large and microscopic species. Crowd-sourcing is also increasingly
assisting the digitisation of large ecological image libraries (Edgar et al. 2016).

6.2.1 Bottom Trawl Surveys

In many countries bottom trawl surveys are used for monitoring commercially
important fish stocks. Although originally designed to provide fisheries independent
information forfish stock assessment andmanagement, they are now increasingly being
used to analyse trends in the abundance, distribution and diversity of both commercial
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and non-commercial species offish and epibenthos (e.g., Bianchi et al. 2000; Shackell
and Frank 2003; Daan et al. 2005; Perry et al. 2005; Atkinson et al. 2011).

Bottom trawls come in different designs suited for catching fish on different
types of seabed. Beam trawls use a horizontal metal beam to keep the mouth of the
trawl open, and target flatfish and other near-bottom species. They sometimes have
‘tickler chains’ attached to the front bottom part of the gear to scare shrimps or
flatfish up from the seabed and into the net. Otter trawls use otter boards (trawl
doors) attached to the trawl net by wires to keep the mouth of the net horizontally
open. Over fine grained sediments the otter boards generate clouds of suspended
material on each side of the trawl net which helps to herd the fish into the mouth of
the trawl. Often wings of netting are attached to both sides of the trawl mouth to
increase the herding effect further. Vertically the mouth of an otter trawl is held
open by floats and by a footrope to which weights, rollers or bobbins are attached.
These vary from small rubber discs used on sandy or muddy bottoms to large metal
balls that can roll over rocks or larger stones and prevent the footrope from
becoming snagged on rougher and harder grounds. The body of the trawl is
funnel-shaped and narrows from the mouth towards the cod end where the fish
accumulate during the tow. It is the mesh size of the cod end that determines the
size of the fish that are retained. In commercial trawl gears minimum mesh size
regulations are often used to reduce the catch of juvenile undersized fish. However,
in research surveys the mesh size in the cod end is usually small enough to ensure
that the smaller species and individuals are retained. Pelagic trawls target fish such
as anchovies, mackerels, and sardines in the water column.

The catch efficiency of a bottom trawl is defined as the proportion of the fish in
the area swept by the gear that is retained in the cod end. The area swept equals the
length of the tow multiplied by the width of the gear, where the latter often is
assumed to correspond either to the spread of the wings or to the distance between
the otter boards during fishing to account for the herding effect of the boards and
bridles. However, the catch efficiency is influenced by a multitude of factors
including the escape behaviour of the fish species, properties of the gear, and the
fishing operation (Benoít and Swain 2003; Fraser et al. 2007, 2008; Queirolo et al.
2012; Weinberg and Kotwicki 2008; Winger et al. 2010; Sistiaga et al. 2015). Fish
may escape by burrowing in the seabed, by swimming under the footrope, by
escaping over the head-rope of the gear, or by passing through the meshes in the
front part of the trawl. The size of the vertical and horizontal opening is often
monitored during the tow by sensors attached to the gear and has been found to
depend on the warp length and towing speed as well as the weight of the catch
accumulating in the cod end. During fishing, fish accumulate in the mouth of the
trawl where they try to keep pace with the gear. As individuals tire they fall back
towards the cod end. How fast a fish will get tired, and whether it can outswim the
gear is species and size dependent. The amount caught per area swept may also
depend on the time of day because this can influence how close to the seabed the
fish are found (Kotwicki et al. 2009). To ensure that catch rates can be compared
across years, much is therefore done to standardise the trawling operation, the gear
and the procedures for sampling and for analysing the catch (e.g., Miller 2013).
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In some parts of the world standardised bottom trawl surveys have now been
conducted for more than 50 years and some of the resulting data are publicly
available or available upon request. ICES provides online access to a database with
trawl survey data from the north eastern Atlantic (www.ices.dk/marine-data/data-
portals/Pages/DATRAS.aspx) and similar databases are available for other areas
such as the Eastern Bering Sea and Gulf of Alaska (www.afsc.noaa.gov/RACE/
groundfish/survey_data). Additional data can be downloaded from international
data portals such as OBIS (Table 6.2), but much data still reside in the custody of
national fisheries research institutions. These data constitute a so far underutilised
source of information on the distribution, abundance, and diversity of marine fishes
on the world’s continental shelves.

Table 6.2 Examples of marine biodiversity data management systems

Resource Objectives Content Output

World Register of
Marine Species
(WoRMS)
www.
marinespecies.org
Host: Flanders
Marine Institute

To provide an expert
validated and
comprehensive list
of names of all
marine organisms

Species names
including
information on
higher classification,
synonymy, images
and links to other
species information

Database of over
240,000 accepted
species names

Marine Regions
www.
marineregions.org
Host: Flanders
Marine Institute

To provide a
standard list of
marine
georeferenced place
names and areas

A data system of
geographic marine
areas from different
national and global
marine gazetteers
and databases

Spatial information
of 264 different
physical and
administrative
boundaries; over
30,000 unique
marine geographic
places

Ocean
Biogeographic
Information
System
www.iobis.org
Host:
Intergovernmental
Oceanographic
Commission
(IOC) of UNESCO

A global science
alliance that
facilitates free and
open access to data
and information on
marine biodiversity

Database of the
diversity,
distribution and
abundance of marine
life

Over 1900 datasets
that covers more
than 45 million
observations of
114,000 marine
species

Global Marine
Environment
Datasets (GMED)
http://gmed.
auckland.ac.nz
Host: University of
Auckland

To provide
standardised global
marine environment
datasets of climatic,
biological and
geophysical
environmental layers

Environmental
datasets featuring
present, past and
future environmental
conditions to a
common spatial
resolution

60 datasets of
climatic, biological
and geophysical
environmental layers
ready to use for
species distribution
modelling and data
visualisation
software
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6.2.2 Light Traps

Light traps are commonly used for collecting insects as a means for monitoring pest
species. The American Center for Disease Control has had a standardised light trap
for mosquito monitoring for over 50 years (Sudia and Chamberlain 1988). Moths,
beetles and other crop pests are also commonly surveyed this way (Szentkiralyi
2002). However, light traps have a shorter history of use in the aquatic environ-
ment. The earliest uses were in freshwater for capturing insects and they were soon
found to be excellent for collecting young fish (Hungerford et al. 1955) and zoo-
plankton (Meekan et al. 2001; Øresland 2007), but also collect many benthic
species that emerge from the benthos at night. They have been used extensively
around coral reefs where the structural complexity of the reef system makes other
methods susceptible to damage (Doherty 1987). There can be species, gender and
ontogenetic specific responses to light traps making them more useful for some
organisms than others. Species may vary in their abundance at different times of the
night and lunar cycle. A benefit of light-trapping is that the animals are not harmed
during collection, and have thus proved useful for sampling of museum specimens
and laboratory animals (Doherty 1987; Holmes and O’Connor 1988). However,
light trap catches may not work well in areas of high current or excessive turbidity.
The potential of light traps for monitoring mobile benthic and demersal organisms,
mostly crustaceans, has yet to be adequately explored. This ‘fish food’ component
of biodiversity forms an important trophic link in many ecosystems, and has been
overlooked in marine biodiversity monitoring.

6.2.3 Artificial Substrata

A problem in sampling the natural environment is that it is variable at every spatial
scale, and thus the abundance of species sampled varies because of micro-habitat
variation as well as changes in species abundance in space and over time.
Advantages of artificial substrata are that they provide a standard replicable
physical habitat and thus low variation between replicate samples. In addition their
use avoids damage to natural habitat, and they can be low cost, amenable to
experimental manipulation, easily deployed and retrieved, and rapidly processed
(reviewed in Costello and Thrush 1991). Because the date and duration of
deployment of artificial substrata is known their community can also be stan-
dardised for successional age. They can be hard panels, balls of plastic mesh,
sediment trays, and made of a variety of materials. They can also capture species
otherwise difficult to sample, such as mobile epifaunal macroinvertebrates that
nestle into plastic mesh. Species composition and community structure has been
found to be similar and comparable to natural substrata (Costello and Myers 1996).
Artificial substrata have been long used in freshwater environments as a standard
method of monitoring biodiversity, especially in large rivers and lakes where other
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methods may be difficult (APHA et al. 2007). They have had widespread use in
experiments in the marine environment, such as looking at colonisation, succession,
competition, and community stability on plastic mesh (e.g., Costello and Myers
1996) and flat panels (e.g., Atalah et al. 2007a, b; Wahl et al. 2011). Recently,
hundreds of Autonomous Reef Monitoring Structures (ARMS) have become
deployed on coral reefs and other habitats around the world (e.g., http://www.pifsc.
noaa.gov/cred/arms.php; Leray and Knowlton 2015). ARMS are a stack of hard
plastic plates that capture crevice living invertebrates otherwise difficult to collect
without damaging reefs. Artificial substrata merit wider use in marine biodiversity
monitoring considering their benefits of standardisation and lack of damage to
natural habitat.

6.2.4 Microfossils

Microfossils are microscopic sized organisms that have hard parts with high fos-
silisation potential (e.g., calcareous or siliceous shells), including foraminiferans,
ostracods, diatoms, radiolarians and coccolithophores, or are microscopic sized
hard parts of larger organisms, including ichthyoliths. Microfossils can be a proxy
for biodiversity patterns across a broader range of organisms, because they have
excellent fossil records, occupy a wide range of ecological niches, and are abundant
even in a small amount of sediment. Marine sediment cores available from almost
the entire ocean through national and international drilling projects (e.g.,
International Ocean Discovery Program; IODP) include abundant microfossils and
provide long-term continuous time-series sedimentary records at decadal, centen-
nial, millennial, and multi-millennial time scales covering the entire Cenozoic Era.
Thus microfossils in sediment cores are an archive that enables reconstruction of
long-term time-series beyond the temporal coverage of recent biological
monitoring (Yasuhara et al. 2015).

Sample procedures involve physical and chemical treatments of sediment sub-
samples to disaggregate consolidated sediment, clean up microfossils, concentrate
specimens and remove extraneous material, for example, by freeze drying,
hydrogen peroxide treatment, wet sieving, centrifugation, and acid treatment. The
resulting sample can be mounted on a glass slide (e.g., for diatoms, radiolarians and
coccolithophores) or manually picked from treated material onto a paper slide (e.g.,
for foraminiferans, ostracods and ichthyoliths) for counting under stereo and
compound microscopes respectively.

For example, North Atlantic deep-sea ostracod diversity has been found to track
global climate change for the last 500,000 years, being less during glacial and high
during interglacial periods (Yasuhara et al. 2009). Climatic control of deep-sea
ostracod diversity has also been shown for shorter, decadal-centennial time scales
(Yasuhara et al. 2008). Latitudinal species diversity gradients of deep-sea ostracods in
theNorthAtlantic Oceanwere distinct during interglacials (including present day) but
indistinct or collapsed during glacials (Yasuhara et al. 2009). These deep-sea diversity

6 Methods for the Study of Marine Biodiversity 139

http://www.pifsc.noaa.gov/cred/arms.php
http://www.pifsc.noaa.gov/cred/arms.php


patterns in space and time in North Atlantic microfossil records are explained by
temperature control of deep-sea biodiversity (Hunt et al. 2005; Yasuhara and Cronin
2008; Yasuhara et al. 2009, 2014). Further applications of microfossils as a model
system for biodiversity research are found in Yasuhara et al. (2015).

6.2.5 Molecular Observations of Microbial Communities

Genomic analysis of marine microbes has become common both at the local (marine
stations, localised cruises) and at the global scale. After the Global Ocean Sampling
expedition (Venter et al. 2004) proved that high-throughput molecular approaches
were able to reveal an unprecedented diversity of bacterial sequences, several other
programs have quantified the molecular diversity and biogeography of planktonic
communities. The Tara Oceans missions (http://oceans.taraexpeditions.org/en) have
sampled coastal and open oceans worldwide (Bork et al. 2015), including eddies,
upwellings, oxygen-minimum zones, coral reefs, regions of natural iron fertilisation,
and lately the Arctic and Mediterranean regions. These missions are uncovering
marine planktonic communities from viruses to protists, up to metazoan larvae. The
Malaspina project (http://scientific.expedicionmalaspina.es) complements these
observations with samples of the deep seas at the global scale, and ‘Ocean Sampling
Day’ with about 150 stations globally sampled on the same day (Kopf et al. 2015).
An increasing number of cruises include molecular high-throughput analyses of
genes, transcripts, and metabolites of planktonic organisms, together with envi-
ronmental variables such as physical and biochemical parameters (e.g., Atlantic
Meridional Transect http://www.amt-uk.org).

6.3 Case Studies

6.3.1 The Continuous Plankton Recorder (CPR)

The Continuous Plankton Reorder (CPR) survey is the longest sustained and
geographically most extensive marine biological survey in the world, covering
*1000 taxa over multi-decadal periods since 1931 (Edwards et al. 2010). It
samples phytoplankton and zooplankton in oceans and shelf seas using ships of
opportunity from *30 different shipping companies, at monthly intervals on *50
trans-ocean routes. In this way the survey autonomously collects biological and
physical data from ships covering *20,000 km of the ocean per month, ranging
from the Arctic to the Southern Ocean. The survey is operated by the Sir Alister
Hardy Foundation for Ocean Science (SAHFOS), an internationally funded charity
with a wide consortium of stakeholders. Since the first tow of a CPR more than
6 million nautical miles of sea have been sampled and over 100 million data entries
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have been recorded. Plankton are collected on a band of silk and subsequently
visually identified by experts. Additionally, over the last decade the CPRs have
been equipped with modern chemical and physical sensors as well as molecular
probes. The database and sample archive together provide a resource that can be
utilised in a wide range of environmental, ecological and fisheries related research,
e.g., molecular analyses of marine pathogens, modelling for forecasting and data for
incorporation in new approaches to ecosystem and fishery management.

In 2011 SAHFOS, along with 12 other research organisations using the CPR
from around the world formed a Global Alliance of CPR surveys (GACs) with the
aim of developing new surveys and a global database, and producing a global ocean
status report (Edwards et al. 2012). This global network of CPR surveys now
routinely monitors the North Sea, North Atlantic, Arctic, North Pacific and
Southern Ocean. New surveys are underway in Australian, New Zealand, Japanese
and South African waters with a Brazilian and an Indian Ocean survey under
development. These surveys provide coverage of large parts of the world’s oceans
but many gaps still exist particularly in the South Atlantic, Indian and Pacific
Oceans. This global network also brings together the expertise of approximately 60
plankton specialists, scientists and technicians from 14 laboratories around the
world. Working together, centralising the database and working in close partnership
with the maritime shipping industry, this global network of CPR surveys with its
low costs and new technologies makes the CPR an ideal tool for an expanded and
comprehensive marine biological sampling programme.

6.3.2 Tropical Coral Reefs

Monitoring of tropical shallow reefs is conducted with near-global coverage using
methods described by English et al. (1994). Considerable effort has been invested in
comparing the accuracy and agreement among different methods (e.g., Leujak and
Ormond 2007; Facon et al. 2016). The emerging consensus is to focus on the output
variables from monitoring, rather than the methods: e.g., proportional cover for
sessile taxa, abundance or density per unit area for mobile taxa and biomass,
particularly for fishes. This is consistent with emerging guidance on observation
and indicator systems (UNESCO 2012).

The principal framework for aggregating coral reef data to global levels has been
the Global Coral Reef Monitoring Network (GCRMN) of the International Coral
Reef Initiative (ICRI), which was initiated in 1995. The establishment of the
GCRMN coincided with the largest global impact to reefs ever recorded, the 1997–
98 El Niño event, giving strong impetus for global reporting for a decade. However
funding for this level of reporting has been difficult to sustain, forcing the GCRMN
to focus on regional level reporting, such as in the Caribbean (Jackson et al. 2014)
and currently underway in the Western Indian Ocean. The GCRMN regions closely
match those of the UNEP Regional Seas programmes, and inform countries
regarding fisheries and food security. The GCRMN provides guidance for three
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levels of monitoring effort: citizen volunteer-focused, ‘intermediate’ and ‘expert’
(Wilkinson and Hill 2004). The challenges across these levels include data relia-
bility and quality, replication and representation, and taxonomy, the latter exacer-
bated by the high diversity of coral reef taxa. The intermediate level of monitoring
is most frequently applied and is implemented through technical staff (e.g., marine
rangers), students and experienced volunteers, and focused on functional group or
genus-level identifications for principal benthic taxa (e.g., hard corals, algae) and
family or genus level identification for fish. The basic sampling unit recommended
by the GCRMN has been line transects or photoquadrats for benthic cover, 50 m
belt transects (2 or 5 m width) for fish and narrower belt transects or quadrats for
mobile invertebrates. The configuration of these samples varies greatly among
programmes. Expert-level monitoring has been the domain of professional
researchers, often with genus-level identification for corals and species-level
identification for fish. Due to the popularity of coral reefs for SCUBA diving,
sampling by volunteers has been feasible, with the most widespread methods being
those of Reef Check (Hodgson 1999), REEF (Francisco-Ramos and
Arias-González 2013), and the Reef Life Survey (see below). In volunteer pro-
grams, assessments are generally restricted to indicator species and more rapid
estimates of variables such as benthic cover, and lower levels of replication are
accepted than in intermediate and expert monitoring. Though variable in quality
and coverage, the resulting data can be invaluable in broad scale scientific
assessments of reef status (Bruno and Selig 2007).

The urgency for accurate and reliable monitoring of coral reefs, that can serve
both national (local) and international (global) needs is high, due to the poor
performance of coral reef targets in the mid-term assessment of Aichi Target per-
formance (GBO 2014). The GCRMN is developing with involvement from
GEO BON and GOOS to become a mature observation network (UNESCO 2012),
to better report on global targets (Aichi Target 10 on climate-sensitive ecosystems,
and 14 on Oceans), and to feed into management, such as through the IUCN Red
Lists of species and ecosystems. At the same time, extending citizen science con-
tributions, and establishing a more open-data philosophy for monitoring data to
maximise its accessibility, for example, through OBIS (Table 6.2), are emerging
priorities.

6.3.3 The Reef Life Survey (RLS)

The Reef Life Survey (RLS) was established in 2007 to test the concept that a
rigorous scientific approach to marine biodiversity monitoring could be developed
within a citizen science framework (Edgar and Stuart-Smith 2014). The primary
aim was to engage recreational divers to obtain scientific data from biodiversity
observations that spanned geographic, temporal and taxonomic scales too costly for
scientists to collect. It also aimed to extend other citizen science programs such as
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Reef Check and the REEF (see Sect. 6.3.2) that collected less detailed data (Edgar
et al. 2016). Following establishment of the charitable Reef Life Survey Foundation
(www.reeflifesurvey.com) to oversee field activities, appropriate data collection
methodology, training, data entry and management procedures were developed, and
different mechanisms for data collection were tested. Field survey methods were
based on those applied over two decades by University of Tasmania researchers in
Marine Protected Area (MPA) monitoring studies (Edgar and Barrett 1999; Barrett
et al. 2009).

Three coincident elements of biodiversity are documented along 50 m long
underwater transect lines. Divers record abundances and sizes of all fish, and
abundances of all large (>2.5 cm length) mobile invertebrates (echinoderms,
crustaceans and gastropods) and cryptic fishes. The area covered by sessile
invertebrates, macrophytes and abiotic habitat is quantified through digitisation
of photoquadrats (e.g., using Coral Point Count; Kohler and Gill 2006). Divers
are trained on a one-on-one basis, each novice diver following behind a trained
diver and duplicating transect blocks until the required level of expertise is
reached. A comparison of data collected by trained volunteers and experienced
scientists at the same sites showed that the variation attributable to diver
experience was not significant, and negligible (<1 %) relative to differences
between sites and regions (Edgar and Stuart-Smith 2009). The RLS program
possesses a degree of self-regulation, where the keenest volunteers tend to also
collect the best data, participate most frequently and persist longest (Edgar and
Stuart-Smith 2009). A network of over 100 active RLS divers has now been
established worldwide.

Application of RLS methods has allowed the first global analyses using stan-
dardised site-based procedures that are quantitative, species-level and cover mul-
tiple higher taxa. Data have been obtained for over 4500 species, 2800 sites,
600,000 species abundance records, 43 countries, and 83 marine ecoregions
including Antarctica (e.g., Stuart-Smith et al. 2013, 2015). Many sites have been
surveyed on multiple occasions, in some cases annually since 2007. These data add
enormous contextual value to local surveys, and provide sufficient replication to
disentangle many interactive and non-linear threats to marine biodiversity,
including impacts of climate change, fishing and invasive species. For example,
Edgar et al. (2014) included an order of magnitude more MPAs than any previously
attempted using standardised field data. They found no detectable differences
between fish communities present in most of the 87 MPAs investigated when
compared with comparable fished communities (i.e., most MPAs were ‘paper
parks’). However, some MPAs were extremely effective, with many large fishes
and high conservation success. The RLS data are expected to be increasingly useful
for (i) assessing ecosystem impacts of global threats to species at all levels of the
food web from primary producers to higher predators, (ii) quantifying population
trends for threatened species, and (iii) tracking international commitments associ-
ated with marine biodiversity in shallow reef ecosystems.
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6.3.4 Harmful Algal Blooms (HAB)

Proliferation of microalgae in marine or brackish waters can cause massive fish
kills, contaminate seafood with toxins, and alter ecosystems in ways that humans
perceive as harmful. These phenomena are referred to as harmful algal blooms
(HAB). Data on the distribution of toxic and harmful microalgae are collected
through national surveillance programmes aimed at protecting public health, wild
and cultured fish and shellfish, and bathing water quality. Sampling methods
include plankton net hauls, water samples and molecular tools to detect species or
genus-specific algal toxins in fish and shellfish. Benthic HAB species are collected
from sediment, corals, seaweed or standardised screens. The detection of HAB
species is challenging as many are difficult or impossible to identify even by using a
light microscope. The challenge of maintaining a consistent microalgal taxonomy is
addressed in the IOC Taxonomic Reference List of Toxic Plankton Algae within the
World Register of Marine Species (Moestrup et al. 2009). The Intergovernmental
Oceanographic Commission (IOC) of UNESCO has for two decades facilitated
research to improve observations of harmful algae, provided training opportunities
for their improved monitoring, as well as supported regional and global networks
for knowledge and data sharing. The provision of method manuals and guides is
central to observations of HAB species. The manual on HAB (Hallegraeff et al.
2003) is a base reference for methods and has been complemented by Babin et al.’s
(2008) monograph on real-time observation systems, Karlson et al.’s (2010)
intercomparison of quantative methods, and Reguera et al.’s (2011) sampling and
analysis manual.

Global data on HAB species occurrences and their impacts are stored in the
Harmful Algae Event Data Base (HAEDAT) in OBIS (Table 6.2). This interna-
tional compiling and sharing of HAB data was initiated in the 1980s and is now
accelerating and will provide the basis for a ‘Global HAB Status Report’ with the
aims of compiling an overview of HAB events and their societal impacts; providing
a worldwide appraisal of the occurrence of toxin-producing microalgae; and
assessing the status and probability of change in HAB frequencies, intensities, and
distribution resulting from environmental changes at the local and global scale.
Linkages will be established with the International Panel on Climate Change
(IPCC) reporting on the biological impacts of climate change. The Status report will
provide the scientific community as well as decision makers with a reference on
HAB occurrence and impacts on ecosystem services. IOC UNESCO project part-
ners include the International Atomic Energy Agency (IAEA), the International
Council for Exploration of the Sea (ICES), the North Pacific Marine Science
Organization (PICES) and the International Society for the Study of Harmful Algae
(ISSHA).
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6.4 Data Management

Field data may be mapped to geographic areas, seascapes, habitats and against
environmental parameters. Similar, globally applicable systems for the classifica-
tion of marine habitats have been developed in Europe (Connor et al. 2004; Costello
and Emblow 2005; Anon. 2014) and USA (Anon. 2012). The former leads to
species-level biotopes (i.e., habitat + community), while the latter does not go to
biotope level but does include seascape features (reviewed by Costello 2009).
These can be presented as hierarchical lists and two-dimensional matrices
(Fig. 6.1). The term habitat is highly context dependent and loosely used. Strictly
speaking habitats are the immediate physical environment repeatedly associated
with a species or distinct assemblage (or community) of species. The lowest level of
habitat classifications are thus characterised by particular species. In contrast,
related concepts of seascapes (landscapes, topographic features) and ecosystems
will contain a variety of habitats (Costello 2009). These can be mapped over larger
areas using remote sensing methods, whereas habitats usually need in situ sampling
to identify their characteristic species, although exceptions exist in locations with
biogenic habitat structure (e.g., seagrass beds, mangrove forests) (e.g., Andréfouët
et al. 2001).

Knowing which species are present at a place and time is fundamental to bio-
diversity studies. Usually species are classified taxonomically because this is
convenient and closely related species tend to have similar functional roles in
ecosystems. However, ecologists may also classify species by their ecological traits
(e.g., Wahl et al. 2013). Thus WoRMS (see Sect. 6.4.1) is developing a stan-
dardised approach to apply biological and ecological traits to marine species
(Costello et al. 2015a).

A necessary step in organizing marine biodiversity data in integrated information
systems is the development of appropriate thesauri and classification systems, as
well as implementing quality control and feedback mechanisms. When integrating
quantitative and qualitative natural history and distributional data, the use of both
authoritative taxonomic and geographical hierarchical schema is essential. Here we
introduce the leading taxonomic and geographic standards databases for the marine
environment (Table 6.2).

6.4.1 World Register of Marine Species (WoRMS)

WoRMS is an open-access online database that provides an authoritative and
comprehensive list of names of all marine organisms, including information on
higher classification, synonymy, images and links to other information (Costello
et al. 2013c). It currently contains over 240,000 accepted species names (Boxshall
et al. 2015). While highest priority goes to valid names, other names in use are
included so that this register is a guide to interpret taxonomic literature. Automated
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tools allow users to upload their species lists and match and classify their names
against WoRMS. WoRMS makes use of the Aphia infrastructure which is designed
to capture taxonomic and related data and information (Vandepitte et al. 2015a).
WoRMS was a development from the European Register of Marine Species
(ERMS) (Costello 2000; Costello et al. 2001), and thus its content is controlled by
an Editorial Board of taxonomic and thematic experts who elect a governing and
steering committee, and invite colleagues to assist them. A permanent host insti-
tution provides professional computational support for the database, including
monthly archiving. As of January 2016, there were 393 editors from 273 institu-
tions in 50 countries actively involved in the management and quality control of the
WoRMS content. Through this editorial community, communication and collabo-
ration within and beyond this community is facilitated (e.g., Appeltans et al. 2012),
which can lead to increased rates of species discoveries and synonym names, which
in turn can lead to a reduced rate of creating new synonyms and homonyms.
WoRMS uses Life Science Identifiers (LSIDs) as persistent, location-independent,
resource identifiers for each species name (Costello et al. 2013a). WoRMS forms
the taxonomic backbone for OBIS, meaning that each taxon name in OBIS is
matched against WoRMS to verify its validity and spelling (Vandepitte et al. 2011,
2015a, b). WoRMS is also a major contributor to the Catalogue of Life,
Encyclopedia of Life, and LifeWatch Marine Virtual Research Environment (http://
marine.lifewatch.eu). Species can be grouped with WoRMS to form Global,
Regional and Thematic Databases. For example, the World Register of Introduced
Marine Species (WRIMS) provides an entry point and experts to manage infor-
mation on alien species (Pagad et al. 2015).

6.4.2 Marine Regions

Marine Regions (www.marineregions.org) hierarchically organises over 30,000
geographic areas from national and global marine gazetteers and databases (Claus
et al. 2014). It contains spatial information of 264 different physical (e.g., sandbank,
seamount, island, bay) and administrative (e.g., Exclusive Economic Zones, Marine
Protected Area, Fisheries Zones or Biogeographic Regions) kinds of places. Both
marine (e.g., seamounts, canyons, guyots, fracture zones, banks, ridges, basins) and
coastal features (e.g., bays, fjords, cliffs, lagoons, beaches) are included. In order to
preserve the identity of the marine geographic objects from the database, and to
name and locate the geographic resources on the web, each geographic object is
allocated a Marine Region Identifier, or MRGID. This unique persistent resource
identifier is comparable to a LSID, being a unique identifier to locate the item on the
World Wide Web.

6 Methods for the Study of Marine Biodiversity 147

http://marine.lifewatch.eu
http://marine.lifewatch.eu
http://www.marineregions.org


6.4.3 Ocean Biogeographic Information System (OBIS)

OBIS is the world’s largest database on the distribution and abundance of marine
life. In 2009, IOC Member States recognised the importance of knowledge of the
ocean’s biodiversity to national and global environmental policies when they
adopted it from the Census of Marine Life (Costello and Vanden Berghe 2006;
Costello et al. 2007; O’Dor et al. 2012). OBIS operates through a network of
national, regional and thematic nodes, and a secretariat based at the IOC’s
International Oceanographic Data and Information Exchange (IODE) programme
office in Oostende, Belgium. This office provides training and technical assistance,
guides new data standards and technical developments, and encourages interna-
tional cooperation to foster the group benefits of the network.

OBIS is a global science alliance that facilitates free and open access to data and
information on marine biodiversity. It provides a single access point to over
45 million observations of 114,000 marine species, collected on 4.6 million sam-
pling events from 3.2 million sampling stations, integrated from over 1900 datasets
provided by nearly 500 institutions in 56 countries, It grows by about 3 million
records per year. Data are subject to a series of quality control steps, including for
taxonomic nomenclature and geography (Vandepitte et al. 2011, 2015a, b; IODE
Steering Group for OBIS 2013).

Communities associated with OBIS include OBIS-SEAMAP (Spatial Ecological
Analysis of Megavertebrate Populations) focusing on megafauna, and MICROBIS
(http://icomm.mbl.edu/microbis) on microbes. The latter collects molecular obser-
vations of marine microbial organisms at taxonomic ranks from phyla to genus,
together with their contextual physical and biochemical data measured in situ or
from remote sensing. It has developed tools for extracting diversity measures, as
well as other ecologically relevant statistics, from molecular datasets (Giongo et al.
2010; Buttigieg and Ramette, 2014). More comprehensive taxon based databases
include the pioneering FishBase (Froese and Pauly 2015).

So far, 1000 publications have cited OBIS and on average 10 more each month
(e.g., Basher et al. 2014a, b; Saeedi and Costello 2012; Costello et al. 2015a). OBIS
directly contributes to several international activities, such as the UN Convention
on Biological Diversity (for the identification of Ecologically or Biologically
Significant Areas), the UN Food and Agriculture Organization (for the identifica-
tion of Vulnerable Marine Ecosystems), the UN World Ocean Assessment, and the
Global Environment Fund Transboundary Water Assessment. The Global
Biodiversity Information Facility (GBIF) and OBIS use the same data standards and
data sharing protocol (i.e., GBIF’s Integrated Publishing Toolkit). GBIF contains all
OBIS and additional marine data (e.g., Costello et al. 2013d). Most data in OBIS
are available from the north-west and north-east Atlantic, South Africa and New
Zealand, and some other locations (Fig. 6.2). The potential of data published
through OBIS for time-series analysis was highlighted in a recent global scale
analysis (Dornelas et al. 2014).
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An important development that will aid time series analysis, ecological niche
modelling and climate change studies is currently underway as part of a two-year
IODE project called ‘Expanding OBIS with environmental data’
(OBIS-ENV-DATA), which started in March 2015. The project is working on a
solution to retain data in biological datasets that hold more than just species
occurrence data, such as providing environmental and ecological context and data.
The new approach will be based on the new Darwin Event Core and a modified
‘MeasurementorFact’ extension. The major change is that it will bring OBIS from a
purely species occurrence database to one that can handle hierarchical sampling
event structure with additional environmental and biometric measurements as well
as details on the nature of the observations, measurements, and data collection
methods, including equipment, data processing and sampling efforts.

Fig. 6.2 A global map of the number of sampling days (upper panel) and sampling records
(lower panel) in OBIS (downloaded October 2014) in 5-degree latitude longitude cells
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6.4.4 Time-Series Data Availability

At present there are 20 monitoring programmes that have targeted species for more
than five years that have been entered in OBIS. The focus of these efforts is on
economically valuable and charismatic species (e.g., Antarctic krill, American
lobster, marine mammals and seabirds). By contrast there are many more moni-
toring programmes targeting marine communities that have data for at least five
years; 216 community monitoring programmes have uploaded their data to OBIS.
When these programmes are combined, 16,616 stations have been monitored,
encompassing most coastlines of the world, with less data available in developing
countries or remote regions (Fig. 6.3a). The accumulation of time-series data has
been exponential (Fig. 6.3b), reflecting both increasing monitoring efforts and
global coordination. There may be an increasing willingness of scientists and
institutions to share their data, with programmes such as the European Groundfish
Survey showing up as being an important source of biodiversity data in the
mid-1990s on a global scale (Fig. 6.3b). Even so, there are relatively fewer new
stations that are being added to OBIS in comparison to the number of stations
where monitoring surveys have ceased (Fig. 6.3b), leading to a net loss of
time-series from OBIS in this decade. Explanations for this trend may be delays in
data deposition, and/or perhaps the scope of specific monitoring efforts is increasing
in extent and coordination.

6.4.5 Global Marine Environment Datasets (GMED)

GMED is a compilation of more than 60 publicly available climatic, biological and
geophysical environmental layers featuring present, past and future environmental
conditions (Basher et al. 2015). Marine biologists increasingly utilise geo-spatial
techniques with modelling algorithms to visualise and predict species biodiversity
at a global scale. Marine environmental datasets available for species distribution
modelling (SDM) have different spatial resolutions and are frequently provided in
assorted file formats. This makes data assembly one of the most time-consuming
parts of any study using multiple environmental layers for biogeography visuali-
sation or SDM applications. GMED covers the widest available range of envi-
ronmental layers from in situ measured, remote-sensed, and modelled datasets for a
broad range of quantitative environmental variables from the surface to the deepest
part of the ocean. It has a uniform spatial extent, high-resolution land mask (to
eliminate land areas in the marine regions), and high spatial resolution
(5 arc-minute, ca. 9.2 km near equator). The free online availability of GMED
enables rapid map overlay of species of interest (e.g., endangered or invasive)
against different environmental conditions of the past, present and the future, and
expedites mapping distribution ranges of species using popular SDM algorithms
(e.g., Basher et al. 2014a, 2015; Basher and Costello 2016).
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6.5 Data Analysis

Although marine biodiversity data analysis requires its own taxonomic, geographic
and environmental information context, such as provided by WoRMS,
Marine-Regions, OBIS, and GMED, the methods of data analysis are similar to
biodiversity in other environments. The data are categorical (i.e., species, habitats,
biotopes), numerical (e.g., species abundance, cover, biomass), and cartographic.
Thus metrics of ‘biodiversity’ include species richness and abundance,

Fig. 6.3 a Map of station locations where monitoring surveys have been conducted for at least
five years presently held in OBIS. b The left axis illustrates the number of stations where
time-series data has been collected versus the year of the first survey (black histogram). Overall
there has been an increase in monitoring. However, since the start of this century there has been a
relative decrease in the number of stations being added to OBIS, evidenced by (right axis) the
proportional difference in the number of new stations being added to OBIS versus those reaching
completion. The blue line indicates where more monitoring stations were gained than lost from
OBIS in a given year, while the red line indicates a loss
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phylogenetic structure (e.g., taxonomic distinctness; Warwick and Clarke 1998),
indicator species, habitat and/or biotope richness in an area (Costello 2001). Data
may be presented on maps, graphs, tables and as matrices (e.g., Figs. 6.1 and 6.2).
Numerous software tools are available for this analysis, including PRIMER-E
(www.primer-e.com), PAST (http://folk.uio.no/ohammer/past), MODESTR (www.
ipez.es/ModestR), SAGA (System for Automated Geoscientific Analyses; www.
saga-gis.org) and DIVA-GIS (www.diva-gis.org). The open-source software R has
the benefit that the analytical process is documented and can be published to aid
reproducibility of the analyses.

The massive size of modern datasets, such as in OBIS and GMED, can lead to a
new set of difficulties in analysis and interpretation. These difficulties include
processing times that can exceed the capabilities of extant computers, propagation
of undetected errors, unfamiliarity with analytical assumptions (e.g., spatial auto-
correlation), and difficulties in visualisation (Edgar et al. 2016). Fortunately,
big-data techniques applied in other fields, such as high-performance and parallel
computing, are helping to solve many of these problems. In addition packages to
overcome significant challenges in compiling large datasets and maintaining these
data through time are being improved. For example, the R package ‘taxize’
(Chamberlain and Szocs 2013), which relies on accessing freely available and
accurate information on species taxonomy, including from WoRMS. This empha-
sises the benefits of scientists and institutes publishing monitoring data in order to
advance our understanding of biodiversity change.

6.6 Discussion

Global marine biological databases are well-established for quality assurance of
species nomenclature and associated information (WoRMS) and distribution data
(OBIS) (Costello and Wieczorek 2014; Costello et al. 2015b). The coverage and
quality of global marine environmental layers improves each year through a
combination of remotely sensed, in situ, and modelling data. These layers and maps
of marine regions are also freely available online at GMED and marineregions.org.
Species trait information is being added to WoRMS, and more sample information
can be added to OBIS so users can select datasets suitable for their purposes. The
mapping of available data in OBIS shows how more sampling has been conducted
in northern hemisphere and coastal environments compared to open-ocean,
deep-sea and developing countries (Fig. 6.3a). However, because neither biodi-
versity nor human impacts are homogenously distributed, neither should it be
expected that global sampling programmes will be. Sampling of particular guilds of
biodiversity should thus be stratified to represent its spatial variation.

A major obstacle to engaging more scientists and citizens in recording marine
biodiversity is the availability of guides to the identification of species. Generally,
these are only widely available for vertebrates (Costello et al. 2006, 2015b). To
identify invertebrates often requires numerous papers to be obtained, sometimes in
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different languages. The most useful publications are reviews of the taxonomy of
particular taxa in a region that include images, drawings and keys that synthesise
information on many species (Costello et al. 2013a, b, 2014a, b). The best
long-term solution would be an online, pictorial, guide to all marine species
accessible to people in several languages and scripts (Costello et al. 2015b).

All methods have their biases and this needs to be recognised in data analysis
rather than assume a conventional method is representative of all biodiversity. In
fact, it may be that pooling different sampling processes to gain insights into
different aspects of biodiversity will create the most comprehensive understanding
of how biodiversity is changing in the ocean. Methods must be selected that are
‘best fit for the purpose’ and limitations imposed by costs and environmental
conditions should be considered in the interpretation of the samples obtained.
Standardised methods have the advantage of apparent comparability between study
locations and over time. However, this assumes the behaviour of animals is the
same between species, and even within a species between locations and over time.
This is not necessarily the case. Being ectothermal, fish appetite and activity is
strongly temperature dependent (e.g., Darwall et al. 1993; Costello et al. 1995).
Thus seasonal changes in the catch of fish and other mobile species may not reflect
fish abundance or changing distribution, but rather their activity. Animal behaviour
also needs to be considered. For example, fish are wary of people in places they are
fished, especially spear-fished. However, in marine reserves they lose this fear and
can be approached closely (Costello 2014). Where mammals, birds, fish and other
animals may be fed, they become attracted to people. This mirrors the behaviour of
animals on land. Thus not only do the physical features of sampling methods need
to be considered in terms of bias, so do the behavioural responses of animals.

More recently developed methods, such as using photography, hydrophones,
and tagging, avoid killing the species of interest. Artificial substrata, light-traps,
hook and line, and traps can avoid killing unwanted by-catch species. However,
most netting and trawling methods result in by-catch, and seabed dredging and
trawling also damage habitat. It seems likely that scientific sampling will come
under increasing ethical pressure to minimise habitat damage, by-catch and stress to
species, especially in nature conservation areas and where species are threatened.
Thus new in situ observation methods such as still and video image capture, sea-
floor observatories, and sensors, are likely to become more important because they
cause less disturbance of biodiversity.

In addition to the CPR, RLS and GEOHAB programmes reviewed here, new
networking initiatives, marine biodiversity observation networks (mBON) in the
USA (Muller-Karger et al. 2014), marine station networks and related organisations
(Costello et al. 2015c), and groups of scientists interested in the biological and
ecological effects of climate change, may establish globally coordinated marine
biodiversity monitoring programmes. In addition, several international ocean
observing systems, initially focused on the collection of physical and chemical
ocean data, are now including biological data as well. These are comprised of the
Australian led Integrated Marine Observing Systems (IMOS; www.imos.org.au)
and the Southern Ocean Observing System (SOOS; www.soos.au), and NOAA’s
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Integrated Ocean Observing System (IOOS; www.ioos.noaa.gov). Some interna-
tional efforts have a regional focus. For example, the Circumpolar Biodiversity
Monitoring Program (CBMP), under the auspices of the Arctic Council, has an
Arctic Marine Biodiversity Monitoring Plan (www.caff.is/marine).

Dornelas et al. (2014) compiled the first global time-series data base for analysis
of trends in marine biodiversity. As described earlier, biodiversity data are available
for many taxa and regions of the world and the challenge remains to access,
compile and curate these data. A major obstacle is therefore not only the difficulty
in maintaining funding for monitoring or data synthesis efforts, but fostering
motivation for institutes and scientists to publish their data and overcoming com-
munication and cultural differences. Building collaborative networks may be one
means to begin to surmount these challenges to collate data across scientists,
institutions, and data repositories. While efforts to collate the data that has been
collected by the global monitoring community is certainly the best hope for gen-
erating historical knowledge, purpose-built global biodiversity platforms are fun-
damental for ensuring the capacity to track biodiversity change into the future. For
example, MarineGEO (Duffy 2014) is establishing observatories where multiple
components of biodiversity, including benthic and pelagic communities and food
webs, will be monitored using globally standardised methods and experimentation,
including artificial substrata (e.g., ARMS). Associated initiatives focus on global
studies on seagrass (http://zenscience.org/about-zen; Reynolds et al. 2014) and kelp
(www.kelpecosystems.org) habitats. Standard methods for these habitats have been
published (e.g., Edgar et al. 2001; Davies et al. 2001). Such projects may utilise the
Zooniverse platform for citizen science crowd sourcing (www.zooniverse.org).

Global sampling of surface water marine microbes is also underway utilising
genomic methods, including synchronised sampling of hundreds of stations on
‘Ocean Sampling Day’ (www.microb3.eu/osd) (e.g., Davies et al. 2012a, b; Kopf
et al. 2015). These and related research into molecular indicators may fill gaps that
complement more conventional metrics of biodiversity (Leray and Knowlton 2015).
Although there are issues to be resolved in the interpretation of DNA found in the
environment (eDNA), including contamination, accuracy of matching results to
species, and uncertainty about live versus dead material, it may prove invaluable in
detecting rare and/or microscopic species that are otherwise hard to sample
(Thomsen and Willerslev 2015).

There are two established and several emerging globally coordinated marine
biodiversity monitoring programmes, covering surface plankton (CPR), mobile
rocky and coral reef fauna (RLS), seagrass and kelp habitats, and pelagic microbes.
There are similar sampling methods used internationally for other guilds of species;
including mammals, whale sharks and birds; small fish and crustaceans in fishery
trawls; macro-invertebrate infauna of coastal sediments; and sessile and sedentary
biota on rocky seashores. For example, programmes such as the ICES North Sea
Benthos Survey (e.g., Duineveld et al. 1991; Basford et al. 1993) and NaGISA
(Benedetti-Cecchi et al. 2010; Cruz-Motta et al. 2010; Konar et al. 2010; Pohle et al.
2011; Miloslavich et al. 2013) could be continued and expanded internationally.
NaGISA was one of several projects within the decade-long Census of Marine Life,
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the largest global collaboration in marine biology covering coastal to deep-sea, and
polar to tropical environments, and which established OBIS (O’Dor et al. 2012).
Thus opportunities exist to design globally standardised programmes for these
ecological guilds that would be comparable with historic data. For example, the IOC–
UNESCO endorsed IndiSeas (www.indiseas.org) has begun to provide indicators of
biodiversity (including ecosystem health) related to fisheries and environment.

Gaps in time-series may be partly filled by using microfossils from sediment
cores and specimen collections in museums, and also by revisiting places sampled in
the past without continuous time-series. In addition, video cameras (baited and
unbaited) are widely used for recording scavenging megafauna from coastal to
deep-sea habitats (e.g., Costello et al. 2005). Gaps in these programmes include the
species rich epi-benthic crustaceans and molluscs which together comprise one
quarter of all marine species (Appeltans et al. 2012). However, the use of artificial
substrata such as ARMS and light-traps may be able to fill this gap. Additional guilds
that could be considered for monitoring include sediment meiofauna and parasites.

A common concern in launching global initiatives is both the start-up and
long-term funding (Costello et al. 2014c). It is notable that the CPR, RLS, WoRMS
and FishBase established their own legal organisations to ‘own’ their initiatives,
even though they are largely funded by government and hosted by particular
institutes. This community ownership may address issues of financial liability of
individuals and their institutions, ownership of intellectual property, and percep-
tions of who benefits from the research. The establishment of global programmes
must consider these and other issues so as to maximise the likelihood of support
from individual scientists, host institutions and governments in the long term
(Costello et al. 2014c).
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