Chapter 10
Biodiversity Modelling as Part
of an Observation System

Simon Ferrier, Walter Jetz and Jorn Scharlemann

Abstract Modelling provides an effective means of integrating the complementary
strengths of biodiversity data derived from in situ observation versus remote
sensing. The use of modelling in biodiversity change observation, or monitoring, is
just one of a number of roles that modelling can play in biodiversity assessment.
These roles place different levels of emphasis on explanatory versus predictive
modelling, and on modelling across space alone, versus across both space and time,
either past-to-present or present-to-future. One of the most challenging, yet vitally
important, applications of modelling to biodiversity monitoring involves mapping
change in the distribution and retention of terrestrial biodiversity. Unlike many
structural and functional attributes of ecosystems, most biological entities at the
species and genetic levels of biodiversity cannot be readily detected through remote
sensing. Estimating change in these levels of biodiversity across large spatial
extents is therefore benefiting from advances in both species-level and
community-level approaches to model-based integration of in situ biological
observations and remotely sensed environmental data.
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10.1 Introduction

Data on changes in the state of biodiversity on our planet come mostly from two
broad sources: (1) in situ observation of organisms, or attributes of these organisms,
obtained directly through application of various on-ground or in-water biological
survey techniques, or through collection of museum specimens; and (2) remote
sensing of biophysical characteristics of the planet’s surface detected by various
satellite-borne or airborne sensors. These two sources of data have complementary
strengths and weaknesses (Ferrier 2011). In situ observation provides direct
information on a rich array of relevant biological entities and attributes, but the
spatial coverage of such surveys is often very sparse—i.e., sampled locations are
typically separated by expanses of unsurveyed land or ocean. Remote sensing, on
the other hand, provides complete spatial coverage, but has limited capability to
reliably detect or measure many of the biological entities or attributes of interest in
biodiversity monitoring. These complementarities have, over recent decades,
stimulated extensive efforts to develop change-observation methodologies that
better integrate the respective strengths of in situ observation and remote sensing
(Turner 2014).

While approaches to achieving this integration are many and varied, we here
make an initial distinction between two broad strategies, based largely on the extent
to which the biodiversity variable of interest is detectable, and therefore measurable,
through remote sensing. Some types of variables are much easier to measure using
remote sensing than others. For example, variables relating to ecosystem-level
structural properties or functional processes—e.g., percent tree cover, canopy height,
biomass, gross primary productivity (Smith et al. 2014)—tend to be more amenable
to remote measurement than variables relating to species-level or genetic-level
composition (Skidmore et al. 2015). Where variables, or suitable proxies, can be
estimated through reasonably direct analysis or modelling of raw data from remote
sensing, integration with in situ data focuses mainly on calibration and validation—
i.e., using ground-based observations of the same variable as that measured remotely
to calibrate (or train) the interpretation of remote data, and to test the accuracy of
mapping (Baccini et al. 2007). However, in situ/remote sensing integration becomes
considerably more challenging if the biological entity or attribute of interest cannot
be detected readily through remote sensing—as is the case for most elements of
biodiversity at the species and genetic levels.

Imagine, for example, setting out to map change in the distribution of a small
forest-dwelling bird species. Unlike a variable such as percent tree cover, the
presence of this species cannot be estimated directly from remote sensing. This
situation demands an approach to integration that focuses less on linking in situ and
remotely-sensed estimates of the same variable, and more on modelling the rela-
tionship between a variable of interest, measurable only through in situ observation,
and one or more remotely mapped variables thought to be potential drivers of this
variable. In this case modelling might, for example, be used to predict (or infer)
change in the bird’s distribution as a function of the observed relationship between
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in situ data on this species and remote mapping of climate and land-cover change.
In reality the measurability of variables through remote sensing forms a continuous
spectrum, requiring a gradation of approaches to in situ/remote sensing integration.
At one end of this spectrum in situ data are used purely to calibrate and validate
estimates of a variable derived directly from remote sensing. At the other end of the
spectrum, estimation of a variable of interest is made possible only by integrating
in situ and remotely-sensed data through modelling, because the variable is not
directly measurable through remote sensing. In this latter situation in situ data are
used to calibrate and validate a model predicting the variable of interest, rather than
for calibrating and validating observations of the variable itself.

Several other chapters in this book discuss applications of modelling in different
fields of biodiversity monitoring—e.g. for tracking change in freshwater biodi-
versity in Chap. 7, in terrestrial species in Chap. 4, in genetic diversity in Chap. 5,
and in ecosystem services in Chap. 3; and for adding value to remote sensing of
change in Chap. 8. This chapter complements these other treatments by exploring
in greater depth: (1) how the use of modelling in biodiversity monitoring relates to,
and should therefore link with, the broader set of roles that modelling plays in
biodiversity assessment (Sect. 10.2); and (2) the importance of matching employed
modelling techniques to the particular needs of different applications in biodiversity
monitoring, using as a case study the challenge of mapping change in biodiversity
composition (Sect. 10.3).

10.2 Broad Roles of Modelling in Biodiversity Assessment

The use of modelling in biodiversity change observation, or monitoring, is just one
of a number of roles that modelling can play in biodiversity assessment. To make
better sense of this diversity of roles it is useful to first define more precisely what is
actually meant by ‘modelling’ in a biodiversity context. In simple terms, a model is
a set of mathematical equations (e.g., y = a + bx), or logical rules (e.g., if X > ¢
then y = 1), that link a biodiversity variable of interest (the ‘y’ in these examples;
referred to variously as the ‘dependent’, ‘response’ or ‘outcome’ variable) to one or
more other variables (e.g., environmental drivers) thought to be of importance in
determining, or influencing, this response (referred to variously as ‘independent’,
‘predictor’, or ‘explanatory’ variables). When publications or reports on biodiver-
sity talk about ‘modelling’ they can be referring to either one, or sometimes both, of
two quite different activities. The first of these is what we will call here ‘explanatory
modelling’ (Shmueli 2010). This activity is essentially a form of data analysis, and
involves using available data (observations) both for the biodiversity response
variable of interest, and for the relevant predictor variables, to generate or fit a
model that assesses, and describes, the relationship between these two sets of
variables. In other words, known information on predictor and response variables is
used to derive a model that did not exist prior to this activity. The second activity,
which we here call ‘predictive modelling’ (Shmueli 2010), instead presumes that a
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model describing the relationship of interest is already known, as are observed or
estimated values of the relevant predictor variables, and therefore combines these to
predict previously unknown values of the biodiversity response variable. The model
used to make such predictions can be either an ‘inductive model’ derived through
data analysis, in which case the activities of data analysis and prediction are inte-
grally linked, or a ‘deductive model’ built directly from existing expert knowledge
of the relationship between response and predictor variables (Corsi et al. 2000;
Overmars et al. 2007; Tuanmu and Jetz 2014).

10.2.1 Modelling Across Space Alone

Both explanatory and predictive modelling can be conducted either across geo-
graphical space, or across time, or across both space and time. The various roles
played by modelling in biodiversity assessment involve different combinations of
these possibilities (Figs. 10.1 and 10.2). The most basic roles are those in which
modelling is conducted across space alone, at a single point in time (usually the
present). Explanatory modelling of correlations, or associations, between a biodi-
versity response variable observed at a sample of geographical locations, and a set
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Fig. 10.1 Major roles of modelling in biodiversity assessment: explanatory versus predictive
modelling across space versus time (past-to-present and present-to-future), for biodiversity
response variables relating to different levels and dimensions of biological organisation, and
different spatial scales
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Fig. 10.2 Major modes of biodiversity modelling, distinguishing between explanatory and
predictive modelling, and between modelling across space alone and modelling across space and
time (either past-to-present or present-to-future). The shaded portion highlights those modes of
most relevance to biodiversity change observation and monitoring

of predictor variables measured, or estimated, at these same locations, can help to
shed light on the relative importance of different drivers in determining spatial
patterns in biodiversity, and on the form (shape) of these relationships. The fitting
of correlative species distribution models (SDMs) relating observations of presence,
presence-absence, or abundance of a given species to multiple environmental
variables (e.g., climate, terrain, soil, land-use variables) is probably the best known,
and most widely applied, manifestation of such data analysis (Elith and Leathwick
2009). Other examples include statistical analyses of community-level, or
ecosystem-level, attributes (e.g., species richness, functional diversity) measured at
field sites distributed across different classes of land use or management (de Baan
et al. 2013; Newbold et al. 2015).

Explanatory modelling of drivers affecting the spatial distribution of biodiversity
may be all that is required for some applications—e.g., to inform development of
government policy to reduce the detrimental impact of a particular form of land use
or management. However if the environmental variables used in model fitting are
also mapped across an entire region of interest (e.g., as grids in a GIS) then a model
derived through data analysis can, in turn, provide the foundation for prediction
across geographical space (Miller et al. 2004). In the case of an SDM, this involves
combining the fitted model with environmental values for each grid-cell in the
region to predict occurrence within that cell, thereby producing a complete map of
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the predicted distribution of the species of interest. Predictive modelling of biodi-
versity response variables across geographical space can also be undertaken using
models developed through means other than correlative data analysis. For example,
the distribution of a species of interest might be predicted using a simple deductive
model relating the presence or abundance of that species to mapped vegetation (or
land-cover) types and/or classes of land use or management, based on expert
knowledge (Stoms et al. 1992; Pearce et al. 2001; Jetz et al. 2012). Spatial pre-
diction, whether achieved through inductive or deductive modelling, can make a
vital contribution to planning and management applications requiring complete
geographical mapping of biodiversity values (Guisan et al. 2013)—e.g., for the
prioritisation and selection of new protected areas (Ferrier et al. 2002).

10.2.2 Modelling Across Space and Time, Present to Future

Other applications of modelling to policy development, planning and management
require explanatory and/or predictive modelling to be performed not only across
space, but also across time. The use of modelling to predict potential changes in
biodiversity into the future, often referred to as ‘forecasts’ or ‘projections’ (Coreau
et al. 2009), as a function of ongoing impacts of environmental drivers (e.g., climate
and land-use change), has gained particular prominence in recent years (Pereira
et al. 2010; Cook et al. 2014). Such modelling poses special challenges, as there is
usually considerable uncertainty associated with the future trajectories of relevant
environmental drivers, which themselves will be affected by socio-economic events
and decisions that are yet to occur, and are therefore highly unpredictable. These
uncertainties are often addressed through the use of scenarios—i.e., multiple
plausible trajectories for environmental drivers, that account for the reality that not
just one, but many, futures are possible (van Vuuren et al. 2012). Model-based
biodiversity projections under plausible scenarios of change in key drivers can
contribute significantly to policy agenda setting, by helping to characterise and
communicate the potential magnitude of ongoing change in biodiversity, and
therefore the need for action. By extending scenarios to further consider the effects
of alternative policy or management interventions, such projections can also play an
important role in decision support—i.e., helping policy-makers, planners and
managers to choose between possible actions for addressing the problem at hand,
by modelling the difference that each of these alternatives is expected to make to
projected outcomes for biodiversity (Cook et al. 2014).

As for predictive modelling across geographical space, projections of biodi-
versity change into the future can be based on either inductive or deductive mod-
elling (Pereira et al. 2010). When inductive models are employed for future
projection, these are most often derived from correlative data analysis (i.e.,
explanatory modelling) of relationships between biodiversity and environmental
drivers observed across space alone, rather than across time. Using such models to
project changes across time involves space-for-time substitution. This assumes that
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the correlation observed across space between a given biological response variable,
and one or more environmental variables (e.g., between the presence of a species,
and climate and land use), will also hold across time, and can therefore be used to
predict future changes in this response variable as a function of changing envi-
ronmental conditions. While there is often little choice but to rely on space-for-time
substitution for projecting future change in biodiversity, questions are increasingly
being raised and examined around the robustness of this approach (Bonthoux et al.
2013; Araujo and Peterson 2012; Blois et al. 2013).

10.2.3 Modelling Across Space and Time, Past to Present

Modelling change in biodiversity across time is not limited to future projection, but
is also crucially important for observing and analysing change in biodiversity that
has already occurred (past to present). Modelling plays two broad roles in biodi-
versity change observation and monitoring, aligned directly with the distinction
between explanatory modelling and predictive modelling introduced above. Where
changes both in a biodiversity response of interest, and in relevant environmental
drivers, are observed over both space and time, explanatory modelling of
driver-response correlations can be taken to a level of rigour beyond that of
modelling based on observations from across space alone (Kery et al. 2013). In
addition to direct provision of stronger policy-relevant evidence for the impact of
drivers on biodiversity, explanatory modelling based on temporal observations is
also vital to achieving more effective integration of biodiversity monitoring (past to
present) and projection (present to future). Inductive models derived through
analysis of observed changes in biodiversity and environmental drivers over time
are likely to provide a stronger foundation for projecting future change than pro-
jections based purely on space-for-time substitution (Santika et al. 2014). This is
because models fitted to temporal data have potential to better distinguish actual
drivers of change from environmental variables simply exhibiting spatial autocor-
relation with these drivers, and to better account for the effects of dynamic pro-
cesses that may be difficult to detect and describe based on spatial data alone (e.g.,
the phenotypic plasticity of species in the face of environmental change). Even
more importantly, using explanatory modelling to analyse future observations
generated by ongoing biological and environmental monitoring initiatives offers a
powerful means of testing projections made over the same time period, thereby
informing adaptive refinement of models underpinning policy and decision-making
into the future (Ferrier 2012; Rapacciuolo et al. 2014).

The second major role that modelling plays in relation to biodiversity change
observation and monitoring is predictive, rather than explanatory, in nature. Rather
than projecting potential changes in biodiversity into the future (as described in
Sect. 10.2.2), model-based prediction is used here to help fill spatial and temporal
gaps in the coverage of direct observations of biodiversity change past-to-present.
As noted earlier, many biological entities or attributes of interest from a biodiversity
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monitoring perspective can be detected only through in situ observation. Locations
at which changes in these variables are measured directly therefore tend to be
distributed very sparsely, and often unevenly, across the planet’s surface. In con-
trast, changes in environmental drivers—e.g. climate, land use—are often more
amenable to detection through remote sensing, and therefore potentially mappable
across large geographical extents. For applications in policy, planning or man-
agement that require complete geographical coverage of information on biodiver-
sity change, predictive modelling can play a valuable role in translating mapped
changes in key drivers, generated through remote sensing, into expected changes in
biodiversity (Lung et al. 2012; Soberon and Peterson 2009). The models under-
pinning such translation can, again, be either deductive or inductive, with the latter
derived from explanatory modelling of biological and environmental data dis-
tributed either across space alone (and therefore constituting another form of
space-for-time substitution), or across both space and time.

The remainder of this chapter explores, in greater depth, this last role of mod-
elling in biodiversity monitoring—i.e., the use of predictive modelling to help map
past-to-present changes in the distribution of biodiversity across large spatial
extents.

10.3 A Key Modelling Challenge: Mapping Change
in the Distribution and Retention of Terrestrial
Biodiversity

Unlike many structural and functional attributes at the ecosystem level, most bio-
logical entities at the species and genetic levels of biodiversity cannot be readily
detected through remote sensing. Notable exceptions include the emerging use of
very high spatial resolution imagery to identify individual organisms of certain
large-bodied, and conspicuous, animal species (e.g., penguins; Fretwell et al. 2012),
and the use of hyperspectral sensors to detect variation in plant species composition
in the top layer of vegetation communities (Leutner et al. 2012). These developments
offer considerable potential for direct derivation of spatially-complete mapping of
temporal change from remote sensing, for at least a subset of biological entities.
However this still leaves a very large proportion of our planet’s biological diversity
that is effectively invisible to satellite-borne remote sensing, both at the species level
and, even more so, at the genetic level. In situ monitoring of change in these
components of diversity at selected locations may provide all the information that is
needed for some applications—e.g., for monitoring the performance of local-scale
management actions (Lindenmayer et al. 2012). Estimating change across large
spatial extents—e.g., across a whole ecoregion, country or continent, or across the
entire planet—poses a much greater challenge for in situ monitoring, particularly if
these changes need to be mapped at relatively fine spatial resolution across the entire
extent of interest (Ferrier 2011; Jetz et al. 2012; Pereira and Cooper 2006). We here
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explore how various modelling approaches can be used to help address this chal-
lenge, by integrating the respective strengths of data generated through in situ and
remote sensing observation techniques.

Our focus is mostly on the terrestrial realm, although many of the modelling
approaches discussed below are also applicable in freshwater and marine systems.
We first consider ‘species-level approaches’ that model and map changes in the
distribution of individual species, and then move on to examine ‘community-level
approaches’ that focus instead on modelling and mapping changes in the distri-
bution and retention of biological diversity within whole communities, without
providing explicit information on the individual species comprising this diversity.

10.3.1 Species-Level Approaches

Interest in techniques for modelling, and thereby mapping, distributions of indi-
vidual species as a function of remotely mapped environmental variables has grown
rapidly over the past 30 years. Particularly strong attention has been directed
towards correlative species distribution modelling (SDM) which uses statistical
model-fitting, or machine learning, to derive explanatory models linking in situ
observations of species occurrence to environmental predictors (Elith and
Leathwick 2009). This largely inductive approach has been complemented, to a
lesser extent, by deductive modelling of distributions based on expert knowledge of
the environmental or habitat requirements of species (Jetz et al. 2012), or by more
mechanistic modelling based on independently acquired evidence of ecophysio-
logical limits or understanding of other relevant ecological factors and processes
shaping species distributions (Kearney et al. 2010).

While the scientific literature on species distribution modelling is now very
extensive (Guisan et al. 2013; Ahmed et al. 2015), a large proportion of these
studies have focused on using such modelling to predictively map distributions
across space alone, or to project potential changes in distribution into the future
under alternative global-change scenarios. The use of this modelling paradigm in
biodiversity monitoring—i.e., to help map past-to-present changes in species dis-
tributions—is surprisingly rare relative to these other applications. A number of
options are nevertheless available for making effective use of species distribution
modelling in monitoring (Fig. 10.3). To simplify the explanation of these options
we will here focus on just two of the main drivers of ongoing changes in biological
distributions—i.e., habitat loss or degradation (linked to changes in land cover and
use) and climate change—both of which are amenable to spatially-complete change
detection and mapping through remote sensing. If remotely-sensed variables
relating to habitat loss or degradation are included as predictors in explanatory
models fitted inductively to species occurrences observed across space alone, then
such models can be used to predictively map distributional changes as a function of
observed change in these variables, through simple space-for-time substitution
(Lung et al. 2012). Alternatively, deductive modelling based on expert knowledge
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observations for mapping change in the distribution and retention of terrestrial biodiversity

of the association between a given species and classes of land cover, or broad
habitat type, can be used to predict changes in the distribution of that species as a
function of remote mapping of these classes over time (Jetz et al. 2007, 2012).
Considerable scope also exists to combine inductive and deductive modelling
approaches in this context—e.g., by using inductive species distribution modelling,
and available occurrence records, to map the ‘natural’ or ‘original’ distribution of a
species as a function of mapped abiotic environmental variables (climate, terrain,
soils etc.), and then using remote sensing and simple deduction to map changes
over time in the portions of this distribution lost through habitat transformation
(Barrows et al. 2008; Rios-Munoz and Navarro-Siguenza 2009).

Using species distribution modelling to predictively map changes in the distri-
bution of species in response to remotely observed changes in climate is rather more
challenging than for changes in land use or cover. There is potential to again
employ space-for-time substitution for this purpose, by using explanatory models
describing relationships between species occurrence and climate across space to
predict changes in distribution across time as a function of observed changes in
climate, mapped either directly from remote sensing, or through model-based
integration of remotely-sensed and in situ climate observations. Many unanswered
questions remain, however, regarding the transferability of climatic associations of
species between space and time (Araujo and Peterson 2012). The impact of a given
change in climate over time—e.g., a 0.5 °C increase in mean annual temperature—
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on the occurrence of a given species at a particular location may be substantially
less (or in some cases more) than that observed over space, due to complicating
factors such as time lags in response, capacity for phenotypic plasticity, genetic
adaptation, and biological interactions.

These difficulties point to the desirability of, wherever possible, fitting
explanatory models relating species’ occurrence to climate (and, for that matter, to
land use or cover or abiotic variables such as soil type) using observations gathered
across both time and space, rather than across space alone. Rapidly growing interest
is now being directed towards extending standard techniques for species distribu-
tion modelling to more effectively consider the temporal dimension of observations
(Kharouba et al. 2009; Porzig et al. 2014)—e.g., through the use of dynamic
occupancy modelling (Kery et al. 2013; Tingley and Beissinger 2009). In an ideal
world the fitting of explanatory models to biological and environmental observa-
tions obtained over time at a sample of locations, and the use of these fitted models
to predictively map changes in biological distributions across an entire region of
interest, would occur in parallel (as depicted in Fig. 10.3).

The process described so far is focused on predicting past-to-present change in
the occurrence of a given species at a given location (e.g., grid cell), and thereby
mapping change across all locations within a region of interest. For some appli-
cations this raw spatio-temporal information may need to be subjected to further
aggregation or synthesis to address questions regarding, for example, changes in the
overall state of a species, or of a whole group of species, within a given region. The
most straightforward approach to deriving such aggregate measures is through
simple summation, or averaging, of the predicted occurrence of a species across all
locations (grid cells) in the region and, in turn, across all species in the group of
interest. However it is worth noting in passing that other options exist for incor-
porating additional factors into this process of aggregation and synthesis—e.g., the
use of metapopulation modelling to consider the effects of spatial configuration of
predicted occurrence on the overall persistence of a species (Drielsma and Ferrier
2009), or the incorporation of information on phylogenetic relationships or func-
tional traits into aggregate measures of the state of biodiversity across multiple
species (Fenker et al. 2014).

10.3.2 Community-Level Approaches

In the species-level approaches discussed above, modelling is used to predictively
map changes in the distribution of individual species. We now turn our attention to
so-called ‘community-level approaches’ to modelling, and thereby mapping, chan-
ges in the distribution and retention of biodiversity within whole communities,
without providing explicit information on the individual (named) species comprising
this diversity. These approaches have particular utility in situations where the
number of species in a biological group of interest is so high, and/or the average
amount of information available for each of these species is so low, that species-level
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approaches start to lose tractability—e.g., for arthropods or plants in tropical forests.
To appreciate the role that such approaches can play in mapping biodiversity change,
let us start with a relatively basic challenge—i.e., estimating the loss (or, conversely,
retention) of biological diversity at a single location (grid cell) as a function of
remotely-sensed habitat loss or degradation. If remote sensing is used to classify the
natural habitat within each grid cell in a region as being either intact or removed
(Hansen et al. 2013), then simple deduction may be all that is required to predict the
impact of this state on local biodiversity within that cell—i.e., it can be assumed that
most of the species that were dependent on this habitat will no longer occur at this
particular location. Alternatively, remote sensing can be used to classify locations
into multiple classes of land use or habitat condition/intactness (Martinez and
Mollicone 2012). These classes are expected to have varying levels of impact on
local biodiversity. Prediction of these impacts should ideally be based on explana-
tory modelling of biological data gathered from the different classes, either across
space alone (Souza et al. 2015) or, preferably, across both space and time (Casner
et al. 2014). A particularly noteworthy example of this application of explanatory
modelling is the PREDICTS initiative, which has undertaken an extensive
meta-analysis of land-use impacts on local biodiversity (change in species richness)
based on data for 27,000 species at over 11,000 sites globally (Newbold et al. 2015).

Linking explanatory models such as this to remotely-sensed land-use change
opens up considerable potential to predictively map past-to-present change in local
biodiversity across all grid cells in a region, or even across the entire planet. Change
in local biodiversity is, however, not the only aspect of change that needs to be
considered by community-level approaches to modelling biodiversity change. The
total diversity—e.g., of species—occurring on our planet is a function not just of
the number of species occurring at individual locations (alpha diversity), but also of
differences in the composition of species between these locations (beta diversity)
(McGill et al. 2015). To properly interpret the impacts of habitat loss (and, in turn,
climate change) on retention of overall biodiversity it is therefore highly desirable
to factor beta diversity into any model-based interpretation of remotely-sensed
environmental change. Two broad strategies are available for achieving this, one
using discrete classes to represent spatial pattern in beta diversity, and the other
accounting for beta diversity through modelling of continuous patterns of spatial
turnover in species composition (Ferrier 2011).

10.3.2.1 Discrete Community-Level Approaches

Many different types of discrete classification of communities can be employed in
this context (Ferrier et al. 2009). The only real constraint is that the relevant classes
are mapped across the entire region of interest, and that these classes provide a
reasonable representation of major spatial patterns expected in the distribution of
biodiversity in the absence of habitat loss or degradation. The last part of this
constraint is particularly important. If the effects of habitat degradation are reflected
in the classification itself (e.g., an area of rainforest cleared for domestic grazing is
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treated as a grassland rather than a forest) then it ceases to provide a logical basis
for incorporating consideration of beta diversity into the interpretation of
remotely-sensed environmental change. Mapped ecoregions may serve this purpose
well at coarser spatial scales (Giam et al. 2011), as may mapping of the ‘natural’
extent (prior to anthropogenic alteration) of vegetation communities at finer scales
(Keith et al. 2009).

With recent advances in the availability and resolution of abiotic environmental
layers globally (for climate, terrain, soils etc.) another option growing in popularity
is to derive environmental classes by integrating these layers—either by generating
all unique combinations of expert-defined categories for each environmental vari-
able (Ferrier and Watson 1997; Sayre et al. 2014), or through some form of
automated numerical classification (Mackey et al. 2008). If sufficient biological data
are available—i.e., in situ records for multiple species, well distributed across the
region of interest—then various community-level modelling techniques can also be
used to automatically derive and map environmental classes that best fit observed
biological patterns (Ferrier and Guisan 2006).

Assuming that a mapped classification has been generated using one of the
above approaches, this can be combined with remote mapping of habitat loss or
degradation to estimate change in the retention of biodiversity. Where remote
sensing yields a binary habitat versus no-habitat measure for each grid cell, then the
changing state of a given class (e.g., an ecoregion) can be most simply expressed as
the proportion of cells in that class with intact habitat. If remote sensing instead
yields multiple levels of habitat condition/intactness—e.g., land-use classes trans-
lated into proportional losses of local species richness using results from the
PREDICTS meta-analysis (described above)—then weighted averaging of these
levels across all cells in a class can be used to derive an effective proportion of
habitat remaining in that class (Scholes and Biggs 2005; Pereira and Daily 2006). In
some cases this effective proportion is further adjusted to account for the effects of
the spatial configuration of habitat—e.g., a cell with a given condition value located
within a small isolated habitat fragment is assigned less weight than a cell of the
same value located within a large well-connected area of habitat (Drielsma et al.
2014; Ferrier and Drielsma 2010).

Estimation of the proportion, or effective proportion, of habitat remaining in a
class can be further used to predict the proportion of species, originally occurring
within that class, that are expected to persist if this proportion of habitat is retained
over the longer term. Such prediction is most commonly undertaken using some
form of species-area relationship (SAR) (Ferrier 2002; Pereira and Daily 2006).
SAR-based approaches typically assume that all classes are equally rich in species,
and treat each mapped class (e.g., an ecoregion) as if it is a closed system—i.e., it is
assumed that the species occurring within this class do not also occur in any of the
other classes. The overall proportion of species predicted to be retained within an
entire region of interest is therefore calculated as a simple average of the predicted
proportions of species retained when the SAR is applied separately to each of the
classes within the region (Faith et al. 2008; Proenca and Pereira 2013). Where
estimates are available of the relative species richness of classes, and of the level of
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overlap in species composition between classes (e.g., the proportion of species
occurring in ecoregion m that also occur in ecoregion n) then techniques exist for
incorporating this information directly into SAR-based prediction of the overall
proportion of species retained in a region as a function of remotely-sensed pro-
portions, or effective proportions, of habitat retained in each class (Turak et al.
2011; Leathwick et al. 2010; Faith et al. 2008).

10.3.2.2 Continuous Community-Level Approaches

In the discrete community-level approaches described above, each location (e.g.,
grid cell) in the region of interest is viewed as belonging to a discrete class of
locations that are assumed to be equally similar to one another, and equally different
from locations in other classes, in the species they support. Real-world patterns of
spatial change, or turnover, in species composition are, however, often more com-
plex than can be effectively represented by a discrete classification with hard
boundaries between mapped classes. Continuous community-level approaches
attempt to address this reality by treating the composition of species occurring at
each individual location as being unique, and the proportional overlap, or conversely
distinctiveness, in composition between this location and any other given location
within the region of interest as varying in a continuous manner (Ferrier et al. 2009).

One approach to applying this continuous community-level perspective to pre-
dictive mapping of change in biodiversity, as a function of remotely-sensed changes
in habitat and/or climate, is through the use of generalised dissimilarity modelling
(GDM) (Ferrier et al. 2007). GDM employs in situ occurrence records for all
species in a given biological group (e.g., all plants, reptiles, or land snails) to fit a
non-linear statistical model relating the dissimilarity in species composition
observed between two locations to environmental differences based on
remotely-mapped predictors (climate, terrain, soil etc.). Models fitted with GDM
effectively weight and scale these environmental variables, thereby transforming
multidimensional environmental space in such a way that distances within this
transformed space match observed compositional dissimilarities as closely as
possible. Using fitted GDM models to interpret remotely-sensed change in the
distribution and condition of habitat can be achieved in various ways, but one of the
most straightforward solutions is an extension of the SAR-based approach descri-
bed above for the discrete community-level situation. In this extended approach the
proportion, or effective proportion, of habitat remaining is estimated separately for
each individual grid-cell within a region. This is calculated as a weighted average of
habitat condition in all cells environmentally similar to the cell of interest, with each
cell weighted by the level of similarity predicted by the fitted GDM. SAR-based
estimates of the proportion of species retained relative to each cell can then be
aggregated into an overall estimate of the proportion of species retained within the
region as a whole (or within any required subset of this) factoring in
GDM-predicted compositional dissimilarities between these cells (Ferrier et al.
2004; Allnutt et al. 2008).
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Because continuous community-level approaches, such as GDM, incorporate
abiotic environmental variables directly into the modelling of beta-diversity pat-
terns, this opens up potential to further predict changes in the distribution and
retention of biodiversity as a function of remotely-observed changes in climate.
This can be achieved by invoking space-for-time substitution in a similar manner to
that described earlier for species distribution modelling (Fitzpatrick et al. 2011;
Prober et al. 2012). However it should be noted that employing space-for-time
substitution in community-level approaches is also affected by many of the same
complicating factors identified for species-level applications—e.g., time lags in
response, capacity for phenotypic plasticity, genetic adaptation, and biological
interactions (Blois et al. 2013). This again points to the desirability of fitting
explanatory models relating patterns of biological distribution (in this case, turnover
in species composition) to climate and habitat using observations gathered across
both time and space, rather than across space alone. As for species distribution
modelling, interest is now growing in extending existing community-level mod-
elling approaches to more effectively consider the temporal dimension of biological
observations.

10.4 Conclusion

As outlined in this chapter, modelling can play a crucial role in biodiversity
monitoring by enabling more effective integration of in situ biological data with
remotely-observed changes in key environmental drivers. This integration can
involve both explanatory modelling—i.e., assessing and describing the effect of
drivers on biodiversity through analysis of relationships between observed changes
in biological and environmental data; and predictive modelling—i.e., using mod-
elled relationships to predictively map change in biodiversity across whole regions
as a function of remotely-sensed environmental change.

The most significant challenge now facing applications of modelling to biodi-
versity monitoring is to reduce reliance on models fitted to in situ biological
observations gathered across space alone by making more extensive and effective
use of observations from across both space and time. Recent escalation of interest
in, and uptake of, citizen science initiatives (see Chap. 9) for collecting large
quantities of spatially- and temporally-explicit biological observations offers con-
siderable potential in this regard. In many cases incorporating data generated by
such initiatives into biodiversity modelling will require extension of existing
modelling techniques, or development of whole new techniques (Bird et al. 2014;
Isaac et al. 2014; van Strien et al. 2013). These advances are likely to significantly
strengthen links between explanatory and predictive modelling within the context
of biodiversity monitoring. They are also likely to help strengthen links with
applications of modelling to the projection of future biodiversity outcomes, by
providing a more rigorous foundation both for fitting models employed in such
projections, and for ongoing testing of the accuracy of these projections.
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