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Abstract. An obstacle representation of a graph G is a set of points in
the plane representing the vertices of G, together with a set of polygonal
obstacles such that two vertices of G are connected by an edge in G if
and only if the line segment between the corresponding points avoids all
the obstacles. The obstacle number obs(G) of G is the minimum number
of obstacles in an obstacle representation of G.

We provide the first non-trivial general upper bound on the obsta-
cle number of graphs by showing that every n-vertex graph G satisfies
obs(G) ≤ 2n logn. This refutes a conjecture of Mukkamala, Pach, and
Pálvölgyi. For bipartite n-vertex graphs, we improve this bound to n−1.
Both bounds apply even when the obstacles are required to be convex. We
also prove a lower bound 2Ω(hn) on the number of n-vertex graphs with
obstacle number at most h for h < n and an asymptotically matching
lower bound Ω(n4/3M2/3) for the complexity of a collection of M ≥ Ω(n)
faces in an arrangement of n2 line segments with 2n endpoints.

Keywords: Obstacle number · Geometric drawing · Obstacle represen-
tation · Arrangement of line segments

1 Introduction

In a geometric drawing of a graph G, the vertices of G are represented by dis-
tinct points in the plane and each edge e of G is represented by the line segment
between the pair of points that represent the vertices of e. As usual, we iden-
tify the vertices and their images, as well as the edges and the line segments
representing them.

Let P be a finite set of points in the plane in general position, that is, there
are no three collinear points in P . The complete geometric graph KP is the
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geometric drawing of the complete graph K|P | with vertices represented by the
points of P .

An obstacle is a polygon in the plane. An obstacle representation of a graph
G is a geometric drawing D of G together with a set O of obstacles such that
two vertices of G are connected by an edge e if and only if the line segment
representing e in D is disjoint from all obstacles in O. The obstacle number
obs(G) of G is the minimum number of obstacles in an obstacle representation
of G. The convex obstacle number obsc(G) of a graph G is the minimum number
of obstacles in an obstacle representation of G in which all the obstacles are
required to be convex. Clearly, we have obs(G) ≤ obsc(G) for every graph G.

In this paper, we provide the first nontrivial general upper bound on the
obstacle number of graphs (Theorem2). We also show a lower bound for the
number of graphs with small obstacle number (Theorem 3) and a matching
lower bound for the complexity of a collection of faces in an arrangement of line
segments that share endpoints (Theorem 4). All proofs of our results are based
on so-called ε-dilated bipartite drawings of Km,n, which we introduce in Sect. 2.

In the following, we make no serious effort to optimize the constants. All
logarithms in this paper are base 2.

1.1 Bounding the Obstacle Number

The obstacle number of a graph was introduced by Alpert, Koch, and Laison [1]
who showed, among several other results, that for every positive integer h there
is a graph G with obs(G) ≥ h. Using extremal graph theoretic tools, Pach and
Sarıöz [11] proved that the number of labeled n-vertex graphs with obstacle
number at most h is at most 2o(n2) for every fixed integer h. This implies that
there are bipartite graphs with arbitrarily large obstacle number.

Mukkamala, Pach, and Sarıöz [10] established more precise bounds by show-
ing that the number of labeled n-vertex graphs with obstacle number at most h is
at most 2O(hn log2 n) for every fixed positive integer h. It follows that, for every n,
there is a graph G on n vertices with obs(G) ≥ Ω(n/ log2 n). Later, Mukkamala,
Pach, and Pálvölgyi [9] improved the lower bound to obs(G) ≥ Ω(n/ log n).
Currently, the strongest lower bound on the obstacle number is due to
Dujmović and Morin [4] who showed that there is a graph G with n vertices
and obs(G) ≥ Ω(n/(log log n)2) for every n.

Surprisingly, not much has been done for the general upper bound on the
obstacle number. We are only aware of the trivial bound obs(G) ≤ (

n
2

)
for every

graph G on n vertices. This follows easily, as we can consider the complete
geometric graph KP for some point set P of size n and place a small obstacle
Oe on every non-edge e of G such that Oe intersects only e in KP . A non-edge
of a graph G = (V,E) is an element of

(
V
2

) \ E.
Concerning special graph classes, Fulek, Saeedi, and Sarıöz [6] showed that

the convex obstacle number is at most five for every outerplanar graph, and at
most four for every bipartite permutation graph.

Alpert, Koch, and Laison [1] asked whether the obstacle number of every
graph on n vertices can be bounded from above by a linear function of n. We
show that this is true for bipartite graphs, even for the convex obstacle number.
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Theorem 1. For every pair of positive integers m, n and every bipartite graph
G ⊆ Km,n and its complement G, we have

obsc(G), obsc(G) ≤ m + n − 1.

In contrast, Mukkamala, Pach, and Pálvölgyi [9] conjectured that the maxi-
mum obstacle number of n-vertex graphs is around n2. We refute this conjecture
by showing the first non-trivial general upper bound on the obstacle number of
graphs. In fact, we prove a stronger result that provides a general upper bound
for the convex obstacle number.

Theorem 2. For every positive integer n and every graph G on n vertices, the
convex obstacle number of G satisfies

obsc(G) ≤ 2n log n.

By a more careful approach, which we omit in this paper, the bound in
Theorem 2 can be improved to n�log n�−n+1. The question whether the upper
bound on obs(G) can be improved to O(n) for every n-vertex graph G remains
open.

1.2 Number of Graphs with Small Obstacle Number

For positive integers h and n, let g(h, n) be the number of labeled n-vertex graphs
with obstacle number at most h. The lower bounds on the obstacle number by
Mukkamala, Pach, and Pálvölgyi [9] and by Dujmović and Morin [4] are both
based on the upper bound g(h, n) ≤ 2O(hn log2 n). In fact, any improvement on
the upper bound for g(h, n) will translate into an improved lower bound on the
obstacle number [4]. Dujmović and Morin [4] conjectured g(h, n) ≤ 2f(n)·o(h)

where f(n) ≤ O(n log2 n). We show the following lower bound on g(h, n).

Theorem 3. For every pair of integers n and h satisfying 0 < h < n, we have

g(h, n) ≥ 2Ω(hn).

1.3 Complexity of Faces in Arrangements of Line Segments

An arrangement A of line segments is a finite collection of line segments in the
plane. The line segments of A partition the plane into vertices, edges, and cells.
A vertex is a common point of two or more line segments. Removing the vertices
from the line segments creates a collection of subsegments which are called edges.
The cells are the connected components of the complement of the line segments.
A face of A is a closure of a cell.

Note that every geometric drawing of a graph is an arrangement of line
segments and vice versa. The edges of the graph correspond to the line segments
of the arrangement and the vertices of the graph correspond to the endpoints of
the line segments.
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A line segment s of A is incident to a face F of A if s and F share an edge
of A. The complexity of a face F is the number of the line segments of A that
are incident to F . If F is a set of faces of A, then the complexity of F is the
sum of the complexities of F taken over all F ∈ F .

An arrangement of lines is a finite collection of lines in the plane with faces
and their complexity defined analogously.

Edelsbrunner and Welzl [5] constructed an arrangement of m lines having a
set of M faces with complexity Ω(m2/3M2/3+m) for every m and M ≤ (

m
2

)
+1.

Wiernik and Sharir [13] constructed an arrangement of m line segments with a
single face of complexity Ω(mα(m)). These two constructions can be combined
to provide the lower bound Ω(m2/3M2/3 + mα(m)) for the complexity of M
faces in an arrangement of m line segments, where M ≤ (

m
2

)
+1. The best upper

bound for the complexity of M faces in an arrangement of m line segments is
O(m2/3M2/3 + mα(m) + m log M) by Aronov et al. [3].

Arkin et al. [2] studied arrangements whose line segments share endpoints.
That is, they considered the maximum complexity of a face when we bound
the number of endpoints of the line segments instead of the number of the line
segments. They showed that the complexity of a single face in an arrangement of
line segments with n endpoints is at most O(n log n). An Ω(n log n) lower bound
was then proved by Matoušek and Valtr [8].

Arkin et al. [2] posed as an open problem to determine the maximum com-
plexity of a set of M faces in an arrangement of line segments with n endpoints.

Since every arrangement of line segments with n endpoints contains at most(
n
2

)
line segments, the upper bound O(n4/3M2/3 + n2α(n) + n2 log M) can be

deduced from the upper bound of Aronov et al. [3]. We give a lower bound
that, whenever M ≥ n log3/2 n, matches this upper bound up to a multiplicative
factor.

Theorem 4. There is constant C such that for every sufficiently large integer
n, there is an arrangement A of n2 line segments with 2n endpoints such that
for every M satisfying Cn ≤ M ≤ n4/C there is a set of at most M faces of A
with complexity Ω(n4/3M2/3).

Taking only the faces with the highest complexity from the construction from
the proof of Theorem 4 gives the following lower bound for smaller values of M .

Corollary 1. For every sufficiently large integer n, there is an arrangement A
of n2 line segments with 2n endpoints such that for every M satisfying M ≤ O(n)
there is a set of at most M faces of A with complexity Ω(nM).

Consequently, for every value of M , the lower bounds differ from the best
known upper bounds by at most an O(log n) multiplicative factor.

2 Dilated Bipartite Drawings

For a point p ∈ R
2, let x(p) and y(p) denote the x- and the y-coordinate of p,

respectively. An intersection point in a geometric drawing D of a graph G is a
common point of two edges of G that share no vertex.
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Let m and n be positive integers. We say that a geometric drawing of Km,n is
bipartite if the vertices of the same color class of Km,n lie on a common vertical
line and not all vertices of Km,n lie on the same vertical line. For the rest of this
section, we let D be a bipartite drawing of Km,n and use P := {p1, . . . , pm} and
Q := {q1, . . . , qn} with y(p1) < · · · < y(pm) and y(q1) < · · · < y(qn) to denote
the point sets representing the color classes of Km,n in D. We let �P and �Q be
the vertical lines that contain the points of P and Q, respectively. The width w
of D is |x(q1) − x(p1)|. In the following, we assume that �P is to the left of �Q

and that p1 = (0, 0), q1 = (w, 0). We set di := y(pi+1)−y(pi) for i = 1, . . . ,m−1
and hj := y(qj+1) − y(qj) for j = 1, . . . , n − 1. We call d1 the left step of D and
h1 the right step of D.

We say that D is regular if we have d1 = · · · = dm−1 and h1 = · · · = hn−1.
Note that every regular drawing of Km,n is uniquely determined by its width,
left step, and right step. A regularization of a (possibly non-regular) bipartite
drawing D is the regular bipartite drawing of Km,n with the vertices π(pi) :=
(0, (i − 1)d1) and π(qj) := (w, (j − 1)h1) for i = 1, . . . ,m and j = 1, . . . , n.

For 1 ≤ k ≤ m + n − 1, the kth level of D is the set of edges piqj with
i + j = k + 1. Note that the levels of D partition the edge set of Km,n and that
the kth level of D contains min{k,m, n,m + n − k} edges. If D is regular, then,
for every 1 < k < m + n − 1, the edges of the kth level of D share a unique
intersection point that lies on the vertical line { d1

d1+h1
w} × R.

For an integer l ≥ 2, an ordered l-tuple (pi1qj1 , . . . , pilqjl) of edges of D
is uniformly crossing if we have 0 < i2 − i1 = · · · = il − il−1 and j2 − j1 =
· · · = jl − jl−1 < 0. In particular, a set of edges forming a level of D, ordered
by their decreasing slopes, is uniformly crossing. Note that if (pi1qj1 , . . . , pilqjl)
is uniformly crossing, then the edges π(pi1)π(qj1), . . . , π(pil)π(qjl) of the regula-
rization of D share a common intersection point, which we call the meeting point
of (pi1qj1 , . . . , pilqjl). In the other direction, if D is regular and (e1, . . . , el) is
a maximal set of edges of D that share a common intersection point and are
ordered by their decreasing slopes, then (e1, . . . , el) is uniformly crossing.

Let ε > 0 be a real number. We say that D is ε-dilated if we have d1 < · · · <
dm−1 < (1 + ε)d1 and h1 < · · · < hn−1 < (1 + ε)h1.

In a geometric drawing D′ of a (not necessarily bipartite) graph, let
(e1, . . . , el) be an ordered l-tuple of edges of D′ such that ei and ei+1 share
an intersection point ri for i = 1, . . . , l − 1. We say that (e1, . . . , el) forms a
cap, if x(r1) < · · · < x(rl−1) and the slopes of e1, . . . , el are strictly decreasing.
A cap C is then the component of the lower envelope of e1∪· · ·∪el that contains
r1, . . . , rl−1. The points ri are vertices of C and e1∩C, . . . , el ∩C are edges of C.
See part a) of Fig. 1. A cap C is good in D′, if the edges of C are incident to the
same bounded face of D′ or if C has only one edge. If D′ is bipartite and the
edges of one of its levels form a cap C, then we call C a level-cap of D′.

The following lemma is crucial in the proofs of all our main results.

Lemma 1. (i) If D satisfies d1 < · · · < dm−1 and h1 < · · · < hn−1, then, for
every l ≥ 2, every uniformly crossing l-tuple of edges of D forms a cap.
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(ii) For all w, d1, h1 ∈ R
+ and m,n ∈ N, there is an ε = εm,n(w, d1, h1) > 0

such that if D is an ε-dilated bipartite drawing of Km,n with width w, left
step d1, and right step h1, then for every l ≥ 2 every uniformly crossing
l-tuple of edges of D forms a good cap in D.

Proof. For part (i), let (e1, . . . , el) be a uniformly crossing l-tuple of edges of D
with ek := pikqjk for every k = 1, . . . , l. Consider edges ek, ek+1, ek+2 and let
rk and rk+1 be the points ek ∩ ek+1 and ek+1 ∩ ek+2, respectively. The points rk

and rk+1 exist, as y(pik) < y(pik+1) < y(pik+2) and y(qjk+2) < y(qjk+1) < y(qjk).
Consider the midpoint p of pikpik+2 and the midpoint q of qjkqjk+2 . Since

(e1, . . . , el) is uniformly crossing and d1 < · · · < dm−1 and h1 < · · · < hn−1, we
have y(pik+1) < y(p) and y(qjk+1) < y(q). See part b) of Fig. 1. The edges pq,
ek, and ek+2 share a common point that lies above ek+1. Since rk and rk+1 lie
on ek+1, we obtain x(rk) < x(rk+1). The slopes of ek, ek+1, ek+2 are strictly
decreasing, thus (e1, . . . , el) forms a cap.

p

pik+1

pik+2

qjk+2

qjk+1

q

pik

qjk

rk+1

�P �Q

rk

ek

ek+1

ek+2

a) b)

Fig. 1. (a) An example of a cap with vertices denoted by empty circles and with edges
denoted black. (b) A situation in the proof of Lemma 1.

To show (ii), we use the following claim. For all w, d1, h1, δ ∈ R
+ and m,n ∈

N, there is an ε = εm,n(w, d1, h1, δ) > 0 such that if D is ε-dilated, then the
intersection point between any two edges piqj and pi′qj′ of D lies in distance less
than δ from the intersection point π(pi)π(qj) ∩ π(pi′)π(qj′).

This follows from the fact that for fixed w, d1, h1, all ε′-dilated drawings of
Km,n with width w, left step d1, and right step h1 converge to their common
regularization as ε′ > 0 tends to zero.

Let δm,n(w, d1, h1) = δ > 0 be the half of the minimum distance between
two intersection points of the regular drawing of Km,n with width w, left step
d1, and right step h1. For ε = εm,n(w, d1, h1, δ), let D be an ε-dilated drawing
of Km,n with width w, left step d1, and right step h1. According to (i), every
uniformly crossing l-tuple (e1, . . . , el) of edges of D forms a cap. It follows from
the claim that the vertices of a cap C formed by (e1, . . . , el) are contained in an
open disc B with the center in the meeting point s of (e1, . . . , el) and radius δ.
In particular, there is a connected component K of B \ (e1 ∪ · · · ∪ el) such that
every edge of C is incident to the closure K of K.

Suppose for a contradiction that C is not good in D. Then there is an edge
pq of D that divides K into two parts, each incident to some edge of C and
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each having an empty intersection with some edge of C. Otherwise all edges
of C are incident to a single face of D, implying that C is good. The edge pq
intersects some edge pikqjk ∩ C of C in a point r ∈ B. By (i), the intersection
point r′ := π(p)π(q) ∩ π(pik)π(qjk) is different from s, since edges of C and the
edge pq do not form a cap. The distance of r and s is less than δ, as r ∈ B. By the
claim, the distance of r and r′ is also less than δ. On the other hand, the distance
of r′ and s is at least 2δ from the choice of δ. This gives us a contradiction with
the triangle inequality. �

3 Proof of Theorem 1

Let G ⊆ Km,n be a bipartite graph and G be its complement. Using Lemma 1,
we can easily show obsc(G) ≤ m + n − 1. Let ε > 0 be chosen as in Lemma 1
for Km,n and w = d1 = h1 = 1. Consider an ε-dilated drawing D of Km,n with
w = d1 = h1 = 1, p1 = (0, 0), and q1 = (1, 0). Since edges of every level of D
are uniformly crossing, part (ii) of Lemma 1 implies that the edges of the kth
level of D form a good level-cap Ck in D for every 1 ≤ k ≤ m + n − 1. That is,
there is a bounded face Fk of D such that each edge of Ck is incident to Fk or
Ck contains only one edge.

For every integer k satisfying 1 ≤ k ≤ m+n−1, we construct a single convex
obstacle Ok. If Ck contains only one edge e, the obstacle Ok is an arbitrary point
of e or an empty set. Otherwise every edge piqk+1−i of the kth level of D shares
a line segment si

k of positive length with Fk. The obstacle Ok is defined as
the convex hull of the midpoints of the line segments si

k where piqk+1−i is not
an edge of G. See part a) of Fig. 2. The levels partition the edge set of Km,n,
therefore we block every non-edge of G. Since every bounded face of D is convex,
we have Ok ⊆ Fk. Therefore no edge of G is blocked and we obtain an obstacle
representation of G. In total, we produce at most m + n − 1 obstacles.

To show obsc(G) ≤ m + n − 1, we proceed analogously as above, except
the vertices of D are suitably perturbed before obstacles Ok are defined, which
allows to add two (long and skinny) convex obstacles OP and OQ blocking all
the edges pipi′ and qjqj′ , respectively. The addition of the obstacles OP and OQ

may be compensated by using a single convex obstacle to block non-edges in the
first and the second level and in the (m + n − 2)th and the (m + n − 1)th level.

4 Proof of Theorem 2

We show that the convex obstacle number of every graph G on n vertices is at
most 2n log n. The high-level overview of the proof is as follows. We partition the
edges of G to edge sets of O(n) induced bipartite subgraphs of G by iteratively
partitioning the vertex set of G into two (almost) equal parts and considering
the corresponding induced bipartite subgraphs of G. For every j = 0, . . . 
log n�,
the number of such bipartite subgraphs of size about n/2j is 2j . Then we con-
struct an obstacle representation of G whose restriction to every such bipartite
subgraph resembles the obstacle representation from the proof of Theorem 1.
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This is achieved by choosing a variant of the well-known Horton sets [12] as the
underlying vertex set. Since the obstacle representation of every bipartite sub-
graph of size about n/2j uses about n/2j obstacles, we have O(n log n) obstacles
in total.

Let S be a finite set of points on a vertical line. We say that a point p of S
is an odd point of S if p has an odd-numbered position in the ordering of S by
increasing y-coordinates. Otherwise p is said to be an even point of S.

Let N ≥ 2 be the least power of two such that N ≥ n. If N > n, then we add
N −n isolated vertices to G. Clearly, this does not decrease the obstacle number.
Let ε > 0 be chosen as in Lemma 1 for KN,N and w = d1 = h1 = 1. Let D be an
ε-dilated bipartite drawing of KN,N with width, left step, and right step equal
to 1 and with di = hi for every i = 1, . . . , N − 1. We let P := {p1, . . . , pN} and
Q := {q1, . . . , qN} be the color classes of D ordered by increasing y-coordinates
such that p1 = (0, 0) and q1 = (1, 0). By part (ii) of Lemma 1, edges of each
level of D form a good cap in D. For the rest of the proof, the y-coordinates of
all points remain fixed. Let α = α(ε) > 0 be a real number to be determined
later.

First, we let D1 be the drawing obtained from D by removing the even points
from P and the odd points from Q. We use P 1

1 and P 2
1 to denote the left and

the right color class of D1, respectively. We map the vertices of G to the vertices
of D1 arbitrarily. Let C1 be the set of the level-caps of D1. Since every level-cap
in D is good in D, every cap in C1 is good in D1.

The drawing D1 is a first step towards making an obstacle representation
of G. In fact, we can now block a large portion of non-edges of G by placing
obstacles in D1 as in the proof of Theorem 1. Then we take care of the edges
between vertices in the left color class P 1

1 of KN/2,N/2 (edges between vertices
in the right color class P 2

1 of KN/2,N/2 are dealt with analogously). We slightly
shift the even points in P 1

1 horizontally to the right. Only some of the edges of a
copy of KN/4,N/4 between the even and the odd points of P 1

1 belong to G. Hence
we can place convex obstacles along the level-caps of this KN/4,N/4, again, same
as in the bipartite case. To take care of the edges between vertices in the same
color class of KN/4,N/4, and for each of the color classes we proceed similarly as
above.

We now describe this iterative process formally. Having chosen point sets
P 1

j−1, . . . , P
2j−1

j−1 for some 2 ≤ j ≤ log N , we define P 1
j , . . . , P 2j

j as follows. For
1 ≤ k ≤ 2j−1, let P 2k−1

j be the set of odd points of P k
j−1 and let P 2k

j be the
set of even points of P k

j−1. Let εj > 0 be a small real number. If k is odd, we
move the points from P 2k

j to the right by εj . If k is even, we move the points
from P 2k−1

j to the left by εj . We slightly abuse the notation by using Dj−1 and
Cj−1 to denote the modified drawing Dj−1 and the set of modified caps from the
original set Cj−1, respectively.

For 1 ≤ k ≤ 2j−1, we add all edges between points from P 2k−1
j and P 2k

j to
create a bipartite drawing Dk

j of KN/2j ,N/2j . We let Cj be the union of Cj−1

with a set of level-caps of the drawings Dk
j for 1 ≤ k ≤ 2j−1. We also set

Dj := D1
j ∪ · · · ∪ D2j−1

j ∪ Dj−1.
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We choose εj small enough so that each cap C ∈ Cj−1, which is good in Dj−1,
is good in Dj after the translations by εj . Such εj exists, as every geometric
drawing of a graph is compact and the distance of two points is a continuous
function. We choose εj small enough such that for every edge e of the modified
drawing Dj−1, the portion of e between P 2k−1

j and P 2k
j is contained in the

horizontal strip R × (y(p) − α, y(p) + α) for some endpoint p of e. This can be
done, as the vertical strips between P 2k′−1

j−1 and P 2k′
j−1 for 1 ≤ k′ ≤ 2j−2 do not

change during the translations by εj .
After log N steps, the drawings Dk

log N contain two vertices and the construc-
tion stops. We show that we can add at most 2n log n convex obstacles to the
drawing Dlog N to obtain an obstacle representation of G.

For 2 ≤ j ≤ log N and 1 ≤ k ≤ 2j−1, let fj,k : R2 → R
2 be the affine mapping

fj,k(x, y) := (x/εj −cj,k, y) where cj,k ∈ R is chosen such that the left color class
of fj,k(Dk

j ) lies on {0} × R. Note that the drawing fj,k(Dk
j ) is contained in the

drawing D and thus edges of the levels of fj,k(Dk
j ) form good caps in fj,k(Dk

j ).
Since fj,k does not change the edge-face incidences in Dk

j , edges of the levels of
Dk

j form good caps in Dk
j .

Let C be a level-cap formed by edges of a level L of fj,k(Dk
j ) and let FC

be the bounded face of fj,k(Dk
j ) such that all edges of C are incident to FC .

Edges of L are also edges of a level L′ of D. Since the indices of edges of L have
the same parity, L′ contains an edge piqi for some 1 ≤ i ≤ N . Let �C be the
horizontal line containing piqi. No vertex of the level-cap formed by edges of L′

lies strictly above �C and no edge of C is contained in �C . Thus there is αC > 0
such that every edge of C is incident to FC ∩ (R× (−∞, y(pi)−αC)). See part b)
of Fig. 2. We choose α = α(ε) to be the minimum of αC over all level-caps C
of fj,k(Dk

j ) with 2 ≤ j ≤ log N and 1 ≤ k ≤ 2j−1. Since fj,k(Dk
j ) is a drawing

contained in D and determined by j and k, we see that α depends only on ε.

Fk

Ok

C

pi qiαC

. . . . . .

FC

�C

a) b)

Fig. 2. (a) Placing a convex obstacle Ok that blocks three edges of Km,n. (b) All edges
of a cap C are incident to a part of a face FC strictly below piqi.

Since fj,k does not change the y-coordinates, for every level-cap C of Dk
j ,

there is a bounded face FC of Dk
j such that all edges of C are incident to the

part of FC that lies below �fj,k(C) in the vertical distance larger than α.
By induction on j, 1 ≤ j ≤ log N , we show that every cap from Cj is good

in Dj in the jth step of the construction. We already observed that this is true
for j = 1. Suppose for a contradiction that there is a cap C ∈ Cj that is not
good in Dj for j > 1. Using the inductive hypothesis and the choice of εj , C is
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not in Cj−1. Therefore there is a drawing Dk
j for 1 ≤ k ≤ 2j−1 such that C is

a level-cap of Dk
j . Since C is good in Dk

j , all edges forming C are incident to a
single bounded face FC of Dk

j . However, C is not good in Dj , thus some edge e

of Dj \ Dk
j divides FC into two parts, each incident to an edge of C and each

having an empty intersection with some edge of C. The drawings D1
j , . . . , D2j−1

j

are contained in pairwise disjoint vertical strips, thus e is an edge of Dj−1. It
follows from the proof of Lemma 1 that all edges of C are incident to FC in a
2δ-neighborhood of �fj,k(C) for some δ = δ(ε) > 0. Therefore e intersects this
2δ-neighborhood. By the choice of εj , the portion of e between P 2k−1

j and P 2k
j

is contained in the horizontal strip R × (y(p) − α, y(p) + α) for an endpoint p
of e. Assuming α and δ are sufficiently small with respect to the left and the
right step of D, say α, δ < 1/8, we see that p lies on �fj,k(C). Thus the portion
of e between P 2k−1

j and P 2k
j lies in the α-neighborhood of �fj,k(C) = R×{y(p)}.

On the other hand, all edges of C are incident to the part of FC that is strictly
below R × {y(p) − α}. Thus e cannot divide FC , a contradiction.

For every (modified) drawing Dk
j , we place the obstacles as in the first part

of the proof of Theorem 1 with respect to the whole drawing Dlog N . Using the
fact that bounded faces of every geometric drawing of KN are convex, it follows
from the construction of Dlog N that we obtain an obstacle representation of G.
For every 1 ≤ j ≤ log N and 1 ≤ k ≤ 2j−1, we place at most N/2j−1 − 1 convex
obstacles in the drawing Dk

j of KN/2j ,N/2j . For every j, we thus use at most
2j−1(N/2j−1 − 1) = N − 2j−1 obstacles. Summing over j, we obtain an obstacle
representation of G with at most

∑log N
j=1 (N − 2j−1) = N(log N − 1) + 1 convex

obstacles. Since N < 2n, we have less than 2n log n + 1 convex obstacles.

5 Proof of Theorem 3

Let h and n be given positive integers with h < n. We show that the number
g(h, n) of labeled n-vertex graphs of obstacle number at most h is at least 2Ω(hn).

For a point set P ⊆ R
2 in general position, let e(h, P ) be the maximum

integer for which there is a set F of at most h bounded faces of KP and a set
of e(h, P ) edges of KP that are incident to at least one face from F . Let e(h, n)
be the maximum of e(h, P ) over all sets P of n points in the plane in general
position.

Claim. We have g(h, n) ≥ 2e(h,n).

To prove the claim, let P be a set of n points in the plane in general position
for which e(h, P ) = e(h, n). Let F be the set of at most h bounded faces of KP

such that e(h, n) edges of KP are incident to at least one face from F . For a face
F ∈ F , let EF denote the set of edges of KP that are incident to F . We use G to
denote the graph with the vertex set P and with two vertices connected by an
edge if and only if the corresponding edge of KP is incident to no face F of F .

We show that every subgraph G′ of KP containing G satisfies obs(G′) ≤ h.
The claim then follows, as the number of such subgraphs G′ is 2e(h,n).
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Let G′ be a subgraph of KP such that G ⊆ G′. For every face F ∈ F , we
define a convex obstacle OF as the convex hull of midpoints of line segments
e ∩ F for every e ∈ EF that represents a non-edge of G′. Note that, since all
bounded faces of KP are convex, the obstacle OF is contained in F and thus OF

blocks only non-edges of G′. Since every non-edge of G′ is contained in EF for
some F ∈ F , we obtain an obstacle representation of G′ with at most h convex
obstacles. This finishes the proof of the claim. �

Since h < n, the following and the previous claim give Theorem 3.

Claim. For n ≥ 3, we have e(h, n) ≥ 2hn−h2−1
4 .

Let ε > 0 be chosen as in Lemma 1 for K�n/2�,�n/2� and w = d1 = h1 = 1.
Let D be an ε-dilated drawing of K�n/2�,�n/2� with w = d1 = h1 = 1, p1 = (0, 0),
and q1 = (1, 0). By part (ii) of Lemma 1, the edges of the kth level of D form a
good cap Ck in D for every k = 1, . . . , n − 1.

We perturb the vertices of D such that the vertex set of the resulting geomet-
ric drawing D′ of K�n/2�,�n/2� is in general position. We let KP be the geometric
drawing of Kn obtained from D′ by adding the missing edges. Note that if the
perturbation is sufficiently small, then every good cap Ck in D corresponds to
a good cap C ′

k in KP .
Let F := {F1, . . . , Fh} be the set of (not necessarily distinct) bounded faces

of KP such that, for i = 1, . . . , h, all edges of the cap C ′
�n/2�−�h/2�+i are incident

to Fi. That is, F1, . . . , Fh are faces incident to edges of h middle caps C ′
k. Since

caps C ′
�n/2�−�h/2�+i are good in KP and n ≥ 3, the faces Fi exist.

Every cap C ′
k is formed by min{k, n − k} edges for every k = 1, . . . , n − 1.

Therefore, for every i = 1, . . . , h, the face Fi is incident to at least min{
n/2� −
�h/2�+ i, �n/2�+ �h/2�− i} edges of KP . Summing over i = 1, . . . , h, we obtain
at least (2hn − h2 − 1)/4 edges of KP incident to at least one face of F . This
implies e(h, n) ≥ (2hn − h2 − 1)/4 and proves the claim. �

6 Proof of Theorem 4

For a sufficiently large constant C and every sufficiently large integer n, we
find a bipartite drawing D of Kn,n such that for every integer M satisfying
Cn ≤ M ≤ n4/C there is a set of at most M faces of D with complexity at least
Ω(n4/3M2/3). Theorem 4 then follows, as D can be treated as an arrangement
of n2 line segments with 2n endpoints.

Let D′ be the regular bipartite drawing of Kn,n with width, left step, and
right step equal to 1, p1 = (0, 0), and q1 = (1, 0). For integers i and k satisfying
1 ≤ i < k ≤ n/2 and gcd(i, k) = 1, every intersection point of a uniformly
crossing l-tuple of edges (pi1qj1 , . . . , pilqjl) of D′ with i2−i1 = i and j2−j1 = i−k
is called a uniform (i, k)-crossing. A point that is a uniform (i, k)-crossing for
some integers i and k is called a uniform crossing.

Note that all uniform (i, k)-crossings lie on the vertical line { i
k}×R and that

no uniform (i, k)-crossing is a uniform (i′, k′)-crossing for any pair (i′, k′) �= (i, k),



Drawing Graphs Using a Small Number of Obstacles 371

as gcd(i, k) = 1. Since the y-coordinate of every uniform (i, k)-crossing equals
j/k for some 0 ≤ j ≤ kn − k, the number of uniform (i, k)-crossings is at most
kn. There is also at least n2 −2in > n2 −2kn edges of D′ that contain a uniform
(i, k)-crossing. This follows easily, as for every edge pi′qj′ of D′ with i < i′ ≤ n−i
and 1 ≤ j′ ≤ n either pi′−iqj′+k−i or pi′+iqj′−k+i is an edge of D′ and forms a
uniform (i, k)-crossing with pi′qj′ . Here we use the fact k ≤ n/2.

We choose ε > 0 as in Lemma 1 for Kn,n and w = d1 = h1 = 1. Let D be an
ε-dilated drawing of Kn,n with width, left step, and right step equal to 1, with
the left lowest point (0, 0), and with the right lowest point (1, 0). By part (ii) of
Lemma 1, every uniformly crossing l-tuple of edges of D forms a good cap in D.
In particular, every uniform crossing c in D′ is the meeting point of edges of D
that form a good cap Cc. Let Fc be a bounded face of D such that all edges
of Cc are incident to Fc. Note that the faces Fc and Fc′ of D are distinct for
distinct uniform crossings c and c′ in D′.

Let K ≤ n/2 be a positive integer whose value we specify later. For integers
i and k satisfying 1 ≤ i < k ≤ K and gcd(i, k) = 1, let Fi,k be the set of faces
Fc where c is a uniform (i, k)-crossing in D′. It follows from our observations
that Fi,k contains at most kn faces and that the complexity of Fi,k is at least
n2 − 2kn. We let F :=

⋃
i,k Fi,k where the union is taken over all integers i and

k satisfying 1 ≤ i < k ≤ K and gcd(i, k) = 1. Then F contains at most

K∑

k=2

k−1∑

i=1
gcd(i,k)=1

kn = n

K∑

k=2

kϕ(k − 1) = n

K−1∑

j=1

(j + 1)ϕ(j) <
nK3

2

faces where ϕ(j) denotes the Euler’s totient function. The last inequality follows
from ϕ(j) < K for every positive integer j < K.

Since the sets Fi,k are pairwise disjoint, the complexity of F is at least

K∑

k=2

k−1∑

i=1
gcd(i,k)=1

(n2 − 2kn) =
K∑

k=2

ϕ(k − 1)(n2 − 2kn) > n2
K−1∑

j=1

ϕ(j) − nK3.

The totient summatory function satisfies
∑m

j=1 ϕ(j) ≥ 3m2

π2 −O(m log m) [7, pp.

268–269]. Thus the complexity of F is at least 3n2K2

π2 − nK3 − O(n2K log K).
Let M be a given integer that satisfies 8n ≤ M ≤ n4/8. We set K :=

(M/n)1/3. We may assume that K is an integer, as it does not affect the
asymptotics. For 8n ≤ M ≤ n4/8, we have 2 ≤ K ≤ n/2. The set F then
contains at most M faces and its complexity is at least 3

π2 n4/3M2/3 − M −
O(M1/3n5/3 log (M/n)), which is Ω(n4/3M2/3) for a sufficiently large absolute
constant C and Cn ≤ M ≤ n4/C.
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