
Kojaph: Visual Definition and Exploration
of Patterns in Graph Databases

Walter Didimo(B), Francesco Giacchè, and Fabrizio Montecchiani

Università Degli Studi di Perugia, Perugia, Italy
{walter.didimo,fabrizio.montecchiani}@unipg.it, fgiacc@gmail.com

Abstract. We present Kojaph, a new system for the visual definition
and exploration of patterns in graph databases. It offers an expressive
visual language integrated in a simple user interface, to define com-
plex patterns as a combination of topological properties and node/edge
attribute properties. Users can also interact with the query results and
visually explore the graph incrementally, starting from such results. From
the application perspective, Kojaph has been designed to run on top of
every desired graph database management system (GDBMS). As a proof
of concept, we integrated it with Neo4J, the most popular GDBMS.

1 Introduction

Graph databases are of growing interest in the many application domains where
data are conveniently modeled as graphs [1,5]. In contrast to relational data-
bases, a graph database allows users to directly execute graph-like queries, such
as finding pairs of nodes that are connected by a “short” path, finding the com-
mon neighbors of two specific nodes, finding cycles or cliques including a desired
subset of nodes, and so on. On graph-structured data, this approach leads to
a more efficient extraction process, which does not require the expensive join
operations necessary on a relational database. For a survey on query languages
for graph databases see, e.g., [10].

Besides the use of new paradigms for storing graph-structured data and
retrieving information from them, a complementary line of research focuses on
the design of visual languages and systems that allow users to easily define
queries for extracting desired information. These tools are particularly valu-
able when the user wants to look for specific patterns in the data set without
learning the native query language of the database management system. Within
this research line, GRAPHITE is a system that allows users to visually con-
struct graph patterns and to subsequently apply exact or approximate pattern
matching algorithms to extract the results [4]. However, this system has sev-
eral limitations: (i) it is not designed to directly work on top of widely used
graph database technologies; (ii) its visual language is quite simple and does
not allow for the creation of sophisticated patterns; (iii) the interaction of the

Research supported in part by the MIUR project AMANDA “Algorithmics for MAs-
sive and Networked DAta”, prot. 2012C4E3KT 001.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 272–278, 2015.
DOI: 10.1007/978-3-319-27261-0 23



Kojaph: Visual Definition and Exploration of Patterns in Graph Databases 273

user with the presented results is rather limited. Conversely, QGraph is a more
complete visual query language for graphs [3]. It is used in the knowledge discov-
ery system Proximity (https://kdl.cs.umass.edu/display/public/Proximity), which
allows users to easily understand and modify large relational data sets. However,
Proximity has it own data-structures to efficiently store and retrieve relational
data, and it is not conceived to interact with modern and widely used GDBMS,
like Neo4J, Titan, and so on. There are also other technologies in this field,
that are however not conceived for graph-structured data. Among them, the
system Polaris offers a visual query language for describing a wide range of
table-based graphical presentations of data, extracted from multidimensional
relational databases [9]. imMens is a system for real-time visual querying of big
data [8]. System architectures and algorithms that are mainly designed to effi-
ciently interleave visual query formulation and graph query processing are also
described in the literature [2,7].

This paper presents Kojaph, a new system for the visual definition and
exploration of patterns in graph databases. Kojaph has the following main fea-
tures: (a) It offers an expressive visual language integrated in an intuitive user
interface, to define complex patterns as a combination of topological proper-
ties and node/edge attribute properties. (b) Users can interact with the query
results, which can be used as seeds for subsequent incremental explorations of the
graph. (c) It is designed to work with any graph database management system
(GDBMS) and the user can access it with a common Web browser.

Section 2 describes the Kojaph visual language and user interface. Section 3
presents the system architecture and its integration with Neo4J (http://neo4j.

com/). Future work is discussed in Sect. 4. A demo version of Kojaph is available
at: http://mozart.diei.unipg.it:8080/Kojaph/.

2 Visual Language and User Interface

Denote by G the entire graph stored in the graph database. The user can con-
struct a desired pattern to be matched in G, using a graphical interface that inte-
grates all the logical elements of the visual query language. At a high-level view,
a pattern P consists of a pair 〈GP , RP 〉 of specifications, where GP = (VP , EP )
is a graph that defines the topological structure of P , and RP is a set of rules
on the nodes and the edges of GP . An edge e ∈ EP does not necessarily corre-
spond to a single edge of G, but it can also correspond to a path whose length
is within a desired range. This correspondence can be established by a specific
type of rules of RP , which we call path constraints. The other types of rules in
RP are used to describe desired properties for node/edge attributes of GP ; these
properties can then be combined with logical operators AND, OR, NOT to form
a binary tree, called the properties tree.

Structure of the Interface. The first time the user accesses the graphical
interface, the system automatically retrieves from the database all types of node
and edge attributes. The interface is shown in Fig. 1. The left-side panel, called

https://kdl.cs.umass.edu/display/public/Proximity
http://neo4j.com/
http://neo4j.com/
http://mozart.diei.unipg.it:8080/Kojaph/


274 W. Didimo et al.

Fig. 1. The interface of Kojaph for graph pattern definition.

graph-ed panel, is a canvas for editing GP . Similarly to a common graph edi-
tor, it allows users to add, remove, select, or move nodes and edges; multiple
edges and self-loops are allowed and are automatically drawn avoiding overlaps.
A self-loop on a node v can be useful, for instance, to refer to a cycle that
passes through v. Each time a new node is added, it is automatically assigned
a unique label (identifier). The right-side of the interface is used to define the
rules of RP and it is further subdivided into a bottom panel and a top panel.
The bottom panel, called the prop-def panel, is used to define desired properties
of node/edge attributes; the top panel is used to group and combine them, so to
form the properties tree above mentioned. The top panel also reports the path
constraints and user-defined collections of attribute values, which can be used
to construct properties.

Attributes. Each node or edge of GP has an associated list of attributes.
Generic attributes include the type of the element in the database (e.g., in a
movie database, the type of a node can be “movie”, “actor”, “director”, etc.),
its identifier in the database, its degree (in/out-degree or total degree) if the
element is a node, and its direction if the element is an edge. Specific attributes
depend on the data modeled by the graph: for instance, in a movie database, a
node of type “actor” might have attributes like “name”,“birthday”, or “biogra-
phy”; an edge connecting an actor to a movie might have an attribute “acts-in”,
whose value is the character interpreted by the actor in the movie. For any edge
e of GP , there are also additional attributes that are related to path constraints,
which can be used when e corresponds to a path Πe instead of a single edge.
In particular, there are attributes whose values define the minimum/maximum
length of Πe and attributes that refer to the nodes and edges in Πe. For example,
the sub-node properties of e can be used to define rules on all nodes, any node, a



Kojaph: Visual Definition and Exploration of Patterns in Graph Databases 275

single node, or no nodes of Πe. Analogously, the attribute sub-edge properties of
e is used to define rules on all edges, any edge, a single edge, or no edges of Πe.

Property Definition. To define a property the user must switch to the “select”
mode on the graph-ed panel, so to avoid modifications of GP during the definition
process. The property is defined as follows: (i) The user can see the list of
attributes for a node/edge of GP by clicking with the mouse right-button on it.
(ii) A selected attribute is added to the prop-def panel. (iii) Attributes can be
correlated to specific user-input or constant values, or subset of values like the
above mentioned collections; they can also be combined together to form complex
expressions, using a variety of operators, accessible from the list of “symbols”
in the graphical interface. These symbols consist of comparison, inclusion, and
mathematical operators, including parenthesis to define association rules and
arrays. It is also possible to associate an attribute value with a regular expression
(using the ∼= operator). Each time the user adds an element (attribute, value, or
symbol) to the property, it is visually appended to the right of the previous ones;
the user can freely reorder the elements by means of drag-and-drop operations.

Properties Tree. Once a property is defined, the user can add it to the proper-
ties tree. The system will just append a new property at the root level. However,
in a valid tree, each property must be a leaf node. To this aim, the user can add
to the tree a suitable number of internal operator nodes, each corresponding to a
boolean operator, and then he/she can make a property as a child of an operator
node, by means of a drag-and-drop operation. When the user sends the query to
the GDBMS, the system first checks the validity of the tree and, in the positive
case, it translates the query constructed with the visual language into a query
defined with the native language of the GDBMS.

Example. Figure 1 shows a pattern 〈GP , RP 〉 defined on a movie database where
persons (actors, directors, etc.) are connected to movies. The pattern GP consists
of 5 nodes and 4 edges. The properties tree and the path constraints on the right-
hand side describe the set of rules. GP describes an actor, node n4, such that:
(i) n4 acted in a movie together with “Monica Bellucci”, the node n2; this is
expressed by a path constraint that requires that e1 is a path of length 2. (ii) n4
acted in at least one “Comedy” (node n1) and at least one “Horror” or “Action”
(node n3), together with “Tom Cruise”, who is node n5. The rules of RP are
summarized by the following expression:

(e1.Length in [2,2]) AND

(n4.Type=Person.Actor AND

(n2.Type=Person.Actor AND n2.name="Monica Bellucci") AND

(n5.Type=Person.Actor AND n5.name="Tom Cruise"))

AND

((n1.Type=Movie AND n1.genre="Comedy") AND

(n3.Type=Movie AND (n3.genre="Horror" OR n3.genre="Action")))

Presentation and Exploration of the Results. The system shows the results
of the query in a different window. Multiple results that match the pattern are



276 W. Didimo et al.

listed in a pop-up menú and the user can display them one by one. Each result is
viewed as a graph isomorphic to GP , with the same node/edge labels and colors
as in GP , so to preserve the user’s mental map. Edges corresponding to paths are
depicted as dashed segments. An important option is the possibility of displaying
all the results as a unique graph: Kojaph merges all of them without duplicating
elements. Graphs are automatically drawn by the force-directed algorithm of
the D3.js library (http://d3js.org/); a post-processing procedure is applied to
represent multiple edges as non-overlapping curves. Figure 2 shows the results of
the query for the pattern of Fig. 1, drawn as a unique graph.

Fig. 2. The results of the query for the pattern of Fig. 1, shown as a unique graph.

The user can interact with the result in different ways. He/she can change at
any time the kind of information displayed as node and edge labels. In the figure,
actors are labeled with their names and movies with their titles, while edges are
not labeled. A mouse-over interaction on an element will show all attribute values
of that element. Zooming in/out (using the mouse wheel) and node adjustments
are possible. More importantly, the user can explore the displayed result, incre-
mentally enriching it with additional information. Double clicking on a node
v, the system visualizes the neighbors of v not already in the drawing. Double
clicking on a dashed edge e, the system replaces e with its associated path. To
keep clear the original pattern throughout the exploration, new nodes that enter
in the drawing have smaller size than the pattern nodes, and the new edges that
enter in the drawing for a double click on a node v gets the color of v.

3 System Architecture and Integration with Neo4J

Kojaph is a client-server Web application. The user interactive graphical environ-
ment is implemented using JavaScript, JQuery, and AJAX. From the server-side,

http://d3js.org/


Kojaph: Visual Definition and Exploration of Patterns in Graph Databases 277

client requests are handled by a Java servlet. In order to integrate the Kojaph
server with any GDBMS, we defined a Java abstract class, named DBMSInter-
face, that describes few methods to interact with the GDBMS, including methods
for automatically retrieving node/edge attributes and a method to translate any
query constructed with the visual language of Kojaph into a query defined with
the language of the GDBMS. These methods exchange data (input parameters
and output values) in the JSON lightweight data-interchange format. A specific
implementation of DBMSInterface must be provided for each specific GDBMS
to be used.

As a proof of concept, we integrated Kojaph to the popular Neo4J GDBMS.
We implemented the methods of class DBMSInterface using the Neo4J query
language Cypher, and we exploited the REST API of Neo4J for sending the
queries to the GDBMS. The robustness of the integrated system and the cor-
rectness of the query answers have been tested on three databases. One is a
movie/actor network of 63, 042 nodes and 106, 651 edges (http://neo4j.com/develo

per/example-data/); another is a “food network” with approximately the same
number of nodes but many more edges, namely 626, 641 (http://blog.bruggen.

com/2013/12/fascinating-food-networks-in-neo4j.html). The third database is a por-
tion of the co-authorship network in Computer Science extracted from DBLP
(http://dblp.uni-trier.de/); it consists of 198, 830 nodes and 207, 793 edges. The
time required to translate a Kojaph query to the corresponding Cypher query
is negligible; hence the response time of the system to a visual query is mainly
related to the performances of the graph pattern matching algorithms applied
by the GDBMS. Recall that the graph pattern matching problem is NP-hard [6],
but the specification of node/edge attribute properties in addition to topologi-
cal requirements may strongly reduce the search space and consequently greatly
improve the GDBMS performances. Furthermore, path constraints in Kojaph
are translated into a pre-processing filtering of the possible results, which often
leads to a dramatic reduction of the response time. The query in the example of
Fig. 2 took less than 1 s under an Ubuntu Linux OS, within a VMware virtual
machine with a 4 vCPU processor and 16 GB RAM.

4 Future Work

In the near future we plan to: (i) equip Kojaph with more functionalities to
visualize and explore the results; (ii) evaluate the usability of Kojaph versus
similar systems (e.g., Proximity); (iii) testing Kojaph on different GDBMS,
other than Neo4J.

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1–39 (2008)

2. Bhowmick, S.S., Choi, B., Zhou, S.: VOGUE: towards A visual interaction-aware
graph query processing framework. In: CIDR 2013 (2013)

http://neo4j.com/developer/example-data/
http://neo4j.com/developer/example-data/
http://blog.bruggen.com/2013/12/fascinating-food-networks-in-neo4j.html
http://blog.bruggen.com/2013/12/fascinating-food-networks-in-neo4j.html
http://dblp.uni-trier.de/


278 W. Didimo et al.

3. Blau, H., Immerman, N., Jensen, D.: A visual language for querying and updating
graphs. Technical report UM-CS-2002-037, University of Massachusetts Amherst,
Computer Science Department

4. Chau, D.H., Faloutsos, C., Tong, H., Hong, J.I., Gallagher, B., Eliassi-Rad, T.:
GRAPHITE: a visual query system for large graphs. In: ICDM 2008, pp. 963–966.
IEEE (2008)

5. Dominguez-Sal, D., et al.: Survey of graph database performance on the HPC
scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM 2010. LNCS,
vol. 6185, pp. 37–48. Springer, Heidelberg (2010)

6. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. Artif. Intell. 6, 45–53 (2006)

7. Hung, H.H., Bhowmick, S.S., Truong, B.Q., Choi, B., Zhou, S.: QUBLE: towards
blending interactive visual subgraph search queries on large networks. VLDB J.
23(3), 401–426 (2014)

8. Liu, Z., Jiang, B., Heer, J.: imMens: Real-time visual querying of big data. Comput.
Graph. Forum 32(3), 421–430 (2013)

9. Stolte, C., Tang, D., Hanrahan, P.: Polaris: a system for query, analysis, and visu-
alization of multidimensional databases. Commun. ACM 51(11), 75–84 (2008)

10. Wood, P.T.: Query languages for graph databases. SIGMOD Record 41(1), 50–60
(2012)


	Kojaph: Visual Definition and Exploration of Patterns in Graph Databases
	1 Introduction
	2 Visual Language and User Interface
	3 System Architecture and Integration with Neo4J
	4 Future Work
	References


