Skip to main content

Design of Thin Film Photocatalysts Deposited on Rotating Disks for Degradation of Organic Dyes in Wastewater

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2673 Accesses

Abstract

In photocatalytic (PC) water treatment process, light utilization efficiency and light quantum yield play more important role than other ordinary chemical factors such as concentration, pH, temperature, and pressure. Two main bottlenecks, poor light utilization efficiency and low light quantum yield, that influence PC degradation efficiency and restrict the application of PC technique in wastewater treatment were detailed discussed in this chapter. In order to solve or improve these bottlenecks, a rotating disk PC reactor has been developed by researchers. This reactor exhibits excellent PC performance due to its high light utilization efficiency and may have a broad application prospect. The rotating disk PC reactor and its latest research progresses, from micro film photocatalyst structures to macro photocatalytic substrates and to dual rotating disks PC reactor (photo fuel cell), is also introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia JC, Oliveria JL, Silva AEC et al (2007) Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. J Hazard Mater 147:105–110

    Article  CAS  Google Scholar 

  2. Ahmed S, Rasul MG, Marten WN et al (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18

    Article  CAS  Google Scholar 

  3. Ahmed S, Rasul MG, Brown R et al (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticide and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330

    Article  CAS  Google Scholar 

  4. Chong MN, Jin B, Chow CWK et al (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  5. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  6. Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529

    Article  CAS  Google Scholar 

  7. Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645–654

    Article  Google Scholar 

  8. Mo J, Zhang Y, Xu Q et al (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  CAS  Google Scholar 

  9. Chen H, Nanayakkara CE, Grassian VH (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948

    Article  CAS  Google Scholar 

  10. Li D, Haneda H, Hishita S et al (2005) Visible-light-driven N-F-Codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602

    Article  CAS  Google Scholar 

  11. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705

    Article  CAS  Google Scholar 

  12. Chen J, Poon C (2009) Photocatalytic construction and building materials: from fundamentals to applications. Build Environ 44:1899–1906

    Article  Google Scholar 

  13. Parkin IP, Palgrave RG (2005) Self-cleaning coating. J Mater Chem 15:1689–1695

    Article  CAS  Google Scholar 

  14. Zhang L, Dillert R, Bahnemann D et al (2012) Photo-induced hydrophilicity and self-cleaning: models and reality. Energy Environ Sci 5:7491–7507

    Article  CAS  Google Scholar 

  15. Euvananont C, Junin C, Inpor K et al (2008) TiO2 optical coating layers for self-cleaning applications. Ceram Int 34:1067–1071

    Article  CAS  Google Scholar 

  16. Tricoli A, Righettoni M, Pratsinis SE (2009) Anti-fogging nanofibrous SiO2 and nanostructured SiO2-TiO2 films made by rapid flame deposition and in situ annealing. Langmuir 25:12578–12584

    Article  CAS  Google Scholar 

  17. Zhang H, Li Z, Liu L et al (2009) Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors. Talanta 79:953–958

    Article  CAS  Google Scholar 

  18. Lai Y, Tang Y, Gong J et al (2012) Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J Mater Chem 22:7420–7426

    Article  CAS  Google Scholar 

  19. Keller N, Ducamp M-N, Robert D et al (2013) Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chem Rev 113:5029–5070

    Article  CAS  Google Scholar 

  20. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123:288–292

    Article  CAS  Google Scholar 

  21. Ye S, Tian Q, Song X et al (2009) Photoelectrocatalytic degradation of ethylene by a combination of TiO2 and activated carbon felts. J Photochem Photobiol A Chem 208:27–35

    Article  CAS  Google Scholar 

  22. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surface B Biointerfaces 79:5–18

    Article  CAS  Google Scholar 

  23. Yu JC, Ho W, Lin J et al (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37:2296–2301

    Article  CAS  Google Scholar 

  24. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  Google Scholar 

  25. Zhu Y, Shi J, Zhang Z et al (2002) Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal Chem 74:120–124

    Article  CAS  Google Scholar 

  26. Zheng Q, Zhou B, Bai J et al (2008) Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv Mater 20:1044–1049

    Article  CAS  Google Scholar 

  27. Wang G, Wang Q, Lu W et al (2006) Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. J Phys Chem B 110:22029–22034

    Article  CAS  Google Scholar 

  28. Bao S-J, Li CM, Zang J-F et al (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18:591–599

    Article  CAS  Google Scholar 

  29. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  30. He H, Liu C, Dubois KD et al (2012) Enhanced charge separation in nanostructured TiO2 materials for photocatalytic and photovoltaic applications. Ind Eng Chem Res 51:11841–11849

    Article  CAS  Google Scholar 

  31. Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  32. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  CAS  Google Scholar 

  33. Chen X, Shen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  34. Ni M, Leung MKH, Leung DYC et al (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  CAS  Google Scholar 

  35. Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125

    Article  CAS  Google Scholar 

  36. Wang G, Wang H, Ling Y et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  CAS  Google Scholar 

  37. Pekakis PA, Xekoukoulotakis NP, Mantzavinos D (2006) Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res 40:1276–1286

    Article  CAS  Google Scholar 

  38. Rao NN, Chaturvedi V, Puma GL (2012) Novel pebble bed photocatalytic reactor for solar treatment of textile wastewater. Chem Eng J 184:90–97

    Article  CAS  Google Scholar 

  39. Yuan R, Guan R, Liu P et al (2007) Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers. Colloid Surface A Physicochem Eng Aspects 293:80–86

    Article  CAS  Google Scholar 

  40. Ghaly MY, Jamil TS, El-Seesy IE et al (2011) Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chem Eng J 168:446–454

    Article  CAS  Google Scholar 

  41. Baransi K, Dubowski Y, Sabbah I (2012) Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res 46:789–798

    Article  CAS  Google Scholar 

  42. Badawy MI, Gohary FE, Ghaly MY et al (2009) Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation. J Hazard Mater 169:673–679

    Article  CAS  Google Scholar 

  43. Ugurlu M, Karaoglu MH (2011) TiO2 supported on sepiolite: preparation, structural and thermal characterization and catalytic behavior in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chem Eng J 166:859–867

    Article  CAS  Google Scholar 

  44. Saien J, Nejati H (2007) Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. J Hazard Mater 148:491–495

    Article  CAS  Google Scholar 

  45. Chong MN, Jin B (2012) Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater 199–200:135–142

    Article  CAS  Google Scholar 

  46. Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B Environ 99:448–460

    Article  CAS  Google Scholar 

  47. Ochiai T, Fujishima A (2012) Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J Photochem Photobiol C Photochem Rev 13:247–262

    Article  CAS  Google Scholar 

  48. Li K, Yang C, Wang Y et al (2012) A high-efficient rotating disk photoelectrocatalytic (PEC) reactor with macro light harvesting pyramid-surface electrode. AIChE J 58:2448–2455

    Article  CAS  Google Scholar 

  49. Dionysiou DD, Balasubramanian G, Suidan MT et al (2000) Rotating disk photocatalytic reactor: development, characterization, and evaluation for the destruction of organic pollutants in water. Water Res 34:2927–2940

    Article  CAS  Google Scholar 

  50. Dionysiou DD, Suidan MT, Baudin I et al (2002) Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damköhler number. Appl Catal B Environ 38:1–16

    Article  CAS  Google Scholar 

  51. Zhang L, Kanki T, Sano N et al (2001) Photocatalytic degradation of organic compounds in aqueous solution by a TiO2-coated rotating-drum reactor using solar light. Sol Energy 70:331–337

    Article  CAS  Google Scholar 

  52. Damodar RA, Swaminathan T (2008) Performance evaluation of a continuous flow immobilized rotating tube photocatalytic reactor (IRTPR) immobilized with TiO2 catalyst for azo dye degradation. Chem Eng J 144:59–66

    Article  CAS  Google Scholar 

  53. Boiarkina I, Pedron S, Patterson DA (2011) An experimental and modeling investigation of the effect of the flow regime on the photocatalytic degradation of methylene blue on a thin film coated ultraviolet irradiated spinning disc reactor. Appl Catal B Environ 110:14–24

    Article  CAS  Google Scholar 

  54. Boiarkina I, Norris S, Patterson DA (2013) The case for the photocatalytic spinning disc reactor as a process intensification technology: comparison to an annular reactor for the degradation of methylene blue. Chem Eng J 225:752–765

    Article  CAS  Google Scholar 

  55. Boiarkina I, Norris S, Patterson DA (2013) Investigation into the effect of flow structure on the photocatalytic degradation of methylene blue dehydroabietic acid in a spinning disc reactor. Chem Eng J 222:159–171

    Article  CAS  Google Scholar 

  56. Xu Y, Jia J, Zhong D et al (2009) Degradation of dye wastewater in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode. Chem Eng J 150:302–307

    Article  CAS  Google Scholar 

  57. Xu Y, Zhong D, Jia J et al (2013) Dual slant-placed electrodes thin-film photocatalytic reactor: enhanced dye degradation efficiency by self-generated electric field. Chem Eng J 225:138–143

    Article  CAS  Google Scholar 

  58. Chan AHC, Chan CK, Barford JP et al (2003) Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res 37:1125–1135

    Article  CAS  Google Scholar 

  59. Stephan B, Ludovic L, Dominique W (2011) Modelling of a falling thin film deposited photocatalytic step reactor for water purification: pesticide treatment. Chem Eng J 169:216–225

    Article  CAS  Google Scholar 

  60. Zayani G, Bousselmi L, Mhenni F et al (2009) Solar photocatalytic degradation of commercial textile azo dyes: performance of pilot plant scale thin film fixed-bed reactor. Desalination 246:344–352

    Article  CAS  Google Scholar 

  61. Zhang Z, Anderson WA, Moo-Young M (2004) Experimental analysis of a corrugated plate photocatalytic reactor. Chem Eng J 99:145–152

    Article  CAS  Google Scholar 

  62. Zhang L, Anderson WA, Zhang Z (2006) Development and modeling of a rotating disc photocatalytic reactor for wastewater treatment. Chem Eng J 121:125–134

    Article  CAS  Google Scholar 

  63. Donaldson AA, Ye A, McEvoy JG et al (2013) Rotating corrugated photoreactor design: experimental and computational analysis of TiO2-based photocatalysis. AIChE J 59:560–570

    Article  CAS  Google Scholar 

  64. Yang L, Luo S, Li Y et al (2010) High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 44:7641–7646

    Article  CAS  Google Scholar 

  65. Bessekhouad Y, Robert D, Weber J-V (2005) Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 101:315–321

    Article  CAS  Google Scholar 

  66. Bessekhouad Y, Robert D, Weber JV (2004) Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A Chem 163:569–580

    Article  CAS  Google Scholar 

  67. Yu J, Xiong J, Cheng B et al (2005) Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ 60:211–221

    Article  CAS  Google Scholar 

  68. Sakthivel S, Shankar MV, Palanichamy M et al (2004) Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008

    Article  CAS  Google Scholar 

  69. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48:1103–1111

    Article  CAS  Google Scholar 

  70. Yu Y, Yu JC, Yu J-G et al (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A Gen 289:186–196

    Article  CAS  Google Scholar 

  71. Zhang L-W, Fu H-B, Zhu Y-F (2008) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18:2180–2189

    Article  CAS  Google Scholar 

  72. Zhou K, Zhu Y, Yang X et al (2011) Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J Chem 35:353–359

    Article  CAS  Google Scholar 

  73. Kim DH, Anderson MA (1994) Photoelectrocatalytic degradation of formic acid using a porous TiO2 thin-film electrode. Environ Sci Technol 28:479–483

    Article  CAS  Google Scholar 

  74. Li XZ, Liu HS (2005) Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment. Environ Sci Technol 39:4614–4620

    Article  CAS  Google Scholar 

  75. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the Photofuelcell: a review of a re-emerging research field. J Hazard Mater 185:575–590

    Article  CAS  Google Scholar 

  76. Kaneko M, Nemoto J, Ueno H et al (2006) Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem Commun 8:336–340

    Article  CAS  Google Scholar 

  77. Li K, Xu Y, He Y et al (2013) Photocatalytic fuel cell (PFC) and dye-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation. Environ Sci Technol 47:3490–3497

    CAS  Google Scholar 

  78. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459

    Article  CAS  Google Scholar 

  79. Malato S, Fernández-Ibánez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  80. Cong Y, Tian BZ, Zhang JL et al (2011) Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Appl Catal B Environ 101:376–381

    Article  CAS  Google Scholar 

  81. Chang S, Liu W (2011) Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl Catal B Environ 101:333–342

    Article  CAS  Google Scholar 

  82. Wang Y, Feng CX, Zhang JJ et al (2010) Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl Catal B Environ 100:84–90

    Article  CAS  Google Scholar 

  83. Huo YN, Yang XL, Zhu J et al (2011) Highly active and stable CdS-TiO2 visible photocatalyst prepared by in situ sulfurization under supercritical conditions. Appl Catal B Environ 106:69–75

    CAS  Google Scholar 

  84. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363

    Article  CAS  Google Scholar 

  85. Maeda K, Domen K (2010) Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem Mater 22:612–623

    Article  CAS  Google Scholar 

  86. Wu T, Liu G, Zhao J et al (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851

    Article  CAS  Google Scholar 

  87. Zhao J, Wu T, Wu K et al (1998) Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ Sci Technol 32:2394–2400

    Article  CAS  Google Scholar 

  88. Xu Y, He Y, Cao X et al (2008) TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC process on a single electrode. Environ Sci Technol 42:2612–2617

    Article  CAS  Google Scholar 

  89. Zeevalkink JA, Kelderman P, Bouelhouwer C (1978) Liquid film thickness in a rotating disc gas-liquid contactor. Water Res 12:577–581

    Article  CAS  Google Scholar 

  90. Dionysiou DD, Burbano AA, Suidan MT (2002) Effect of oxygen in a thin-film rotating disk photocatalytic reactor. Environ Sci Technol 36:3834–3843

    Article  CAS  Google Scholar 

  91. Yuan S-J, Sheng G-P, Li W-W et al (2010) Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ Sci Technol 44:5575–5580

    Article  CAS  Google Scholar 

  92. Li K, Zhang H, Tang T et al (2014) Optimization and application of TiO2/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously. Water Res 62:1–10

    Article  CAS  Google Scholar 

  93. Tian G, Chen Y, Zhou W et al (2011) 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property. CrystEngComm 13:2994–3000

    Article  CAS  Google Scholar 

  94. Nguyen-Phan T, Kim EJ, Hahn SH et al (2011) Synthesis of hierarchical rose bridal bouquet- and humming-top-like TiO2 nanostructures and their shape-dependent degradation efficiency of dye. J Colloid Interf Sci 356:138–144

    Article  CAS  Google Scholar 

  95. Wu X, Lu GQ, Wang L (2011) Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy Environ Sci 4:3565–3572

    Article  CAS  Google Scholar 

  96. Yang M, Ma J, Zhang C et al (2005) General synthetic route toward functional hollow spheres with double-schelled structures. Angew Chem Int Ed 44:6727–6730

    Article  CAS  Google Scholar 

  97. Cui Y, Liu L, Li B et al (2010) Fabrication of tunable core-shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. J Phys Chem C 114:2434–2439

    Article  CAS  Google Scholar 

  98. Shao F, Sun J, Gao L et al (2011) Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells. ACS Appl Mater Interfaces 3:2148–2153

    Article  CAS  Google Scholar 

  99. Zhao L, Li J, Shi Y et al (2013) Double light-scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye-sensitized solar cells. J Alloy Compd 575:168–173

    Article  CAS  Google Scholar 

  100. Fang WQ, Yang XH, Zhu H et al (2012) Yolk@shell anatase TiO2 hierarchical microspheres with exposed {001} facets for high-performance dye sensitized solar cells. J Mater Chem 22:22082–22089

    Article  CAS  Google Scholar 

  101. Dionysiou DD, Khodadoust AP, Kern AM et al (2000) Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl Catal B Environ 24:139–155

    Article  CAS  Google Scholar 

  102. Bahramian A (2013) High conversion efficiency of dye-sensitized solar cells based on coral-like TiO2 nanostructured films: synthesis and physical characterization. Ind Eng Chem Res 52:14837–14846

    Article  CAS  Google Scholar 

  103. Zhang A, Zhou M, Han L et al (2011) The combination of rotating disk photocatalytic reactor and TiO2 nanotube arrays for environmental pollutants removal. J Hazard Mater 186:1374–1383

    Article  CAS  Google Scholar 

  104. Yao Y, Li K, Chen S et al (2012) Decolorization of rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chem Eng J 187:29–35

    Article  CAS  Google Scholar 

  105. Mizukoshi Y, Ohtsu N, Masahashi N (2013) Structural and characteristic variation of anodic oxide on pure Ti with anodization duration. Appl Surf Sci 283:1018–1023

    Article  CAS  Google Scholar 

  106. Hua X-S, Zhang Y-J, Ma N-H et al (2009) A new coral structure TiO2/Ti film electrode applied to photoelectrocatalytic degradation of Reactive Brilliant Red. J Hazard Mater 172:256–261

    Article  CAS  Google Scholar 

  107. Wu J-M (2007) Photodegradation of rhodamine B in water assisted by titania nanorod thin films subjected to various thermal treatments. Environ Sci Technol 41:1723–1728

    Article  CAS  Google Scholar 

  108. Li H, Zhang J, Chen X et al (2013) Ionic-liquid-assisted growth of flower-like TiO2 film on Ti substrate with high photocatalytic activity. J Mol Catal A Chem 373:12–17

    Article  CAS  Google Scholar 

  109. Zhu HY, Lan Y, Gao XP et al (2005) Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J Am Chem Soc 127:6730–6736

    Article  CAS  Google Scholar 

  110. Li K, Yang C, Xu Y et al (2012) Effect of inorganic anions on rhodamine B removal under visible light irradiation using Bi2O3/Ti rotating disk reactor. Chem Eng J 211–212:208–215

    Article  CAS  Google Scholar 

  111. Huo Y, Chen X, Zhang J et al (2014) Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation. Appl Catal B Env 148–149:550–556

    Article  CAS  Google Scholar 

  112. Li K, Tang Y, Xu Y et al (2013) A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl Catal B Environ 140–141:179–188

    Article  CAS  Google Scholar 

  113. Li K, Zhang H, Tang Y et al (2015) Photocatalytic degradation and electricity generation in a rotating disk photo electrochemical cell over hierarchical structured BiOBr film. Appl Catal B Environ 164:82–91

    Article  CAS  Google Scholar 

  114. Cao S, Guo C, Lv Y et al (2009) A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology 20:275702

    Article  CAS  Google Scholar 

  115. Zhang X, Liu X, Fan C et al (2013) A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis. Appl Catal B Environ 132–133:332–341

    Article  CAS  Google Scholar 

  116. Li K, He Y, Xu Y et al (2011) Degradation of rhodamine B using an unconventional graded photoelectrode with wedge structure. Environ Sci Technol 45:7401–7407

    Article  CAS  Google Scholar 

  117. Li K, Zhang H, He Y et al (2015) Novel wedge structured rotating disk photocatalytic reactor for post-treatment of actual textile wastewater. Chem Eng J 268:10–20

    Article  CAS  Google Scholar 

  118. Costa JC, Alves MM (2013) Posttreatment of olive mill wastewater by immobilized TiO2 photocatalysis. Photochem Photobiol 89:545–551

    Article  CAS  Google Scholar 

  119. Chatzisymeon E, Stypas E, Bousios S et al (2008) Photocatalytic treatment of black table olive processing wastewater. J Hazard Mater 154:1090–1097

    Article  CAS  Google Scholar 

  120. Xu Y, He Y, Jia J et al (2009) Cu-TiO2/Ti dual rotating disk photocatalytic (PC) reactor: dual electrode degradation facilitated by spontaneous electron transfer. Environ Sci Technol 43:6289–6294

    Article  CAS  Google Scholar 

  121. Tang T, Li K, Ying D et al (2014) High efficient aqueous-film rotating disk photocatalytic fuel cell (RDPFC) with triple functions: cogeneration of hydrogen and electricity with dye degradation. Int J Hydrogen Energy 39:10258–10266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Natural Science Foundation of China (Project No. 21477076, 51278295, and 20937003), China Postdoctoral Science Foundation (2015M581624) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, K., Jia, J. (2016). Design of Thin Film Photocatalysts Deposited on Rotating Disks for Degradation of Organic Dyes in Wastewater. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_8

Download citation

Publish with us

Policies and ethics