Skip to main content

Principles of Molecular Targeting for Radionuclide Therapy

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Nuclear Oncology

Abstract

Molecular targeting requires assessing several factors that come into play such as the location of the target, the choice of radionuclide, the inertness of the bifunctional chelate and stability of the covalently bound halogens, matching the residence time in the tumor with the physical half-life of the radionuclide, the scale and scope of the disease, and the absorbed dose sensitivity of the targeted tumor compared to normal tissue. The principles of molecular targeting are well established, but a paradigm shift from designing a medium-affinity radiotracer used to determine target density to designing a high-affinity, high-target density radioligand to maximize the target-to-nontarget ratio should increase the probability of detecting lesions smaller than the instrument resolution.

Developing and validating a therapeutic radiopharmaceutical for a single target is necessary, but often not sufficient to produce a toxic event because of other mechanisms that are only partially understood. These include nontargeted effects due to radiation emitted from neighboring, targeted cells as well as bystander effects produced by the cellular processing of radiation not necessarily impinging on DNA. Both of these indirect consequences of cellular radiation could make a substantial contribution to the efficacy of targeted radionuclide therapy. These mechanisms should be exploited to optimize the efficacy of targeted radiotherapy and overcome the inefficiency of tumor control due to nonuniform distribution of radiation dose. The design approach to take advantage of the indirect consequences of cellular radiation depends heavily on further elucidation of the indirect effect. The successful combination of these two should lead to more effective nuclear radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADAM:

2-[2-(Dimethylaminomethylphenylthio)]-5-[125I]iodophenylamine

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and RAD3 related

ATSM:

Diacetyl-bis(N4-methylthiosemicarbazone

AUC:

Area under the time-activity curve

Br-BHPE:

Bromo-l,l-bis(4-hydroxyphenyl)phenylethylene

CBF:

Cerebral blood flow

CB-TE2A:

Cross-bridged macrocyclic chelators

CEA:

Carcinoembryonic antigen

CT:

X-ray computed tomography

DAT:

Dopamine transporter

DFO:

Desferrioxamine B

DNA:

Deoxyribonucleic acid

DOPA:

l-3,4-dihydroxyphenylalanine

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

EMA:

European Medicines Agency

EPR:

Enhanced permeability and retention

FACS:

Fluorescence-activated cell sorting

FDA:

US Food and Drug Administration

18F-DOPA:

2-18F-Fluoro-l-3,4-dihydroxyphenylalanine

18F-FP-TZTP:

3-[4-[(3-[18F]fluoropropyl)thio]-1,2,5-thiadiazol-3-yl]-1,2,5,6 tetrahydro-1-methylpyridine

FWHM:

Full-width half-maximum

GFP:

Green fluorescent protein

GLUT:

Glucose transporter

Gy:

Gray unit (ionizing radiation dose in the International System of Units, corresponding to the absorption of one joule of radiation energy per kilogram of matter)

HCT116:

Cell line of human colon carcinoma

HER:

Human epidermal growth factor receptor

IdU:

Iododeoxyuridine

INXT:

(R)-N-methyl-(2-[125I]iodo-phenoxy)-3-phenylpropylamine

IQNB:

3-R-Quinuclidinyl 4-S-[123I]iodobenzilate

IUdR:

Iododeoxyuridine

125IUdR:

5-[125I]Iodo-2′-deoxyuridine

IV:

Intravenous

IVME2:

Iodovinyl-11-beta-methoxyestradiol

LET:

Linear energy transfer

LNCaP:

Lymph node metastasis from carcinoma of the prostate

LS174T:

Colon adenocarcinoma cells line name

MABG:

Meta-[211At]astatobenzylguanidine

mAbs:

Monoclonal antibodies

mAChR:

Muscarinic acetylcholine receptor

MBF:

Myocardial blood flow

MCF-7:

Michigan Cancer Foundation-7, a breast cancer cell line

MIBG:

Meta-iodobenzylguanidine

MIP:

Molecular Insight Pharmaceuticals

mRNA:

Messenger ribonucleic acid

NET:

Norepinephrine transporter

NHL:

Non-Hodgkin’s lymphoma

NOTA:

2,2′,2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid

PCa:

Prostate cancer

PCB-TE2A:

Cross-bridged (propyl) TE2A

PET:

Positron emission tomography

PMPA:

2-Phosphonomethylpentanedioic acid

p-SCN-BN-CB-TE2A:

11-bis(carboxymethyl)-1,4,8,11 tetraazabicyclo[6.6.2]hexadecane

p-SCN-BN-DOTA:

S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid

PSMA:

Prostate-specific membrane antigen

RAD3:

A 5A to 3o DNA helicase involved in nucleotide excision repair and transcription (from “RADiation sensitive”)

RIBBE:

Radiation-induced biological bystander effects

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SERT:

Serotonin transporter

SOD:

Superoxide dismutase

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

T/B:

Target-to-background

T/NT:

Target-to-nontarget

TAT:

Targeted alpha therapy

TE2A:

1,8-N,N′,8-et-carboxymethyl)-1,4,8,11-tetraazacyclotetradecane

TETA:

1,4,8,11-Tetraazacyclododecane-1,4,8,11-tetraacetic acid

TMS:

Transfectant mosaic spheroids

TMX:

Transfectant mosaic xenograft

TOC:

Therapy operating characteristic

TRODAT:

Technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]methyl](2-mercaptoethyl) amino]ethyl]amino]ethanethiolato(3-)-oxo-[1R-(exo-exo)]

Zr-DFO:

Zirconium desferrioxamine B

References

  1. Hopf C, Bantscheff M, Drewes G. Pathway proteomics and chemical proteomics team up in drug discovery. Neurodegener Dis. 2007;4(2–3):270–80.

    Article  CAS  PubMed  Google Scholar 

  2. Eckelman W, Lau C-Y, Neumann R. Perspective, the one most responsive to change. Nucl Med Biol. 2014;41(4):297–8.

    Article  CAS  PubMed  Google Scholar 

  3. Divgi C. Whither goest thou, radiopharmaceutical therapy? J Nucl Med. 2014;55(1):5–6.

    Article  PubMed  Google Scholar 

  4. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  5. Green DJ, Press OW. Whither radioimmunotherapy: to be or not to be? Cancer Res. 2017;77(9):2191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams G. Antibody fragments produced by recombinant and proteolytic methods. In: Stigbrand T, Carlsson J, Adams GP, editors. Targeted radionuclide tumor therapy – biological aspects. Springer; 2008. p. 77–88.

    Chapter  Google Scholar 

  7. Boswell CA, Marik J, Elowson MJ, Reyes NA, Ulufatu S, Bumbaca D, et al. Enhanced tumor retention of a radiohalogen label for site-specific modification of antibodies. J Med Chem. 2013;56(23):9418–26.

    Article  CAS  PubMed  Google Scholar 

  8. Eckelman WC, Mankoff DA. Choosing a single target as a biomarker or therapeutic using radioactive probes. Nucl Med Biol. 2015;42(5):421–5.

    Article  CAS  PubMed  Google Scholar 

  9. Eckelman W. Choosing a target for targeted radionuclide therapy using biomarkers to personalize treatment. J Diagn Imaging Ther. 2014;1:103–9.

    Article  Google Scholar 

  10. Zimmermann RG. Why are investors not interested in my radiotracer? The industrial and regulatory constraints in the development of radiopharmaceuticals. Nucl Med Biol. 2013;40(2):155–66.

    Article  CAS  PubMed  Google Scholar 

  11. Eckelman WC, Kuwert T, Ciarmiello A, Riondato M, Mansi L. Changes over the years in radiopharmaceutical design. Q J Nucl Med Mol Imaging. 2019.

    Google Scholar 

  12. Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18(21–22):1067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chopra A, Shan L, Eckelman WC, Leung K, Menkens AE. Important parameters to consider for the characterization of PET and SPECT imaging probes. Nucl Med Biol. 2011;38(8):1079–84.

    Article  CAS  PubMed  Google Scholar 

  14. Eckelman WC. The use of gene-manipulated mice in the validation of receptor binding radiotracer. Nucl Med Biol. 2003;30(8):851–60.

    Article  CAS  PubMed  Google Scholar 

  15. Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, et al. Imaging dopamine receptors in the human brain by positron tomography. Science. 1983;221(4617):1264–6.

    Article  CAS  PubMed  Google Scholar 

  16. Eckelman WC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, et al. External imaging of cerebral muscarinic acetylcholine receptors. Science. 1984;223(4633):291–3.

    Article  CAS  PubMed  Google Scholar 

  17. Sawada Y, Hiraga S, Francis B, Patlak C, Pettigrew K, Ito K, et al. Kinetic analysis of 3-quinuclidinyl 4-[125I]iodobenzilate transport and specific binding to muscarinic acetylcholine receptor in rat brain in vivo: implications for human studies. J Cereb Blood Flow Metab. 1990;10(6):781–807.

    Article  CAS  PubMed  Google Scholar 

  18. Eckelman WC. Imaging of muscarinic receptors in the central nervous system. Curr Pharm Des. 2006;12(30):3901–13.

    Article  CAS  PubMed  Google Scholar 

  19. Saxena A, Bester L, Shan L, Perera M, Gibbs P, Meteling B, et al. A systematic review on the safety and efficacy of yttrium-90 radioembolization for unresectable, chemorefractory colorectal cancer liver metastases. J Cancer Res Clin Oncol. 2014;140(4):537–47.

    Article  CAS  PubMed  Google Scholar 

  20. Eckelman WC, Dilsizian V. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease. J Nucl Med. 2015;56(Suppl 4):7S–10S.

    Article  CAS  PubMed  Google Scholar 

  21. Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC. Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab. 1998;18(10):1130–42.

    Article  CAS  PubMed  Google Scholar 

  22. Podruchny TA, Connolly C, Bokde A, Herscovitch P, Eckelman WC, Kiesewetter DO, et al. In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse. 2003;48(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen RM, Podruchny TA, Bokde AL, Carson RE, Herscovitch P, Kiesewetter DO, et al. Higher in vivo muscarinic-2 receptor distribution volumes in aging subjects with an apolipoprotein E-epsilon4 allele. Synapse. 2003;49(3):150–6.

    Article  CAS  PubMed  Google Scholar 

  24. Eckelman WC, Kilbourn MR, Mathis CA. Specific to nonspecific binding in radiopharmaceutical studies: it’s not so simple as it seems! Nucl Med Biol. 2009;36(3):235–7.

    Article  CAS  PubMed  Google Scholar 

  25. Eckelman WC, Kilbourn MR, Mathis CA. Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol. 2006;33(4):449–51.

    Article  CAS  PubMed  Google Scholar 

  26. Hillier SM, Maresca KP, Femia FJ, Marquis JC, Foss CA, Nguyen N, et al. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res. 2009;69(17):6932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barrett JA, Coleman RE, Goldsmith SJ, Vallabhajosula S, Petry NA, Cho S, et al. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54(3):380–7.

    Article  CAS  PubMed  Google Scholar 

  28. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS, Green MA. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med. 1998;39(9):1579–85.

    CAS  PubMed  Google Scholar 

  30. Carrasquillo JA, Lang L, Whatley M, Herscovitch P, Wang QC, Pastan I, et al. Aminosyn II effectively blocks renal uptake of 18F-labeled anti-tac disulfide-stabilized Fv. Cancer Res. 1998;58(12):2612–7.

    CAS  PubMed  Google Scholar 

  31. Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted 177Lu-radionuclide tumor therapy in mice. J Nucl Med. 2013;54(1):124–31.

    Article  PubMed  CAS  Google Scholar 

  32. Brandt M, Cardinale J, Giammei C, Guarrochena X, Happl B, Jouini N, et al. Mini-review: targeted radiopharmaceuticals incorporating reversible, low molecular weight albumin binders. Nucl Med Biol. 2019;70:46–52.

    Article  CAS  PubMed  Google Scholar 

  33. Haller S, Reber J, Brandt S, Bernhardt P, Groehn V, Schibli R, et al. Folate receptor-targeted radionuclide therapy: preclinical investigation of anti-tumor effects and potential radionephropathy. Nucl Med Biol. 2015;42(10):770–9.

    Article  CAS  PubMed  Google Scholar 

  34. Harrison HB, David SA, James MW, Zhonglin L, Luca C, John WH, editors. Quantifying and reducing uncertainties in cancer therapy. ProcSPIE; 2015.

    Google Scholar 

  35. Jackson MR, Falzone N, Vallis KA. Advances in anticancer radiopharmaceuticals. Clin Oncol. 2013;25(10):604–9.

    Article  CAS  Google Scholar 

  36. Vallabhajosula S. The chemistry of therapeutic radiopharmaceuticals. Nuclear Medicine Therapy. Springer; 2013. p. 339–68.

    Google Scholar 

  37. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34(7):757–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jadvar H. Targeted α-therapy in cancer management: synopsis of preclinical and clinical studies. Cancer Biother Radiopharm. 2020;35(7):475–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brechbiel MW. Targeted α-therapy: past, present, future? Dalton Trans. 2007;43:4918–28.

    Article  CAS  Google Scholar 

  40. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for radiotherapy: from basic radiochemistry to clinical studies – Part 1. J Nucl Med. 2018;59(6):878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for radiotherapy: from basic radiochemistry to clinical studies – Part 2. J Nucl Med. 2018;59(7):1020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marcu L, Bezak E, Allen BJ. Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit Rev Oncol Hematol. 2018;123:7–20.

    Article  PubMed  Google Scholar 

  43. Parker C, Lewington V, Shore N, Kratochwil C, Levy M, Lindén O, et al. Targeted alpha therapy, an emerging class of cancer agents: a review. JAMA Oncol. 2018;4(12):1765–72.

    Article  PubMed  Google Scholar 

  44. Zukotynski K, Jadvar H, Capala J, Fahey F. Targeted radionuclide therapy: practical applications and future prospects. Biomark Cancer. 2016;8(Suppl 2):35–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wadas TJ, Pandya DN, Solingapuram Sai KK, Mintz A. Molecular targeted α-particle therapy for oncologic applications. AJR Am J Roentgenol. 2014;203(2):253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jadvar H, Quinn DI. Targeted α-particle therapy of bone metastases in prostate cancer. Clin Nucl Med. 2013;38(12):966–71.

    Article  PubMed  Google Scholar 

  47. Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. Targeted alpha therapy: current clinical applications. Cancer Biother Radiopharm. 2020;35(6):404–17.

    Article  PubMed  Google Scholar 

  48. Hamacher KA, Den RB, Den EI, Sgouros G. Cellular dose conversion factors for alpha-particle – emitting radionuclides of interest in radionuclide therapy. J Nucl Med. 2001;42(8):1216–21.

    CAS  PubMed  Google Scholar 

  49. Azure MT, Archer RD, Sastry KS, Rao DV, Howell RW. Biological effect of lead-212 localized in the nucleus of mammalian cells: role of recoil energy in the radiotoxicity of internal alpha-particle emitters. Radiat Res. 1994;140(2):276–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumour Biol. 2012;33(3):573–90.

    Article  CAS  PubMed  Google Scholar 

  51. Goyal J, Antonarakis ES. Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases. Cancer Lett. 2012;323(2):135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dadachova E, Kitchen SG, Bristol G, Baldwin GC, Revskaya E, Empig C, et al. Pre-clinical evaluation of a 213Bi-labeled 2556 antibody to HIV-1 gp41 glycoprotein in HIV-1 mouse models as a reagent for HIV eradication. PLoS One. 2012;7(3):e31866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Helal M, Dadachova E. Radioimmunotherapy as a Novel approach in HIV, bacterial, and fungal infectious diseases. Cancer Biother Radiopharm. 2018;33(8):330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Das T, Pillai MR. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl Med Biol. 2013;40(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  55. Lövqvist A, Humm JL, Sheikh A, Finn RD, Koziorowski J, Ruan S, et al. PET imaging of 86Y-labeled anti-Lewis Y monoclonal antibodies in a nude mouse model: comparison between 86Y and 111In radiolabels. J Nucl Med. 2001;42(8):1281–7.

    PubMed  Google Scholar 

  56. Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R, et al. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S57–68.

    Article  PubMed  CAS  Google Scholar 

  57. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. Biomed Res Int. 2015;2015:481279.

    PubMed  PubMed Central  Google Scholar 

  58. Wulfert S, Kratochwil C, Choyke PL, Afshar-Oromieh A, Mier W, Kauczor H-U, et al. Multimodal imaging for early functional response assessment of 90Y-/177Lu-DOTATOC peptide receptor targeted radiotherapy with DW-MRI and 68Ga-DOTATOC-PET/CT. Mol Imaging Biol. 2014;16(4):586–94.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kratochwil C, Giesel FL, Stefanova M, Benešová M, Bronzel M, Afshar-Oromieh A, et al. PSMA-Targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57(8):1170–6.

    Article  CAS  PubMed  Google Scholar 

  60. Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hänscheid H, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57(2):248–51.

    Article  CAS  PubMed  Google Scholar 

  61. Lapa C, Schreder M, Schirbel A, Samnick S, Kortüm KM, Herrmann K, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma – comparison to [18F]FDG and laboratory values. Theranostics. 2017;7(1):205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32(2):110–22.

    Article  PubMed  Google Scholar 

  63. Rbah-Vidal L, Vidal A, Billaud EMF, Besse S, Ranchon-Cole I, Mishellany F, et al. Theranostic approach for metastatic pigmented melanoma using ICF15002, a multimodal radiotracer for both PET imaging and targeted radionuclide therapy. Neoplasia. 2017;19(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  64. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366(18):1663–73.

    Article  CAS  PubMed  Google Scholar 

  65. Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev. 2015;18(2):102–106.

    Google Scholar 

  66. Davies AJ, Rohatiner AZS, Howell S, Britton KE, Owens SE, Micallef IN, et al. Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2004;22(8):1469–79.

    Article  CAS  PubMed  Google Scholar 

  67. Morgenroth A, Vogg ATJ, Ermert K, Zlatopolskiy B, Mottaghy FM. Hedgehog signaling sensitizes Glioma stem cells to endogenous nano-irradiation. Oncotarget. 2014;5:14.

    Article  Google Scholar 

  68. Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJWD, Visser GWM, Zijlstra JM, et al. Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging. 2006;33(11):1337–45.

    Article  CAS  PubMed  Google Scholar 

  69. Kramer L, Winter G, Baur B, Kuntz AJ, Kull T, Solbach C, et al. Quantitative and correlative biodistribution analysis of 89Zr-labeled mesoporous silica nanoparticles intravenously injected into tumor-bearing mice. Nanoscale. 2017;9(27):9743–53.

    Article  CAS  PubMed  Google Scholar 

  70. Rösch F, Herzog H, Qaim SM. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair. Pharmaceuticals (Basel). 2017;10(2).

    Google Scholar 

  71. Banerjee SR, Foss CA, Pullambhatla M, Wang Y, Srinivasan S, Hobbs RF, et al. Preclinical evaluation of 86Y-labeled inhibitors of prostate-specific membrane antigen for dosimetry estimates. J Nucl Med. 2015;56(4):628–34.

    Article  CAS  PubMed  Google Scholar 

  72. Nayak TK, Brechbiel MW. 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med Chem. 2011;7(5):380–388.

    Google Scholar 

  73. Enrique MA, Mariana OR, Mirshojaei SF, Ahmadi A. Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target. 2015;23(3):191–201.

    Article  CAS  PubMed  Google Scholar 

  74. McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2(9):e907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Szymański P, Frączek T, Markowicz M, Mikiciuk-Olasik E. Development of copper based drugs, radiopharmaceuticals and medical materials. BioMetals. 2012;25(6):1089–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Stockhofe K, Postema JM, Schieferstein H, Ross TL. Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel). 2014;7(4):392–418.

    Article  CAS  Google Scholar 

  77. van Dongen GAMS, Visser GWM, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12(12):1379–89.

    Article  PubMed  CAS  Google Scholar 

  78. Griffiths GL, Goldenberg DM, Diril H, Hansen HJ. Technetium-99m, rhenium-186, and rhenium-188 direct-labeled antibodies. Cancer. 1994;73(3 Suppl):761–8.

    Article  CAS  PubMed  Google Scholar 

  79. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol. 2005;184(4):1266–73.

    Article  PubMed  Google Scholar 

  80. Lange R, Overbeek F, de Klerk JMH, Pasker-de Jong PCM, van den Berk AM, ter Heine R, et al. Treatment of painful bone metastases in prostate and breast cancer patients with the therapeutic radiopharmaceutical rhenium-188-HEDP. Nuklearmedizin. 2016;55(05):188–95.

    Article  PubMed  Google Scholar 

  81. García-Garayoa E, Schibli R, Schubiger PA. Peptides radiolabeled with Re-186/188 and Tc-99m as potential diagnostic and therapeutic agents. Nucl Sci Tech. 2007;18(2):88–100.

    Article  Google Scholar 

  82. Blankenberg FG, Strauss HW. Nuclear medicine applications in molecular imaging. JMRI. 2002;16(4):352–61.

    Article  PubMed  Google Scholar 

  83. Maecke HR, Reubi JC. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med. 2011;52(6):841–4.

    Article  CAS  PubMed  Google Scholar 

  84. Eiber M, Herrmann K. From NETTER to PETTER: PSMA-targeted radioligand therapy. J Nucl Med. 2017;58(1):9–10.

    Article  CAS  PubMed  Google Scholar 

  85. Raylman RR, Kison PV, Wahl RL. Capabilities of two- and three-dimensional FDG-PET for detecting small lesions and lymph nodes in the upper torso: a dynamic phantom study. Eur J Nucl Med. 1999;26(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  86. Togawa T, Yui N, Kinoshita F, Yanagisawa M. Quantitative evaluation in tumor SPECT and the effect of tumor size: fundamental study with phantom. Ann Nucl Med. 1997;11(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  87. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51(6):921–8.

    Article  PubMed  Google Scholar 

  88. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S69–77.

    Article  PubMed  Google Scholar 

  89. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a 68Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  90. Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med. 1986;27(9):1490–7.

    CAS  PubMed  Google Scholar 

  91. Wheldon TE, O'Donoghue JA, Barrett A, Michalowski AS. The curability of tumours of differing size by targeted radiotherapy using 131I or 90Y. Radiother Oncol. 1991;21(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  92. O'Donoghue JA, Bardiès M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36(10):1902–9.

    CAS  PubMed  Google Scholar 

  93. Cunningham SH, Mairs RJ, Wheldon TE, Welsh PC, Vaidyanathan G, Zalutsky MR. Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions. Br J Cancer. 1998;77(12):2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21(4):349–53.

    CAS  PubMed  Google Scholar 

  95. Jaques SJ, Tobes MC, Sisson JC, Baker JA, Wieland DM. Comparison of the sodium dependency of uptake of meta-lodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells. Mol Pharmacol. 1984;26:539–46.

    CAS  PubMed  Google Scholar 

  96. Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy. Chem Soc Rev. 2005;34(2):153–63.

    Article  CAS  PubMed  Google Scholar 

  97. Apelgot S, Coppey J, Grisvard J, Guillé E, Sissoëff I. Distribution of copper-64 in control mice and in mice bearing ascitic Krebs tumor cells. Cancer Res. 1981;41(4):1502–7.

    CAS  PubMed  Google Scholar 

  98. Jørgensen JT, Persson M, Madsen J, Kjær A. High tumor uptake of 64Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl Med Biol. 2013;40(3):345–50.

    Article  PubMed  CAS  Google Scholar 

  99. Kim KI, Jang SJ, Park JH, Lee YJ, Lee TS, Woo KS, et al. Detection of increased 64Cu uptake by human copper transporter 1 gene overexpression using PET with 64CuCl2 in human breast cancer xenograft model. J Nucl Med. 2014;55(10):1692–8.

    Article  CAS  PubMed  Google Scholar 

  100. Cai H, Wu JS, Muzik O, Hsieh JT, Lee RJ, Peng F. Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. J Nucl Med. 2014;55(4):622–8.

    Article  CAS  PubMed  Google Scholar 

  101. Qin C, Liu H, Chen K, Hu X, Ma X, Lan X, et al. Theranostics of malignant melanoma with 64CuCl2. J Nucl Med. 2014;55(5):812–7.

    Article  CAS  PubMed  Google Scholar 

  102. Cole WC, Wolf W. Preparation and metabolism of a cisplatin/serum protein complex. Chem Biol Interact. 1980;30(2):223–35.

    Article  CAS  PubMed  Google Scholar 

  103. Huclier-Markai S, Kerdjoudj R, Alliot C, Bonraisin AC, Michel N, Haddad F, et al. Optimization of reaction conditions for the radiolabeling of DOTA and DOTA-peptide with 44m/44Sc and experimental evidence of the feasibility of an in vivo PET generator. Nucl Med Biol. 2014;41(Suppl):e36–43.

    Article  CAS  PubMed  Google Scholar 

  104. Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM. True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol. 2005;32(7):663–71.

    Article  CAS  PubMed  Google Scholar 

  105. Duatti A. Nonisotopic substitution: is fluorine a replacement for hydrogen? Nucl Med Biol. 2013;40(7):871–2.

    Article  CAS  PubMed  Google Scholar 

  106. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52(2):166–73.

    CAS  PubMed  Google Scholar 

  107. Larson SM. Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med. 1978;8(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  108. Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, et al. Comparison of (64)Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. Bioconjug Chem. 2012;23(5):1029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Szajek LP, Kao C-H, Kiesewetter D, Sassaman M, Lang L, Plascjak P, et al. Semi-remote production of Br-76 and preparation of high specific activity radiobrominated pharmaceuticals for PET studies. Radiochim Acta. 2004;92(4–6):291–5.

    Article  CAS  Google Scholar 

  110. Dearling JL, Voss SD, Dunning P, Snay E, Fahey F, Smith SV, et al. Imaging cancer using PET – the effect of the bifunctional chelator on the biodistribution of a 64Cu-labeled antibody. Nucl Med Biol. 2011;38(1):29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Anderson CJ, Pajeau TS, Edwards WB, Sherman EL, Rogers BE, Welch MJ. In vitro and in vivo evaluation of copper-64-octreotide conjugates. J Nucl Med. 1995;36(12):2315–25.

    CAS  PubMed  Google Scholar 

  112. Rogers BE, Anderson CJ, Connett JM, Guo LW, Edwards WB, Sherman ELC, et al. Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. Bioconjug Chem. 1996;7(4):511–22.

    Article  CAS  PubMed  Google Scholar 

  113. Fani M, Del Pozzo L, Abiraj K, Mansi R, Tamma ML, Cescato R, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52(7):1110–8.

    Article  CAS  PubMed  Google Scholar 

  114. Maecke HR, Riesen A, Ritter W. The molecular structure of indium-DTPA. J Nucl Med. 1989;30(7):1235–9.

    CAS  PubMed  Google Scholar 

  115. Olsen JO, Pozderac RV, Hinkle G, Hill T, O'Dorisio TM, Schirmer WJ, et al. Somatostatin receptor imaging of neuroendocrine tumors with indium-111 pentetreotide (Octreoscan). Semin Nucl Med. 1995;25(3):251–61.

    Article  CAS  PubMed  Google Scholar 

  116. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90.

    Article  CAS  PubMed  Google Scholar 

  117. Ramogida CF, Orvig C. Tumour targeting with radiometals for diagnosis and therapy. Chem Commun (Camb). 2013;49(42):4720–39.

    Article  CAS  Google Scholar 

  118. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hnatowich DJ, Chinol M, Siebecker DA, Gionet M, Griffin T, Doherty PW, et al. Patient biodistribution of intraperitoneally administered yttrium-90-labeled antibody. J Nucl Med. 1988;29(8):1428–35.

    CAS  PubMed  Google Scholar 

  120. Lattuada L, Barge A, Cravotto G, Giovenzana GB, Tei L. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev. 2011;40(5):3019–49.

    Article  CAS  PubMed  Google Scholar 

  121. Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, et al. Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med. 2000;27(7):766–77.

    Article  CAS  PubMed  Google Scholar 

  122. Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, et al. Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin™ radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit Rev Oncol/Hematol. 2001;39(1):181–94.

    Article  CAS  Google Scholar 

  123. Brechbiel MW, Gansow OA. Backbone-substituted DTPA ligands for yttrium-90 radioimmunotherapy. Bioconjug Chem. 1991;2(3):187–94.

    Article  CAS  PubMed  Google Scholar 

  124. Carrasquillo JA, White JD, Paik CH, Raubitschek A, Le N, Rotman M, et al. Similarities and differences in 111In- and 90Y-labeled 1B4M-DTPA antiTac monoclonal antibody distribution. J Nucl Med. 1999;40(2):268–76.

    CAS  PubMed  Google Scholar 

  125. Camera L, Kinuya S, Garmestani K, Brechbiel MW, Wu C, Pai LH, et al. Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1 B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraazacyclododecane tetraacetic acid (2B-DOTA). Eur J Nucl Med. 1994;21(7):640–6.

    Article  CAS  PubMed  Google Scholar 

  126. Correia JD, Paulo A, Raposinho PD, Santos I. Radiometallated peptides for molecular imaging and targeted therapy. Dalton Trans. 2011;40(23):6144–67.

    Article  CAS  PubMed  Google Scholar 

  127. Tsionou MI, Knapp CE, Foley CA, Munteanu CR, Cakebread A, Imberti C, et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv. 2017;7(78):49586–99.

    Article  CAS  PubMed  Google Scholar 

  128. Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem. 2008;19(2):569–73.

    Article  CAS  PubMed  Google Scholar 

  129. Maheshwari V, Dearling JLJ, Treves ST, Packard AB. Measurement of the rate of copper(II) exchange for 64Cu complexes of bifunctional chelators. Inorg Chim Acta. 2012;393:318–23.

    Article  CAS  Google Scholar 

  130. Zhang Y, Hong H, Engle JW, Bean J, Yang Y, Leigh BR, et al. Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal antibody: NOTA is superior to DOTA. PLoS One. 2011;6(12):e28005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kubíček V, Böhmová Z, Ševčíková R, Vaněk J, Lubal P, Poláková Z, et al. NOTA Complexes with copper(II) and divalent metal ions: kinetic and thermodynamic studies. Inorg Chem. 2018;57(6):3061–72.

    Article  PubMed  CAS  Google Scholar 

  132. Dutta J, Chinthakindi PK, Arvidsson PI, de la Torre BG, Kruger HG, Govender T, et al. A facile synthesis of NODASA-functionalized peptide. Synlett. 2016;27(11):1685–8.

    Article  CAS  Google Scholar 

  133. Eisenwiener K-P, Prata MIM, Buschmann I, Zhang H-W, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem. 2002;13(3):530–41.

    Article  CAS  PubMed  Google Scholar 

  134. Rylova SN, Stoykow C, Del Pozzo L, Abiraj K, Tamma ML, Kiefer Y, et al. The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model. PLoS One. 2018;13(4):e0195802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ghosh SC, Pinkston KL, Robinson H, Harvey BR, Wilganowski N, Gore K, et al. Comparison of DOTA and NODAGA as chelators for 64Cu-labeled immunoconjugates. Nucl Med Biol. 2015;42(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  136. Chong H-S, Song HA, Birch N, Le T, Lim S, Ma X. Efficient synthesis and evaluation of bimodal ligand NETA. Bioorg Med Chem Lett. 2008;18(11):3436–9.

    Article  CAS  PubMed  Google Scholar 

  137. Chong H-S, Garmestani K, Ma D, Milenic DE, Overstreet T, Brechbiel MW. Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. J Med Chem. 2002;45(16):3458–64.

    Article  CAS  PubMed  Google Scholar 

  138. Kang CS, Sun X, Jia F, Song HA, Chen Y, Lewis M, et al. Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy. Bioconjug Chem. 2012;23(9):1775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kang CS, Chen Y, Lee H, Liu D, Sun X, Kweon J, et al. Synthesis and evaluation of a new bifunctional NETA chelate for molecular targeted radiotherapy using 90Y or 177Lu. Nucl Med Biol. 2015;42(3):242–9.

    Article  CAS  PubMed  Google Scholar 

  140. Kang CS, Song HA, Milenic DE, Baidoo KE, Brechbiel MW, Chong H-S. Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: Radiolabeling, serum stability, and biodistribution and tumor uptake studies. Nucl Med Biol. 2013;40(5):600–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Suchý M, Hudson RHE. Synthetic strategies toward N-functionalized cyclens. Eur J Org Chem. 2008;2008(29):4847–65.

    Article  CAS  Google Scholar 

  142. Eisenwiener K-P, Powell P, Mäcke HR. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett. 2000;10(18):2133–5.

    Article  CAS  PubMed  Google Scholar 

  143. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol. 2000;27(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  144. Meredith R, Torgue J, Shen S, Fisher DR, Banaga E, Bunch P, et al. Dose escalation and dosimetry of first-in-human α radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636–42.

    Article  CAS  PubMed  Google Scholar 

  145. Bass LA, Wang M, Welch MJ, Anderson CJ. In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. Bioconjug Chem. 2000;11(4):527–32.

    Article  CAS  PubMed  Google Scholar 

  146. Woodin KS, Heroux KJ, Boswell CA, Wong EH, Weisman GR, Niu W, et al. Kinetic Inertness and electrochemical behavior of copper(II) tetraazamacrocyclic complexes: possible implications for in vivo stability. Eur J Inorg Chem. 2005;2005(23):4829–33.

    Article  CAS  Google Scholar 

  147. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem. 2004;47(6):1465–74.

    Article  CAS  PubMed  Google Scholar 

  148. Lewis EA, Boyle RW, Archibald SJ. Ultrastable complexes for in vivo use: a bifunctional chelator incorporating a cross-bridged macrocycle. Chem Commun (Camb). 2004;19:2212–3.

    Article  CAS  Google Scholar 

  149. Price EW, Cawthray JF, Bailey GA, Ferreira CL, Boros E, Adam MJ, et al. H4octapa: an acyclic chelator for 111In radiopharmaceuticals. J Am Chem Soc. 2012;134(20):8670–83.

    Article  CAS  PubMed  Google Scholar 

  150. Boros E, Ferreira CL, Cawthray JF, Price EW, Patrick BO, Wester DW, et al. Acyclic chelate with ideal properties for 68Ga PET imaging agent elaboration. J Am Chem Soc. 2010;132(44):15726–33.

    Article  CAS  PubMed  Google Scholar 

  151. Ramogida CF, Cawthray JF, Boros E, Ferreira CL, Patrick BO, Adam MJ, et al. H2CHXdedpa and H4CHXoctapa – Chiral acyclic chelating ligands for 67/68Ga and 111In radiopharmaceuticals. Inorg Chem. 2015;54(4):2017–31.

    Article  CAS  PubMed  Google Scholar 

  152. Price EW, Zeglis BM, Cawthray JF, Ramogida CF, Ramos N, Lewis JS, et al. H4octapa-trastuzumab: versatile acyclic chelate system for 111In and 177Lu imaging and therapy. J Am Chem Soc. 2013;135(34):12707–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Di Bartolo NM, Sargeson AM, Donlevy TM, Smith SV. Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging. Dalton Trans. 2001;15:2303–9.

    Article  CAS  Google Scholar 

  154. Voss SD, Smith SV, DiBartolo N, McIntosh LJ, Cyr EM, Bonab AA, et al. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A. 2007;104(44):17489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li G, Wang X, Zong S, Wang J, Conti PS, Chen K. MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm. 2014;11(11):3938–46.

    Article  CAS  PubMed  Google Scholar 

  156. Paterson BM, Alt K, Jeffery CM, Price RI, Jagdale S, Rigby S, et al. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody. Angew Chem Int Ed Eng. 2014;53(24):6115–9.

    Article  CAS  Google Scholar 

  157. Liu S, Li D, Huang CW, Yap LP, Park R, Shan H, et al. The efficient synthesis and biological evaluation of novel bi-functionalized sarcophagine for 64Cu radiopharmaceuticals. Theranostics. 2012;2(6):589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Heskamp S, Raavé R, Boerman O, Rijpkema M, Goncalves V, Denat F. Zr-Immuno-positron emission tomography in oncology: state-of-the-art. Bioconjug Chem. 2017;28(9):2211–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. van de Watering FC, Rijpkema M, Perk L, Brinkmann U, Oyen WJ, Boerman OC. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed Res Int. 2014;2014:203601.

    PubMed  PubMed Central  Google Scholar 

  160. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51(8):1293–1300.

    Google Scholar 

  161. Patra M, Bauman A, Mari C, Fischer CA, Blacque O, Häussinger D, et al. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem Commun (Camb). 2014;50(78):11523–5.

    Article  CAS  Google Scholar 

  162. Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, et al. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for. Eur J Nucl Med Mol Imaging. 2017;44(2):286–95.

    Article  CAS  PubMed  Google Scholar 

  163. Deri MA, Ponnala S, Zeglis BM, Pohl G, Dannenberg JJ, Lewis JS, et al. Alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem. 2014;57(11):4849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Deri MA, Ponnala S, Kozlowski P, Burton-Pye BP, Cicek HT, Hu C, et al. p-SCN-Bn-HOPO: a superior bifunctional chelator for 89Zr immunoPET. Bioconjug Chem. 2015;26(12):2579–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol. 2013;40(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  166. Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy – problems, solutions, and prospects. Microcirculation. 2016;23(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  167. Severin GW, Jørgensen JT, Wiehr S, Rolle AM, Hansen AE, Maurer A, et al. The impact of weakly bound 89Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection. Nucl Med Biol. 2015;42(4):360–8.

    Article  CAS  PubMed  Google Scholar 

  168. Aloj L, Jogoda E, Lang L, Caracò C, Neumann RD, Sung C, et al. Targeting of transferrin receptors in nude mice bearing A431 and LS174T xenografts with [18F]holo-transferrin: permeability and receptor dependence. J Nucl Med. 1999;40(9):1547–55.

    CAS  PubMed  Google Scholar 

  169. Li X, Wu A, Xue Q, Fang Y, Liu J, Zhang H, et al. Synthesis and biological evaluation of fatty acids containing 99mTc-oxo and 99mTc-nitrido for myocardial metabolism imaging. J Radioanal Nucl Chem. 2016;307(2):1429–38.

    Article  CAS  Google Scholar 

  170. Meszaros LK, Dose A, Biagini SCG, Blower PJ. Hydrazinonicotinic acid (HYNIC) – coordination chemistry and applications in radiopharmaceutical chemistry. Inorg Chim Acta. 2010;363(6):1059–69.

    Article  CAS  Google Scholar 

  171. Sun W, Chu T. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting. Bioorg Med Chem Lett. 2015;25(20):4453–6.

    Article  CAS  PubMed  Google Scholar 

  172. Mei L, Wang Y, Chu T. 99mTc/Re complexes bearing bisnitroimidazole or mononitroimidazole as potential bioreductive markers for tumor: synthesis, physicochemical characterization and biological evaluation. Eur J Med Chem. 2012;58:50–63.

    Google Scholar 

  173. Clarke C, Cowley AR, Dilworth JR, Donnelly PS. Pyridylthiocarbazide complexes of rhenium with potential radiopharmaceutical applications. Dalton Trans. 2004;16:2402–3.

    Article  Google Scholar 

  174. Wang X, Cui M, Yu P, Li Z, Yang Y, Jia H, et al. Synthesis and biological evaluation of novel technetium-99m labeled phenylbenzoxazole derivatives as potential imaging probes for β-amyloid plaques in brain. Bioorg Med Chem Lett. 2012;22(13):4327–31.

    Article  CAS  PubMed  Google Scholar 

  175. Demoin DW, Dame AN, Minard WD, Gallazzi F, Seickman GL, Rold TL, et al. Monooxorhenium(V) complexes with 222-N. Nucl Med Biol. 2016;43(12):802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ocampo-García BE, Santos-Cuevas CL, De León-Rodríguez LM, García-Becerra R, Ordaz-Rosado D, Luna-Guitiérrez MA, et al. Design and biological evaluation of 99mTc-N2S2-Tat(49-57)-c(RGDyK): a hybrid radiopharmaceutical for tumors expressing αvβ3 integrins. Nucl Med Biol. 2013;40(4):481–7.

    Article  PubMed  CAS  Google Scholar 

  177. Rasaneh S, Dadras MR. The potential of SOCTA as a chelator for radiolabeling of trastuzumab with 99mTc. J Radioanal Nucl Chem. 2016;307(2):1353–7.

    Article  CAS  Google Scholar 

  178. North AJ, Karas JA, Ma MT, Blower PJ, Ackermann U, White JM, et al. Rhenium and technetium-oxo complexes with thioamide derivatives of pyridylhydrazine bifunctional chelators conjugated to the tumour targeting peptides octreotate and cyclic-RGDfK. Inorg Chem. 2017;56(16):9725–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Einrem RF, Gagnon KJ, Alemayehu AB, Ghosh A. Metal-ligand misfits: facile access to rhenium-oxo corroles by oxidative metalation. Chemistry. 2016;22(2):517–20.

    Article  CAS  PubMed  Google Scholar 

  180. Einrem RF, Braband H, Fox T, Vazquez-Lima H, Alberto R, Ghosh A. Synthesis and molecular structure of 99 Tc corroles. Chemistry. 2016;22(52):18747–51.

    Article  CAS  PubMed  Google Scholar 

  181. Zaragoza JP, Siegler MA, Goldberg DP. Rhenium(V)-oxo corrolazines: isolating redox-active ligand reactivity. Chem Commun (Camb). 2016;52(1):167–70.

    Article  CAS  Google Scholar 

  182. Zuckman SA, Freeman GM, Troutner DE, Volkert WA, Holmes RA, Van Derveer DG, et al. Preparation and x-ray structure of trans-dioxo(1,4,8,11-tetraazacyclotetradecane)technetium(V) perchlorate hydrate. Inorg Chem. 1981;20(8):2386–9.

    Article  CAS  Google Scholar 

  183. Lock CJL, Turner G. A reinvestigation of dioxobis(ethylenediamine)rhenium(V) chloride and dioxotetrakis(pyridine)rhenium(V) chloride dihydrate. Acta Crystallographica Sect B. 1978;34(3):923–7.

    Article  Google Scholar 

  184. Nock BA, Charalambidis D, Sallegger W, Waser B, Mansi R, Nicolas GP, et al. New gastrin releasing peptide receptor-directed. J Med Chem. 2018;61(7):3138–50.

    Article  CAS  PubMed  Google Scholar 

  185. Benny PD, Barnes CL, Piekarski PM, Lydon JD, Jurisson SS. Synthesis and characterization of novel rhenium(V) tetradentate N2O2 Schiff base monomer and dimer complexes. Inorg Chem. 2003;42(20):6519–27.

    Article  CAS  PubMed  Google Scholar 

  186. Benny PD, Green JL, Engelbrecht HP, Barnes CL, Jurisson SS. Reactivity of rhenium(V) oxo Schiff base complexes with phosphine ligands: rearrangement and reduction reactions. Inorg Chem. 2005;44(7):2381–90.

    Article  CAS  PubMed  Google Scholar 

  187. Rotsch DA, Reinig KM, Weis EM, Taylor AB, Barnes CL, Jurisson SS. Novel rhenium(III, IV, and V) tetradentate N2O2 Schiff base mononuclear and dinuclear complexes. Dalton Trans. 2013;42(32):11614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Spies H, Glaser M, Pietzsch H-J, Hahn FE, Lügger T. Synthesis and reactions of trigonal-bipyramidal rhenium and technetium complexes with a tripodal, tetradentate NS3 ligand. Inorg Chim Acta. 1995;240(1):465–78.

    Article  CAS  Google Scholar 

  189. Gniazdowska E, Koźmiński P, Fuks L. Synthesis, radiochemistry and stability of the conjugates of technetium-99m complexes with Substance P. J Radioanal Nucl Chem. 2013;298(2):1171–7.

    Article  CAS  Google Scholar 

  190. Koźmiński P, Gniazdowska E. Synthesis and in vitro/in vivo evaluation of novel mono- and trivalent technetium-99m labeled ghrelin peptide complexes as potential diagnostic radiopharmaceuticals. Nucl Med Biol. 2015;42(1):28–37.

    Article  PubMed  CAS  Google Scholar 

  191. Vats K, Mallia MB, Mathur A, Sarma HD, Banerjee S. ‘4+1’ Mixed Ligand Strategy for the preparation of 99mTc-radiopharmaceuticals for hypoxia detecting applications. Chem Sel. 2017;2(10):2910–6.

    CAS  Google Scholar 

  192. Alberto R, Schibli R, Egli A, Schubiger AP, Abram U, Kaden TA. A Novel Organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998;120(31):7987–8.

    Article  CAS  Google Scholar 

  193. Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, et al. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem. 2000;11(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  194. Kluba CA, Mindt TL. Click-to-chelate: development of technetium and rhenium-tricarbonyl labeled radiopharmaceuticals. Molecules. 2013;18(3):3206–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Maresca KP, Marquis JC, Hillier SM, Lu G, Femia FJ, Zimmerman CN, et al. Novel polar single amino acid chelates for technetium-99m tricarbonyl-based radiopharmaceuticals with enhanced renal clearance: application to octreotide. Bioconjug Chem. 2010;21(6):1032–42.

    Article  CAS  PubMed  Google Scholar 

  196. Sun H, Wang X, Zhai S. The rational design and biological mechanisms of nanoradiosensitizers. Nanomaterials (Basel). 2020;10(3).

    Google Scholar 

  197. Xie D, Wang M, Qi W. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J Phys Condens Matter. 2004;16:L401.

    Article  CAS  Google Scholar 

  198. Pallares RM, Choo P, Cole LE, Mirkin CA, Lee A, Odom TW. Manipulating immune activation of macrophages by tuning the oligonucleotide composition of gold nanoparticles. Bioconjug Chem. 2019;30(7):2032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem. 2010;21(12):2250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Engels E, Westlake M, Li N, Vogel S, Gobert Q, Thorpe N, et al. Thulium oxide nanoparticles: a new candidate for image-guided radiotherapy. Biomed Phys Eng Expr. 2018;4(4):044001.

    Article  Google Scholar 

  201. Yue J, Pallares RM, Cole LE, Coughlin EE, Mirkin CA, Lee A, et al. Smaller CpG-conjugated gold nanoconstructs achieve higher targeting specificity of immune activation. ACS Appl Mater Interfaces. 2018;10(26):21920–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Pallares RM, Kong SL, Hui Ru T, Thanh NTK, Lu Y, Su X. A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chem Commun. 2015;51(77):14524–7.

    Article  CAS  Google Scholar 

  203. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Eng. 2007;46(8):1222–44.

    Article  CAS  Google Scholar 

  204. Pallares RM, Thanh NTK, Su X. Tunable plasmonic colorimetric assay with inverse sensitivity for extracellular DNA quantification. Chem Commun. 2018;54(80):11260–3.

    Article  CAS  Google Scholar 

  205. Sedlmeier A, Gorris HH. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev. 2015;44(6):1526–60.

    Article  CAS  PubMed  Google Scholar 

  206. Pallares RM, Thanh NTK, Su X. Quantifying the binding between proteins and open chromatin-like DNA sequences with gold nanorods. Chem Commun. 2019;55(100):15041–4.

    Article  CAS  Google Scholar 

  207. Pallares RM, Carter KP, Zeltmann SE, Tratnjek T, Minor AM, Abergel RJ. Selective lanthanide sensing with gold nanoparticles and hydroxypyridinone chelators. Inorg Chem. 2020;59(3):2030–6.

    Article  CAS  PubMed  Google Scholar 

  208. Pallares RM, Bosman M, Thanh NTK, Su X. A plasmonic multi-logic gate platform based on sequence-specific binding of estrogen receptors and gold nanorods. Nanoscale. 2016;8(48):19973–7.

    Article  CAS  PubMed  Google Scholar 

  209. Du F, Lou J, Jiang R, Fang Z, Zhao X, Niu Y, et al. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int J Nanomedicine. 2017;12:5973–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wu PH, Onodera Y, Ichikawa Y, Rankin EB, Giaccia AJ, Watanabe Y, et al. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int J Nanomedicine. 2017;12:5069–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem. 2012;19(19):3070–102.

    Article  CAS  PubMed  Google Scholar 

  212. Huynh NT, Roger E, Lautram N, Benoît JP, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (London). 2010;5(9):1415–33.

    Article  CAS  Google Scholar 

  213. Pallares RM, Su X, Lim SH, Thanh NTK. Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects. J Mater Chem C. 2016;4(1):53–61.

    Article  CAS  Google Scholar 

  214. Pallares RM, Wang Y, Lim SH, Thanh K, Nn T, Su X. Growth of anisotropic gold nanoparticles in photoresponsive fluid for UV sensing and erythema prediction. Nanomedicine. 2016;11(21):2845–60.

    CAS  PubMed  Google Scholar 

  215. Pallares RM, Stilson T, Choo P, Hu J, Odom TW. Using good’s buffers to control the anisotropic structure and optical properties of spiky gold nanoparticles for refractive index sensing. ACS Appl Nano Mater. 2019;2(8):5266–71.

    Article  CAS  Google Scholar 

  216. Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed. 2011;50(26):5808–29.

    Article  CAS  Google Scholar 

  217. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev. 2012;64(2):190–9.

    Article  CAS  PubMed  Google Scholar 

  218. Mansoori GA, Mohazzabi P, McCormack P, Jabbari S. Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Review of Science Technology and Sustainable Development. 2007;4.

    Google Scholar 

  219. Du J, Gu Z, Yan L, Yong Y, Yi X, Zhang X, et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv Mater. 2017;29(34).

    Google Scholar 

  220. Cornelissen B. Imaging the inside of a tumour: a review of radionuclide imaging and theranostics targeting intracellular epitopes. J Labell Comp Radiopharm. 2014;57(4):310–6.

    Article  CAS  Google Scholar 

  221. Jia F, Balaji BS, Gallazzi F, Lewis MR. Copper-64-labeled anti-bcl-2 PNA-peptide conjugates selectively localize to bcl-2-positive tumors in mouse models of B-cell lymphoma. Nucl Med Biol. 2015;42(11):809–15.

    Article  CAS  PubMed  Google Scholar 

  222. DeSombre ER, Mease RC, Hughes A, Harper PV, DeJesus OT, Friedman AM. Bromine-80m-labeled estrogens: Auger electron-emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor-positive cancers. Cancer Res. 1988;48(4):899–906.

    CAS  PubMed  Google Scholar 

  223. DeSombre ER, Shafii B, Hanson RN, Kuivanen PC, Hughes A. Estrogen receptor-directed radiotoxicity with Auger electrons: specificity and mean lethal dose. Cancer Res. 1992;52(20):5752–8.

    CAS  PubMed  Google Scholar 

  224. Pereira E, do Quental L, Palma E, Oliveira MC, Mendes F, Raposinho P, et al. Evaluation of acridine orange derivatives as DNA-targeted radiopharmaceuticals for auger therapy: influence of the radionuclide and distance to DNA. Sci Rep. 2017;7(1):42544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dahmen V, Pomplun E, Kriehuber R. Iodine-125-labeled DNA-Triplex-forming oligonucleotides reveal increased cyto- and genotoxic effectiveness compared to Phosphorus-32. Int J Radiat Biol. 2016;92(11):679–85.

    Article  CAS  PubMed  Google Scholar 

  226. Dahmen V, Schmitz S, Kriehuber R. Induction of the chromosomal translocation t(14;18) by targeting the BCL-2 locus with specific binding I-125-labeled triplex-forming oligonucleotides. Mutat Res. 2017;823:58–64.

    Article  CAS  Google Scholar 

  227. DeSombre ER, Hughes A, Hanson RN, Kearney T. Therapy of estrogen receptor-positive micrometastases in the peritoneal cavity with Auger electron-emitting estrogens – theoretical and practical considerations. Acta Oncol. 2000;39(6):659–66.

    Article  CAS  PubMed  Google Scholar 

  228. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev. 2017;109:102–18.

    Article  CAS  PubMed  Google Scholar 

  230. Ge X, Song ZM, Sun L, Yang YF, Shi L, Si R, et al. Lanthanide (Gd3+ and Yb3+) functionalized gold nanoparticles for in vivo imaging and therapy. Biomaterials. 2016;108:35–43.

    Article  CAS  PubMed  Google Scholar 

  231. Koumarianou E, Slastnikova TA, Pruszynski M, Rosenkranz AA, Vaidyanathan G, Sobolev AS, et al. Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter – a potential Auger electron emitting EGFR-targeted radiotherapeutic. Nucl Med Biol. 2014;41(6):441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Bloomer WD, Adelstein SJ. 5-125I-iododeoxyuridine as prototype for radionuclide therapy with Auger emitters. Nature. 1977;265(5595):620–1.

    Article  CAS  PubMed  Google Scholar 

  233. Bloomer WD, Adelstein SJ. Therapeutic application of iodine-125 labeled iododeoxyuridine in an early ascites tumour model. Curr Top Radiat Res Q. 1978;12(1–4):513–25.

    CAS  PubMed  Google Scholar 

  234. Baranowska-Kortylewicz J, Makrigiorgos GM, Van den Abbeele AD, Berman RM, Adelstein SJ, Kassis AI. 5-[123I]iodo-2′-deoxyuridine in the radiotherapy of an early ascites tumor model. Int J Radiat Oncol Biol Phys. 1991;21(6):1541–51.

    Article  CAS  PubMed  Google Scholar 

  235. Charlton DE. The range of high LET effects from 125I decays. Radiat Res. 1986;107(2):163–71.

    Article  CAS  PubMed  Google Scholar 

  236. Kassis AI, Fayad F, Kinsey BM, Sastry KS, Taube RA, Adelstein SJ. Radiotoxicity of 125I in mammalian cells. Radiat Res. 1987;111(2):305–18.

    Article  CAS  PubMed  Google Scholar 

  237. Reissig F, Mamat C, Steinbach J, Pietzsch HJ, Freudenberg R, Navarro-Retamal C, et al. Direct and Auger electron-induced, single- and double-strand breaks on plasmid dna caused by 99mTc-labeled pyrene derivatives and the effect of bonding distance. PLoS One. 2016;11(9):e0161973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Link EM, Brown I, Carpenter RN, Mitchell JS. Uptake and therapeutic effectiveness of 125I- and 211At-methylene blue for pigmented melanoma in an animal model system. Cancer Res. 1989;49(15).

    Google Scholar 

  239. Gaze MN, Huxham IM, Mairs RJ, Barrett A. Intracellular localization of metaiodobenzyl guanidine in human neuroblastoma cells by electron spectroscopic imaging. Int J Cancer. 1991;47(6):875–80.

    Article  CAS  PubMed  Google Scholar 

  240. Clerc J, Halpern S, Fourré C, Omri F, Briançon C, Jeusset J, et al. SIMS microscopy imaging of the intratumor biodistribution of metaiodobenzylguanidine in the human SK-N-SH neuroblastoma cell line xenografted into nude mice. J Nucl Med. 1993;34(9).

    Google Scholar 

  241. Tritschler H-J, Medori R. Mitochondrial DNA alterations as a source of human disorders. Neurology. 1993;43(2).

    Google Scholar 

  242. Howell RW. Radiation spectra for Auger-electron emitting radionuclides: report No. 2 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1992;19(6).

    Google Scholar 

  243. Sastry KS. Biological effects of the Auger emitter iodine-125: a review. Report No. 1 of AAPM Nuclear Medicine Task Group No. 6. Med Phys. 1992;19(6).

    Google Scholar 

  244. Jarvis WD, Kolesnick RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci U S A. 1994;91(1).

    Google Scholar 

  245. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science. 1993;259(5102):1769–71.

    Article  CAS  PubMed  Google Scholar 

  246. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, et al. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med. 1994;180(2):523–5.

    Article  Google Scholar 

  247. Pouget JP, Santoro L, Raymond L, Chouin N, Bardiès M, Bascoul-Mollevi C, et al. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res. 2008;170(2).

    Google Scholar 

  248. Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki PO, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med. 2009;50(12).

    Google Scholar 

  249. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 1992;52(22):6394–6.

    CAS  PubMed  Google Scholar 

  250. Mothersill C, Seymour CB. Radiation-induced bystander effects – implications for cancer. Nat Rev Cancer. 2004;4(2):158–64.

    Article  CAS  PubMed  Google Scholar 

  251. Mothersill C, Seymour C. Radiation-induced bystander effects: past history and future directions. Radiat Res. 2001;155(6):759–67.

    Article  CAS  PubMed  Google Scholar 

  252. Lyng FM, Seymour CB, Mothersill C. Early events in the apoptotic cascade initiated in cells treated with medium from the progeny of irradiated cells. Radiat Prot Dosim. 2002;99(1–4):169–72.

    Article  CAS  Google Scholar 

  253. Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int J Radiat Biol. 2003;79(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  254. Morgan WF. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene. 2003;22(45):7094–9.

    Article  CAS  PubMed  Google Scholar 

  255. Little JB. Genomic instability and bystander effects: a historical perspective. Oncogene. 2003;22(45):6978–87.

    Article  CAS  PubMed  Google Scholar 

  256. Carlsson J, Forssell Aronsson E, Hietala SO, Stigbrand T, Tennvall J. Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol. 2003;66(2).

    Google Scholar 

  257. Boyd M, Ross SC, Dorrens J, Fullerton NE, Tan KW, Zalutsky MR, et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and Auger electron-emitting radionuclides. J Nucl Med. 2006;47(6):1007–15.

    CAS  PubMed  Google Scholar 

  258. Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9(5):351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Brady D, O’Sullivan JM, Prise KM. What is the role of the bystander response in radionuclide therapies? Front Oncol. 2013;3:215.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Paillas S, Boudousq V, Piron B, Kersual N, Bardiès M, Chouin N, et al. Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane. Nucl Med Biol. 2013;40(4).

    Google Scholar 

  261. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6(7).

    Google Scholar 

  262. Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 2015;356(1).

    Google Scholar 

  263. Lehnert BE, Goodwin EH, Deshpande A. Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 1997;57(11).

    Google Scholar 

  264. Narayanan PK, Goodwin EH, Lehnert BE. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res. 1997;57(18).

    Google Scholar 

  265. Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, et al. Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res. 2001;155(3).

    Google Scholar 

  266. Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol. 2002;78(9).

    Google Scholar 

  267. Iyer R, Lehnert BE, Svensson R. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res. 2000;60(5).

    Google Scholar 

  268. Zhou H, Ivanov V, Lien Y, Davidson M, Hei T. Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects. Cancer Res. 2008;68(7).

    Google Scholar 

  269. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3).

    Google Scholar 

  270. De Ridder M, Jiang H, Van Esch G, Law K, Monsaert C, Van den Berge D, et al. IFN-gamma+ CD8+ T lymphocytes: possible link between immune and radiation responses in tumor-relevant hypoxia. Int J Radiat Oncol Biol Phys. 2008;71(3).

    Google Scholar 

  271. Lee Y, Auh S, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3).

    Google Scholar 

  272. Pouget J, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med. 2015;2.

    Google Scholar 

  273. Bishayee A, Hill H, Stein D, Rao D, Howell R. Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat Res. 2001;155(2).

    Google Scholar 

  274. Persaud R, Zhou H, Baker S, Hei T, Hall E. Assessment of low linear energy transfer radiation-induced bystander mutagenesis in a three-dimensional culture model. Cancer Res. 2005;65(21).

    Google Scholar 

  275. Xue L, Butler N, Makrigiorgos G, Adelstein S, Kassis A. Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci U S A. 2002;99(21).

    Google Scholar 

  276. Kassis A. In vivo validation of the bystander effect. Hum Exp Toxicol. 2004;23(2).

    Google Scholar 

  277. Mamlouk O, Balagurumoorthy P, Wang K, Adelstein S, Kassis A. Bystander effect in tumor cells produced by Iodine-125 labeled human lymphocytes. Int J Radiat Biol. 2012;88(12).

    Google Scholar 

  278. Akudugu J, Azzam E, Howell R. Induction of lethal bystander effects in human breast cancer cell cultures by DNA-incorporated Iodine-125 depends on phenotype. Int J Radiat Biol. 2012;88(12).

    Google Scholar 

  279. Chouin N, Bernardeau K, Bardiès M, Faivre-Chauvet A, Bourgeois M, Apostolidis C, et al. Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. II. Application of the microdosimetric model to experimental results. Radiat Res. 2009;171(6).

    Google Scholar 

  280. Howell R, Rajon D, Bolch W. Monte Carlo simulation of irradiation and killing in three-dimensional cell populations with lognormal cellular uptake of radioactivity. Int J Radiat Biol. 2012;88(1–2).

    Google Scholar 

  281. Burdak-Rothkamm S, Rothkamm K, Prise K. ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res. 2008;68(17).

    Google Scholar 

  282. Alper T. Effects on irradiated micro-organisms of growth in the presence of acriflavine. Nature. 1963;200.

    Google Scholar 

  283. Hussain S, Hofseth L, Harris C. Radical causes of cancer. Nat Rev Cancer. 2003;3(4).

    Google Scholar 

  284. Corre I, Niaudet C, Paris F. Plasma membrane signaling induced by ionizing radiation. Mutat Res. 2010;704(1–3).

    Google Scholar 

  285. Kolesnick R, Haimovitz-Friedman A, Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol. 1994;72(11–12).

    Google Scholar 

  286. Piron B, Paillas S, Boudousq V, Pèlegrin A, Bascoul-Mollevi C, Chouin N, et al. DNA damage-centered signaling pathways are effectively activated during low dose-rate Auger radioimmunotherapy. Nucl Med Biol. 2014;41(Suppl).

    Google Scholar 

  287. Butterworth K, Coulter J, Jain S, Forker J, McMahon S, Schettino G, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology. 2010;21(29).

    Google Scholar 

  288. Kam W, Banati R. Effects of ionizing radiation on mitochondria. Free Radic Biol Med. 2013;65:607–19.

    Article  CAS  PubMed  Google Scholar 

  289. Samper E, Morgado L, Estrada J, Bernad A, Hubbard A, Cadenas S, et al. Increase in mitochondrial biogenesis, oxidative stress, and glycolysis in murine lymphomas. Free Radic Biol Med. 2009;46(3).

    Google Scholar 

  290. Poyton R, Ball K, Castello P. Mitochondrial generation of free radicals and hypoxic signaling. TEM. 2009;20(7).

    Google Scholar 

  291. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96.

    Article  CAS  PubMed  Google Scholar 

  292. Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3).

    Google Scholar 

  293. Wang J, Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther. 2008;7(12).

    Google Scholar 

  294. Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Asp Med. 2010;31(2):145–70.

    Article  CAS  Google Scholar 

  295. Murphy J, Nugent S, Seymour C, Mothersill C. Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells. Mutat Res. 2005;585(1–2).

    Google Scholar 

  296. Hei T, Zhou H, Ivanov V, Hong M, Lieberman H, Brenner D, et al. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 2008;60(8).

    Google Scholar 

  297. Yu B, Wei H, He Q, Ferreira CA, Kutyreff CJ, Ni D, et al. Efficient uptake of 177Lu-porphyrin-PEG nanocomplexes by tumor mitochondria for multimodal-imaging-guided combination therapy. Angew Chem Int Ed Eng. 2018;57(1):218–22.

    Article  CAS  Google Scholar 

  298. Sutherland R, Inch W, McCredie J, Kruuv J. A multi-component radiation survival curve using an in vitro tumour model. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;18(5):491–5.

    Article  CAS  PubMed  Google Scholar 

  299. Mueller-Klieser W. Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol. 1987;113(2).

    Google Scholar 

  300. Knuechel R, Sutherland R. Recent developments in research with human tumour spheroids. Cancer J. 1990;3:234–43.

    Google Scholar 

  301. Carlsson J, Nederman T. Tumour spheroids as a model in studies of drug effects. Spheroid culture in cancer research: In: Bjerkvig R, Boca Raton: CRC Press; 1992:245–269.

    Google Scholar 

  302. Mikhail A, Eetezadi S, Allen C. Multicellular tumor spheroids for evaluation of cytotoxicity and tumor growth inhibitory effects of nanomedicines in vitro: a comparison of docetaxel-loaded block copolymer micelles and Taxotere®. PLoS One. 2013;8(4).

    Google Scholar 

  303. Hickman J, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, et al. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J. 2014;9(9).

    Google Scholar 

  304. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart L. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1).

    Google Scholar 

  305. Sutherland R. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science (New York, NY). 1988;240(4849).

    Google Scholar 

  306. Senavirathna L, Fernando R, Maples D, Zheng Y, Polf J, Ranjan A. Tumor Spheroids as an in vitro model for determining the therapeutic response to proton beam radiotherapy and thermally sensitive nanocarriers. Theranostics. 2013;3(9).

    Google Scholar 

  307. Boyd M, Mairs S, Stevenson K, Livingstone A, Clark A, Ross S, et al. Transfectant mosaic spheroids: a new model for evaluation of tumour cell killing in targeted radiotherapy and experimental gene therapy. J Gene Med. 2002;4(5).

    Google Scholar 

  308. Lybarger L, Dempsey D, Franek K, Chervenak R. Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry. 1996;25(3).

    Google Scholar 

  309. Boyd M, Cunningham S, Brown M, Mairs R, Wheldon T. Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther. 1999;6(6).

    Google Scholar 

  310. Vaidyanathan G, Affleck D, Alston K, Zhao X, Hens M, Hunter D, et al. A kit method for the high level synthesis of [211At]MABG. Bioorg Med Chem. 2007;15(10).

    Google Scholar 

  311. Zalutsky M, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharma Des. 2000;6(14).

    Google Scholar 

  312. Mairs R, Ross S, McCluskey A, Boyd M. A transfectant mosaic xenograft model for evaluation of targeted radiotherapy in combination with gene therapy in vivo. J Nucl Med. 2007;48(9).

    Google Scholar 

  313. Sisson J, Shapiro B, Hutchinson R, Zasadny K, Mallette S, Mudgett E, et al. Treatment of neuroblastoma with [125I]metaiodobenzylguanidine. J Nucl Med Biol. 1991;35(4).

    Google Scholar 

  314. De Jong M, Bakker W, Breeman W, Bernard B, Hofland L, Visser T, et al. Pre-clinical comparison of [DTPA0]octreotide, [DTPA0,Tyr3]octreotide and [DOTA0,Tyr3]octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Int J Cancer. 1998;75(3).

    Google Scholar 

  315. Kishikawa H, Wang K, Adelstein S, Kassis A. Inhibitory and stimulatory bystander effects are differentially induced by Iodine-125 and Iodine-123. Radiat Res. 2006;165(6).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bartoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bartoli, F., Eckelman, W.C., Boyd, M., Mairs, R.J., Erba, P.A. (2022). Principles of Molecular Targeting for Radionuclide Therapy. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26067-9

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Principles of Molecular Targeting for Radionuclide Therapy
    Published:
    16 July 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_32-2

  2. Original

    Principles of Molecular Targeting for Radionuclide Therapy
    Published:
    03 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_32-1