
Test-Data Generation for Testing Parallel
Real-Time Systems

Muhammad Waqar Aziz(B) and Syed Abdul Baqi Shah

Science and Technology Unit, Umm Al-Qura University,
Makkah, Kingdom of Saudi Arabia

{mwaziz,sashah}@uqu.edu.sa

Abstract. The Worst-Case Execution Time (WCET) of real-time sys-
tems is mainly influenced by the program design, its execution envi-
ronment and the input data. To cover the last factor in the context of
WCET estimation, the objective of this work is to generate the test-data
that maximize the execution times of the parallel real-time systems. In
this paper, a test-data generation technique is proposed that uses Genetic
Algorithms to automatically generate the input data, to be used for test-
ing of parallel real-time systems. The proposed technique was applied to
a parallel embedded application – Stringsearch. The result was an analy-
sis that took as input the parallel program and generated the test-data
that cause maximal execution times. The generated test-data showed
improvements by exercising long execution times in comparison to ran-
domly generated input data.

Keywords: Test-data generation · Genetic Algorithm · Real-time sys-
tems · Measurement-based analysis · Worst-case execution time analy-
sis · End-to-end testing

1 Introduction

With the wide use of multicore processors in desktop computers and embedded
systems, and the growing demands of high performance real-time applications, it
is expected that multicore processors will be increasingly used in real-time sys-
tems [26]. The deployment of real-time applications on multicore platforms with
tens or hundreds of cores may become a reality very soon [3]. This demands spe-
cial methods and techniques for the design and testing of future multicore embed-
ded real-time systems, where the previous research mostly assumes sequential
code running on single-core platforms.

The fundamental property to guarantee the performance of a real-time sys-
tem is its Worst-Case Execution Time (WCET) testing. The worst-case bounds
can be derived either by using static timing analysis [11], or by measuring the
programs execution time on a given hardware or simulator using a set of inputs
[24]. The static timing analysis methods applied on hardware and software mod-
els of the system are very difficult to apply for parallel systems. For instance,

c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 211–223, 2015.
DOI: 10.1007/978-3-319-25945-1 13



212 M.W. Aziz and S.A.B. Shah

the inter-thread interferences among shared resources, e.g., L2 caches are hard
to analyze statically [26]. In contrast, measurement-based methods can be used
for better estimating the execution time of parallel systems and therefore are
widely used in the industry.

The problem of WCET testing is to find the test-data that causes execu-
tion of the longest path of the program, and thus causes the longest execution
time. But to do so, a complete test with all possible inputs, generally cannot
be carried out. Similarly, exhausting all the possible program paths, for a given
input, is usually infeasible. To handle these problems, evolutionary testing can
be utilized that automatically searches the test-data to estimate the WCET. For
instance, if searching the worst-case inputs from the set of all possible inputs
is considered as an optimization problem, Genetic Algorithms (GA) [1] can be
utilized to automatically search the required test-data.

The current research efforts of WCET analysis for multicore systems are
focused on performance enhancing hardware features [12,15,19], and application
[4,16,18] or programming level [9,27,28]. However, there is lack of research in
test-data generation for WCET estimation of parallel real-time systems execut-
ing on multicore architectures. To fill this gap, this work proposes a Search-Based
Software Engineering (SBSE) technique to generate test-data for testing parallel
real-time systems. The proposed technique uses GA to sub-optimally evolve the
worst-case inputs, with the objective to find those inputs that will cause the
program to take longest execution time.

The proposed technique is applied by measuring the end-to-end execu-
tion time of the ParMiBench benchmark suite [14]. ParMiBench is an open
source parallel version of a subset of MiBench benchmark suite [10] – many
of whose benchmarks appear to be suitable candidates for WCET analysis [7].
ParMiBench benchmark suite, actually designed to evaluate the performance
of embedded multi-core systems, is implemented using C language and POSIX
threads to achieve parallelism and supports Unix/Linux based platforms [14].
The end-to-end time was measured by gathering the execution traces of the
parallel program using the Gem5 simulator [2].

This article is organized as follows. Section 2 explains the methodology fol-
lowed in this work. Section 3 describes the method to approach the problem of
test-data generation along with the details of the actions performed. Section 4
reports the experimental setup and the results obtained from the experiment.
The evaluation of this work is provided in Sect. 5. Section 6 describes related work
in measurement-based WCET analysis for parallel real-time systems. Section 7
contains concluding remarks and directions for future work.

2 Methodology

The ParMiBench benchmark suite, used in this work, is a set of embedded
parallel benchmarks from various domains of the embedded applications which
include, control and automation, networks, offices, and security. However, we



Test-Data Generation for Testing Parallel Real-Time Systems 213

have selected the Stringsearch benchmark from the suite that is related to search-
ing a token (strings stored in a pattern file) from a text file, due to the following
reasons:

– In this work, the benchmarks are seen as a black box that consumes input and
generates timing information. However, for the testing process to be effective
and the testing results to be meaningful, we need benchmarks with a rich
input space.

– the current Gem5 framework forces to execute the benchmarks from within
a disk image in the full system mode. This requires the benchmarks to have
input parameters that can be easily fed, e.g., via command line.

In the initial experiment, the simulation was executed with the existing data
set of Stringsearch benchmark. However, the initial experiment revealed that
the text and pattern files in the existing data set consist of repeated contents.
Consequently, any new pattern file generated, with tokens picked up randomly
from the text file, had tokens that exist in every line of the file regardless of which
line they have been picked. Thus, the existing data set of the benchmark was
inappropriate to allow evolutionary testing, as the data set should not contain
duplicate values. Therefore, a new text file with dissimilar tokens was generated
that consists of 102400 random characters (file size ≈ 100 KB), and a pattern
file containing 64 tokens each of five characters length. The token length was
kept fixed (i.e., five characters, similar to the given benchmark) to observe the
execution time variations unassociated with the input length. Additionally, fixed
size inputs allow the easy alignment of parts during crossover operation.

In this work, Gem5 architecture simulator was used to measure the end-to-
end execution time of the parallel benchmark. Gem5 was selected as it provides
full-system simulation to execute a program in the operating system environ-
ment, with support of several commercial Instruction Set Architectures (just as
ARM, ALPHA). To get the execution traces of our interest, we performed some
tweaking to the simulator. We applied a Kernel patch and made some custom
modifications to the simulator to get the execution traces of the benchmark1.
These traces were then used to calculate the end-to-end execution time of the
benchmark. Instead of manual calculation, the end-to-end execution time was
calculated automatically by a Java application.

3 Proposed Test-Data Generation Technique

The technique proposed in this work for test-data generation, is based on SBSE
approach, namely GA. GA mimics the process of natural selection and chooses
the best from one generation to produce the next generation and attempts to
reach the solution much faster than otherwise. The steps of the proposed test-
data generation technique, as depicted in Fig. 1, are described is below:
1 Interested readers can visit our technical report for more configuration details,

http://bit.ly/1JqheNS.

http://bit.ly/1JqheNS


214 M.W. Aziz and S.A.B. Shah

Initialization 

Fitness value 

Selection 

Crossover 

Mutation 

end-to-end
Calculation 

Top 5

initial population

Genetic Algorithm 

next generation

Fig. 1. GA based test-data generation technique proposed for parallel real-time systems

3.1 Define the Initial Population

For applying GA, an initial population of individuals need to be defined which is
evolved across a number of generations. Individuals are usually random guesses
to the solution of a problem. Care should be given to maintain diversity in the
population so that premature convergence towards a sub-optimal solution can
be prevented. For instance, in case of Stringsearch, a good candidate for the best
individual produced by the GA in the last generation is the input to the program
where all tokens to be searched do not exist in the text file.

To achieve this, an intuition-based selection was made to start from a point
where 50 % of tokens exist in the text and 50 % do not. An initial population of
one hundred pattern files, to be used in GA, was generated using the following
ways:

(a) By randomly picking up tokens from this newly generated text file
(b) By randomly generating totally new tokens

Consequently, each file contained a set of tokens gathered from a mixture of
50 % randomly generated tokens and 50 % tokens picked up from the text. Thus,
the chances of each token within a pattern file are equally likely to be in the text
or not, making it a fair distribution to start with.

To conclude, there are (n*k)/2 tokens that exist in the text, and are ran-
domly distributed among the total n*k tokens in n files (considering n pattern
files, each having k patterns). This allows to give the 50-50 found/not found
distribution without making individuals in the population biased. This set of
one hundred pattern files collectively formed the genetic representation of the
solution domain. Thus, the initial population in this experiment consists of one
hundred chromosomes and 64 genes of each chromosome, in GA terminology.



Test-Data Generation for Testing Parallel Real-Time Systems 215

3.2 End-to-End Time Calculation

In this work, it is proposed to use the end-to-end execution time of parallel
program as fitness function. The end-to-end time was calculated from the traces
obtained from the Gem5 simulator by executing the parallel application. Each
trace was generated by detecting the starting and ending points of a thread
execution. A Java application was written to automatically calculate the end-to-
end time from the obtained execution traces. In the initialization phase, the end-
to-end time was calculated for all the 100 files present in the initial population.
The simulation was run one hundred times to generate one hundred traces,
i.e., one time for each pattern file. However, in all the other iterations it was
calculated for the new individuals of the next generation only.

3.3 Applying Genetic Algorithm

GA uses the concept of natural evolution to reach the desired solution from a
given huge search space. The main idea of using GA, in this work, is to execute
the program with sets of inputs throughout a number of generations. The process
starts with generating k random vectors initially (first generation) and obtain
their timing information. Then, the generated k random inputs with the timing
information are used to produce the next k inputs (second generation). This
process is repeated for n generations. The details of the steps of GA as followed
in the proposed technique are given below.

1. Calculate the Fitness Value

The fitness of the individuals is a problem-dependent value that specifies the
goodness of an individual in solving the problem at hand. The selection of
an individual for the next generation depends on its fitness value, i.e., each
individual in the population is evaluated by calculating its fitness. The fitness
value is used to select the best of any generation to ‘mate’ them in order to
produce the new generation.
As already mentioned, the end-to-end time is considered as a fitness value, in
this work. Thus, the longer the end-to-end time, the higher would be the fit-
ness. The fitness value is generated in GA through fitness function. It means
that calculating the fitness function requires the execution of the program
to produce traces. The time taken by Stringsearch to execute each pattern
file was considered as the fitness value of that pattern file. The use of GA is
suppose to search the inputs with higher fitness values in each generation. In
this way, the program execution using GA would lead towards inputs having
larger fitness values.
It is worth mentioning here that cache hits or misses, thread conflicts or any
other parameters were not considered to evaluate the fitness. Because consid-
ering these parameters is a huge research in its own and requires more effort
and time. In addition, Gem5 simulator does not provide much information
about these parameters which can be useful at this level.



216 M.W. Aziz and S.A.B. Shah

2. Select the Individuals

A selection strategy is applied to the individuals of a population in a given
generation to decide which ones are allowed to proceed to the next generation.
To make a rank based selection, the individual need to be sorted based on
their fitness values. It is proposed to select only five individuals, as selecting
more individuals would take more time in the remaining steps and also in
calculating their fitness in next generation.
In this experiment, the pattern files were sorted based on their fitness values.
The top five pattern files were selected as chromosomes for the next genera-
tion. Top five files were selected because selecting 50 files, for instance, will be
a big enough number as it will make 100 files for the next generation which
will take too long to calculate their fitness.

3. Crossover

The evolution of the population involves the exchange of genetic material
between the individuals through crossover operation. Traditionally, this is
achieved by choosing a point along two bit strings at random and swapping
the tails. To produce new files, a crossover was made amongst the top five
selected pattern files, by merging two lists of tokens picked up from randomly
selected pattern files. This crossover resulted in ten new chromosomes. In
crossover, one part of a file was concatenated with another part of the second
file, where the size of selected parts may not be the same, e.g., 2 tokens
picked from one file were concatenated with 62 tokens from the other file.
This selection is based on cutting one chromosome at a random location and
concatenating it with the remaining part of the second chromosome cut at
the same location.

4. Mutation

The evolution of the population also involves the alteration of the genetic
material of a single individual through mutation operation. Mutation is
achieved by picking a bit at random and flipping its value. Mutation was
applied to the results of crossover to produce and further improve the next
generation. It was done by randomly picking a token from a pattern file and
replacing its any letter with another random character. This process was
repeated until the desired percentage of mutation was achieved. In this way,
the next generation of 10 chromosomes was produced.

The above process was repeated for a set of ten chromosomes, which was
reproduced after each generation. The evolution continues until a good-enough
individual that solves the problem adequately is found, or until a maximum
number of generations is reached. Opting for the latter case, the whole process
was repeated for 50 generations, as the probability of improving over several
generations is high.



Test-Data Generation for Testing Parallel Real-Time Systems 217

With the above modeled parameters, a Java application was developed that
implemented GA in the experiment. The implementation used the given pattern
files composed of tokens without converting them into binary strings. This sim-
plified the complex problem of coding and decoding of inputs for this specific
case.

4 Experimentation

4.1 Experimental Setup

The Gem5 configurations, as used in this experiment, included four cores of ARM
detailed architecture as specified by Gem5 (ARMv7-A ISA based) with default
size of L2 cache (2 MB) and 256 MB of Memory. The disk image contained ARM
embedded Linux (AEL) as the guest operating system for the simulator. We used
Gem5 to run the simulations and execute benchmarks for collecting the kernel
level thread traces and computing the end-to-end times. We had Xeon processor
with twelve logical cores and enough memory (48GB) available in our machine
to accommodate multiple instances of simulator running in parallel.

4.2 Experimental Results

To observe the effects of applying GA using visual representation, graphs of the
calculated end-to-end times were plotted for each generation. In each graph,
the length of the execution time is represented on the vertical axis in terms
of CPU ticks, whereas the ten pattern files of each generation are represented
horizontally. For example, in first generation the highest and the lowest values
were found as 59843433000 and 59603617500 ticks for 4th and 8th pattern files
respectively, as shown in Fig. 2(a). Some other results produced during fifty
generations are depicted in the remaining parts of Fig. 2.

From the plotted graphs, i.e., the measured end-to-end times, it is observed
that by using GA an overall improvement can be achieved in the fitness values
corresponding to the pattern files. For instance, in first and third generations
(Fig. 2(a) and (b)) there are only three pattern files which caused the program
to execute for a period longer than 5.98e+10 ticks. In comparison, the number
of pattern files, which execute longer than this number of ticks, is increased
to eight pattern files in 25th generation and nine pattern files in 50th genera-
tion (Fig. 2(c) and (d)). This increase in the number of input files after applying
several generations shows that the inputs are taking longer time. This is a clear
indication that the proposed technique has improved the inputs, i.e., those inputs
are generated that cause the longest time to execute.

Table 1 shows the WCET measured during the experiments in different gen-
erations for five character length input token. A threshold value of 5.98e+10 was
defined to analyze the improvement in the inputs over all generations. The num-
ber of files taking greater or equal time than the threshold value was counted,
as represented by Above (Th.5.98) column in Table 1.



218 M.W. Aziz and S.A.B. Shah

(a) 1st generation (b) 3rd generation

(c) 25th generation (d) 50th generation

Fig. 2. End-to-End times (fitness values) in different generations for the pattern files
with five characters long tokens

An increasing number of input files above the threshold can be observed, in
Table 1, except for 30th generation. This is due to the very nature of GA where
results can degrade even after reaching to an improved position. However, an
overall improvement is achieved across 50 generations.

5 Evaluation

In order to evaluate the scalability of the proposed technique, the experiment
was repeated with other input files as given with the benchmark. To this end,
the complete process was re-performed for tokens with a length of 10 characters;
compared to the original experiment where five characters input token was used.
Some of the graphs, representing different generations produced using 10 char-
acters length are depicted in Fig. 3. The WCET measured for input tokens of
10 characters length are displayed in Table 2. The threshold value, in this case,
was defined as 5.9e+10 with the same purpose of analyzing the inputs over all
generations.

From Table 2, it can be observed that the number of input files increased
with the number of generations. Although the number of files slightly increased
and decreased due to GA, an overall steady increase in the number of files was
observed after 50th generations.



Test-Data Generation for Testing Parallel Real-Time Systems 219

Table 1. Measured WCET across different generations for 5 characters length token

Input token size Generation no WCET Above (Th.5.98)

5 characters 1 59843433000 3

10 59878900000 5

20 59895367000 8

30 59898941500 6

40 59896569500 7

50 59898461000 9

6 Related Work and Discussion

Most of WCET-analysis research is performed for sequential software and single-
core hardware. Recently, research on WCET analysis of sequential code on
multi-core processors has been a main focus. The work that has been done in
this area so far can be divided into two parts (1) static hardware modeling for
WCET analysis on multi-core architectures [8,25,26,29], and (2) design of ana-
lyzable multi-core computers that favor timing predictability over performance
[6,17,20,21]. In relation to this work, research on parallel applications run-
ning on multi-core architectures is very limited. For instance, Rochange et al.
[19] highlights the problem of analyzing the timing behavior of non-sequential

Fig. 3. End-to-End times (fitness values) in different generations for the pattern files
with ten character long tokens



220 M.W. Aziz and S.A.B. Shah

Table 2. Measured WCET across different generations for 10 characters length token

Input token size Generation no WCET Above (Th.5.90)

10 characters 1 59102869500 4

10 59134277000 5

20 59097647500 6

30 59100034000 6

40 59181076000 7

50 59181090000 9

software on a multi-core architecture. They report a manual analysis of a parallel
application, which determines the synchronization and communication between
its executing threads.

In contrast, we have used GA to heuristically search the input from a huge
search space of tokens that would cause the program to execute for the longest
period of time. It was observed that the execution time of the search tends to
decrease with the increase in size of the input text (see e.g., WCET of 5 and 10
characters). In general, the proposed technique is applicable to any parallel real-
time system where optimization is needed. This further requires that the system
under consideration can be genetically represented and has a fitness function for
its evaluation. However, the proposed technique should be complemented with
static timing analysis if safety is required, i.e., to ensure that the obtained results
are close to the actual WCET of the considered system.

Evolutionary search (more specifically GA) has been employed in the liter-
ature [5,13,22] to find long execution times of real-time programs. Although,
research on using GA for testing real-time systems dates back to 90s [23], it has
not been used for WCET analysis of parallel programs running on multi-core
hardware, to the best of our knowledge. The fitness function used in this work
considered the end-to-end time for the execution of a program as the fitness
value. This consideration has helped us to produce good enough results by using
GA that maximized the fitness value.

7 Conclusion

In this paper, a measurement-based technique is proposed for automatic test-
data generation for parallel real-time systems running on a multicore architec-
ture. The technique uses Genetic Algorithm to generate test data that maximize
the execution times of the parallel application. It evolves input vectors that cause
long execution times of the program using evolutionary testing. The results of
the experiment showed a significant improvement in the execution times of input
files after applying the proposed technique. Thus, the aim of producing large exe-
cution times, which are either the WCET or close to it, was achieved.

In the future, we aim to use a real-life, real-time application to evaluate our
work. In case of publicly-unavailability of such applications, the method can



Test-Data Generation for Testing Parallel Real-Time Systems 221

be tested with other benchmarks of ParMiBench. Moreover, the static timing
analysis is planned to be performed to evaluate the safeness and tightness of the
proposed technique. Although, the end-to-end time is considered as an output
to the fitness function, it is also planned to consider a richer multi-objective
fitness function in future that might include thread conflicts, cache misses/hits
and cache sizes.

Acknowledgments. This research is funded by the program of strategic technolo-
gies of the National Science, Technology, and Innovation plan in Saudi Arabia (Grant
No. 11-INF1705-10). We acknowledge KACST (King Abdulaziz City for Science and
Technology) for funding this research and STU (Science and Technology Unit), Umm
Al-Qura University, Makkah for providing necessary support.

References

1. Berg, C., Engblom, J., Wilhelm, R.: Requirements for and design of a processor
with predictable timing. In: Design of Systems with Predictable Behaviour (2004)

2. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM
SIGARCH Comput. Archit. News 39(2), 1–7 (2011)

3. Calandrino, J.M., Anderson, J.H., Baumberger, D.P.: A hybrid real-time scheduling
approach for large-scale multicore platforms. In: 19th Euromicro Conference on
Real-Time Systems, 2007, ECRTS 2007, pp. 247–258, IEEE (2007)

4. Ding, Y., Zhang, W.: Multicore-aware code co-positioning to reduce wcet on dual-
core processors with shared instruction caches. JCSE 6(1), 12–25 (2012)

5. Gross, H.G.: An evaluation of dynamic, optimisation-based worst-case execution
time analysis. In: Proceedings of the International Conference on Information Tech-
nology: Prospects and Challenges in the 21st Century, Kathmandu, Nepal (2003)

6. Guan, N., Stigge, M., Yi, W., Yu, G.: Cache-aware scheduling and analysis for mul-
ticores. In: Proceedings of the Seventh ACM International Conference on Embed-
ded Software, pp. 245–254, ACM (2009)

7. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The mälardalen wcet bench-
marks: past, present and future. In: OASIcs-OpenAccess Series in Informatics, vol.
15, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

8. Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards wcet analysis of
multicore architectures using uppaal. In: OASIcs-OpenAccess Series in Informatics,
vol. 15, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

9. Gustavsson, A., Gustafsson, J., Lisper, B.: Toward static timing analysis of parallel
software. In: OASIcs-OpenAccess Series in Informatics, vol. 23, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2012)

10. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:
Mibench: a free, commercially representative embedded benchmark suite. In: 2001
IEEE International Workshop on Workload Characterization 2001, WWC-4, pp.
3–14, IEEE (2001)

11. Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static pro-
gram analysis. In: 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2004), pp. 26–30, IEEE Computer Society (2004)



222 M.W. Aziz and S.A.B. Shah

12. Kästner, D., Schlickling, M., Pister, M., Cullmann, C., Gebhard, G., Heckmann,
R., Ferdinand, C.: Meeting real-time requirements with multi-core processors. In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613,
pp. 117–131. Springer, Heidelberg (2012)

13. Khan, U., Bate, I.: Wcet analysis of modern processors using multi-criteria opti-
misation. In: 2009 1st International Symposium on Search Based Software Engi-
neering, pp. 103–112, IEEE (2009)

14. Liang, Y., Iqbal, S.M.Z.: OpenMPBench-an open-source benchmark for multi-
processor based embedded systems. Ph.D. thesis, Master thesis report MCS-2010:
02, School of Computing, Blekinge Institute of Technology, Sweden (2010)

15. Liang, Y., Ding, H., Mitra, T., Roychoudhury, A., Li, Y., Suhendra, V.: Timing
analysis of concurrent programs running on shared cache multi-cores. Real-Time
Syst. 48(6), 638–680 (2012)

16. Ozaktas, H., Rochange, C., Sainrat, P.: Automatic wcet analysis of real-time par-
allel applications. In: OASIcs-OpenAccess Series in Informatics, vol. 30, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

17. Pitter, C., Schoeberl, M.: A real-time java chip-multiprocessor. ACM Trans.
Embed. Comput. Syst. (TECS) 10(1), 9 (2010)

18. Potop-Butucaru, D., Puaut, I., et al.: Integrated worst-case response time evalua-
tion of multicore non-preemptive applications (2013)

19. Rochange, C., Bonenfant, A., Sainrat, P., Gerdes, M., Wolf, J., Ungerer, T., Petrov,
Z., Mikulu, F.: Wcet analysis of a parallel 3D multigrid solver executed on the
merasa multi-core. In: OASIcs-OpenAccess Series in Informatics, vol. 15, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

20. Rosen, J., Andrei, A., Eles, P., Peng, Z.: Bus access optimization for predictable
implementation of real-time applications on multiprocessor systems-on-chip. In:
28th IEEE International Real-Time Systems Symposium 2007, RTSS 2007, pp.
49–60, IEEE (2007)

21. Supercomputing, B.: Merasa: multicore execution of hard real-time applications
supporting analyzability (2010)

22. Wegener, J., Mueller, F.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Syst. 21(3), 241–268 (2001)

23. Wegener, J., Sthamer, H., Jones, B.F., Eyres, D.E.: Testing real-time systems using
genetic algorithms. Softw. Qual. J. 6(2), 127–135 (1997)

24. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., et al.: The worst-case
execution-time problem–overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

25. Wu, L., Zhang, W.: Bounding worst-case execution time for multicore processors
through model checking. In: Proceedings of 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2010), Work-in-Progress Session,
pp. 17–20 (2010)

26. Yan, J., Zhang, W.: Wcet analysis for multi-core processors with shared l2 instruc-
tion caches. In: IEEE Real-Time and Embedded Technology and Applications Sym-
posium 2008, RTAS 2008, pp. 80–89, IEEE (2008)

27. Yip, E., Roop, P.S., Biglari-Abhari, M.: Predictable parallel programming using
PRET-C. Faculty of Engineering, University of Auckland (2010)



Test-Data Generation for Testing Parallel Real-Time Systems 223

28. Yip, E., Roop, P.S., Biglari-Abhari, M., Girault, A.: Programming and timing
analysis of parallel programs on multicores. In: 2013 13th International Conference
on Application of Concurrency to System Design (ACSD), pp. 160–169, IEEE
(2013)

29. Zhang, W., Yan, J.: Accurately estimating worst-case execution time for multi-core
processors with shared direct-mapped instruction caches. In: 15th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applica-
tions 2009, RTCSA 2009, pp. 455–463, IEEE (2009)


	Test-Data Generation for Testing Parallel Real-Time Systems
	1 Introduction
	2 Methodology
	3 Proposed Test-Data Generation Technique
	3.1 Define the Initial Population
	3.2 End-to-End Time Calculation
	3.3 Applying Genetic Algorithm

	4 Experimentation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Evaluation
	6 Related Work and Discussion
	7 Conclusion
	References


