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Abstract. This paper presents a matrix factorization method for
dimensionality reduction, semi-supervised two-way multimodal online
matrix factorization (STWOMF). This method performs a semantic
embedding by finding a linear mapping to a low dimensional semantic
space modeled by the original high dimensional feature representation
and the label space. An important characteristic of the proposed algo-
rithm is that the new representation can be learned in a semi-supervised
fashion. So, annotated instances are used to maximize the discrimination
between classes, but also, non-annotated instances can be exploited to
estimate the intrinsic manifold structure of the data. Another important
advantage of this algorithm is its online formulation that allows to deal
with large-scale collections by keeping low computational requirements.
According with the experimental evaluation, the proposed STWOMF
in comparison with several linear supervised, unsupervised and semi-
supervised dimensionality reduction methods, presents a competitive
performance in classification while having a lower computational cost.

1 Introduction

Multimedia information presents many opportunities due to the richness of its
high-dimensional information, but also implies many computational challenges
mainly related with the well-known “curse of dimensionality” [3] that dramat-
ically affects the speed of machine learning algorithms. Dimensionality reduc-
tion allows to eliminate the redundancy and the noise present in the manifold
structure of the original high dimensional feature representation and tackles the
curse of dimensionality by compressing the representation in a more expressive
reduced set of variables that preserve the most important characteristics of the
initial set. This is done by finding a transformation that does not alter the infor-
mation presented by the initial data set. Dimensionality reduction is a technique
widely used today in many machine learning tasks such as regression, annota-
tion, classification, clustering, pattern recognition, information retrieval among
others [1]. This technique would be used in unsupervised as well as supervised
approaches. Unsupervised dimensionality reduction is mainly used with the aim
of exploring the data structure and extracting meaningful information from data
without any prior information. In contrast, in supervised dimensionality reduc-
tion specific targets (labeled instances) of interest are used to guide the process
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of dimensionality reduction. Even though supervised approaches can exploit the
labeled data in order to improve classification performance, they require every
training instance to be labeled. But a proper annotation of a whole dataset is an
arduous process, and for large-scale real-world collections is infeasible to ensure
a reliable annotation for each instance. So, in many cases we are in a situation
where we have a big quantity of potential data for training our algorithms but
only a small fraction with annotations can be used. Even so, non annotated
data present valuable information about the manifold structure of the data that
should be exploited in some way. This paper presents a semi-supervised dimen-
sionality reduction method based on matrix factorization that can be used in
training datasets that are not fully annotated by using the information from
annotated instances to preserve the separability between elements from differ-
ent classes, but also using the non-annotated elements to estimate the intrinsic
manifold structure of the data.

The rest of this paper is organized as follows: Section 2, presents a compre-
hensive revision of related works in linear dimensionality reduction; in Section
3, details about of the proposed method are explained; Section 4, presents an
evaluation of the proposed method in comparison with several state-of-the-art
linear methods in dimensionality reduction; and finally, Section 5 presents some
concluding remarks.

2 Related Work

There are a high number of linear techniques that perform dimensionality reduc-
tion by embedding the data to a lower semantic space, among the unsupervised
approaches stand out principal component analysis (PCA) [10], factor analysis
(FA) and independent component analysis (ICA) [13]. Other approaches like
locality preserving projection (LPP) [11] and neighborhood preserving embed-
ding (NPE) [9] try to preserve the local neighborhood structure. Some dimen-
sionality reduction techniques can take into account domain knowledge. This
domain knowledge can be expressed in different forms, such as, class labels,
pairwise constraints or another kind of prior information. Fisher’s linear dis-
criminant analysis (LDA) [8] was one of the first techniques to take advantage of
class observation to preserve the separability of the original classes. Also, there
are semi-supervised alternatives that learn from a combination of both labeled
and unlabeled data. For instance, semi-supervised discriminant analysis (SDA)
[5] and the soft label based linear discriminant analysis SL-LDA [16] use the
labeled data to maximize the separability between classes and uses the unla-
beled data to estimate the intrinsic manifold structure of the data. Also, there
are some non-linear alternatives (isometric feature mapping [14], locally linear
embedding [12] and Laplacian Eigenmaps [2], among others). Unfortunately the
modeling of these non-linearities leads to high computational complexities that
make them prohibitive to use in large-scale collections. The method introduced
in this paper, presents two characteristics that make it highly scalable: first, it
is based on linear transformations, and second, its algorithm is formulated as an
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online-learning approach, which only needs to keep small portions of the train-
ing data in main memory and requires little time to reach a predefined expected
risk.

3 Semi-supervised Two-Way Multimodal Online Matrix
Factorization

We can represent an entire collection by a matrix X ∈ R
n×k, where k is the

total number of instances in a training set and n is the number of features that
represent each instance. In a similar way, we can represent the associated classes
by a binary matrix T ∈ R

m×k, where m is the total number of classes in the
collection, and a 1 in the j−th position (1 ≤ j ≤ m) of the i-th column defines
the membership of the i-th instance in the j−th class.This paper presents a
semi-supervised dimensionality reduction framework based on TWOMF (Two-
way Multimodal Online Matrix Factorization ) [15], which simultaneously finds
a mapping from the feature representation and from the class representation
to an r-dimensional common semantic space, where n � r, and additionally,
back-projection functions that reconstruct from this low r-dimensional space to
the original feature and class representations are learned. These mappings are
modeled for encoder and decoder matrices that perform linear transformations
to and from the semantic space. So, the feature representation can be projected
to the semantic space by an encoder matrix Wx ∈ R

r×n and reconstructed back
by a decoder matrix W

′
x ∈ R

n×r such that H ≈ WxX and X ≈ W
′
xH. And, in a

similar way, a reconstruction for the label representation is defined by H ≈ WtT
and T ≈ W

′
t H, where, Wt ∈ R

r×m, and W
′
t ∈ R

m×r are the encoder and
decoder matrices for the label representation.Finally, a mapping between the
original features and label representation, forcing an alignment of the semantic
projections, is expressed by: T ≈ W

′
t WxX. All these previous conditions are put

together and the problem is solved as an optimization problem by minimizing
the following loss function:
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where, xi is the feature vector of the i-th instance in the data collection X and
ti is the corresponding binary label vector, α controls the relative importance
between the reconstruction of the instance representation and the label repre-
sentation, δ controls the relative importance of the mapping between instance
features and label information and β controls the relative importance of the
regularization terms, which penalize large values for the Frobenius norm of the
transformation matrices. In this paper, we are interested in scenarios where we
have a large number of instances for training (k instances), but only a restricted
l number of them are properly labeled. The loss function (Eq. 1) takes advan-
tage of both annotated and non-annotated instances. The first term in the loss
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function uses all the instances to model the low semantic space and the second
and third terms use only the annotated instates to model the semantic space and
the mapping between features and label information. The final algorithm uses
stochastic gradient descent learning [4], by updating the transformation matrices
at each iteration with a mini-batch of instances with their corresponding features
and label representation that are randomly sampled from the training set, due
to the fact that samples in a minibatch are discarded after the minibatch is
processed, it is possible to scan large datasets without memory restrictions.The
algorithm ends when a predefined maximum number of epochs is reached. Once
the learning process is completed, the projection to the low-rank semantic repre-
sentation can be performed by multiplying the original high-dimensional feature
representation by the coding Wx matrix (hi = Wxxi).

4 Experiments and Results

In this section, we evaluate our algorithm in comparison with several widely-
used datasets for dimensionality reduction, manifold learning and classification
tasks (the details of each dataset are shown in Table 1). We evaluate the per-
formance of our algorithm by calculating classification accuracy in each one
of these datasets. We compare our method with other linear supervised, semi-
supervised and unsupervised dimensionality reduction methods. These methods
include SVM (Support Vector Machines) with a linear kernel [7], LDA [8], SRDA
(spectral regression discriminant analysis) [6], SDA [5] and PCA [10]. For deter-
mining the parameters of each method, we perform an exploration by using
5-fold cross-validation. For our method, we need to determine five parameters,
including, the learning rate, the mini-batch size and the α, β and δ parameters
present in the cost function.

Table 1. Dataset information and data partition for each dataset

Dataset
Original dataset

partitions

Low-scale partitions Large-scale

evaluation
#Dim #Class

Train Test Train Test Train Test

Covtype 581012 8000 8000 100000 2000 54 7

MNIST 60000 10000 8000 8000 60000 10000 784 10

Letters 20000 8000 8000 – 16 26

USPS 4649 4649 4649 4649 – 256 10

For all algorithms, except for the supervised, i.e, SVM, LDA and SRDA,
we use the projected training set to construct a nearest neighborhood classi-
fier (1NN) for evaluating the classification accuracy of the projected test set,
in a similar setup as in [16]. In this evaluation, we explore the performance for
different percentage of randomly selected annotated instances in training set.
Table 2 reports the average accuracies for 10 runs in each configuration in the
four datasets using the low-scale partitions (see Table 1). As we can see, the
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STWOMF presents competitive results in comparison with all other algorithms
when the dimensionality of the semantic representation coincides with the num-
ber of classes (r=C). Furthermore, when the dimensionality increases (r=C+10),
STWOMF over performs the other algorithms (in our experiments, a further
increase of the dimensionality did not contribute to improve the performance of
the algorithm).

An evaluation with the two largest datasets using different sizes of train-
ing set was performed in order to verify the capability of the proposed method
to deal with large-scale collections. Figure 1 presents the average classification
accuracies and times for different sizes of the training set (the reported results
are the average of 10 runs for each configuration). The STWOMF is compared
against the SDA which is another semi-supervised method that also uses the
unlabeled data to estimate the manifold structure of the data. For all training
sizes only 30% of instances are annotated, so we can see that both methods
are able to learn from labeled and unlabeled instances and both can improve
their performance as more training instances are available. However, STWOMF
presents two advantages: first, unlike SDA, in STWOMF we can increase the
dimensionality of the semantic space resulting in an improvement in the per-
formance. For instance, in the MNIST dataset, the STWOMF using 17 latent
factor (STWOMF-r17) presents a gain in accuracy of about 6 points over the
same STWOMF using only 7 latent factor (STWOMF-r7) and the SDA; and
second, STWOMF presents a little increase in the time required for training as
more training instances are used, leading to a speedup of about 3.5x-7x over SDA
in MNIST and about 8x in CovType. The main reason for the short time used
in training phase by STWOMF is that, thanks to its online formulation for large
datasets, a few number of epochs are required until the algorithm converges (con-
vergence in all algorithms is verified by means of a minimum threshold required
to improve the reconstruction error in each epoch). In fact, for both datasets
MNIST and CovType only two epochs are required to achieve convergence.

Table 2. Classification accuracy for different percentages of annotated instances in
training set using low-scale partitions. Reported results are the average of 10 runs for
each configuration (r = number of latent factors, C = number of classes in the dataset).

METHOD
STWOMF STWOMF

SDA LDA SVM SRDA
PCA PCA

r=C r=C+10 r=C r=C+10

COVTYPE

100% 0.725 1.0e-2 0.770 1.0e-2 0.735 0.0 0.708 3.5e-3 0.674 3.3e-16 0.698 3.3e-16 0.707 3.3e-16 0.763 3.3e-16

60% 0.720 1.9e-2 0.755 1.0e-2 0.719 3.3e-16 0.704 7.6e-3 0.679 3.3e-16 0.685 3.3e-16 0.683 3.3e-16 0.724 0.0

30% 0.686 1.7e-2 0.712 1.0e-2 0.687 3.3e-16 0.707 7.6e-3 0.667 3.3e-16 0.653 0.0 0.639 3.3e-16 0.679 0.0

MNIST

100% 0.882 0.0 0.939 0.0 0.870 0.0 0.897 0.0 0.839 0.0 0.856 0.0 0.874 0.0 0.938 0.0

60% 0.864 0.0 0.930 0.0 0.870 0.0 0.890 0.0 0.817 0.0 0.833 0.0 0.863 0.0 0.929 0.0

30% 0.848 0.0 0.916 0.0 0.850 0.0 0.881 0.0 0.780 0.0 0.786 0.0 0.842 0.0 0.910 0.0

LETTERS

100% 0.946 1.5e-2 0.946 1.6e-3 0.950 3.3e-16 0.699 0.0 0.701 3.3e-16 0.936 0.0 0.940 0.0 0.940 0.0

60% 0.933 1.9e-3 0.923 0.0 0.940 3.0e-4 0.694 3.3e-16 0.699 0.0 0.919 3.3e-16 0.913 3.8e-3 0.914 0.0

30% 0.905 3.5e-3 0.885 6.1e-3 0.917 4.4e-4 0.680 3.3e-016 0.697 3.3e-16 0.893 0.0 0.872 2.5e-3 0.872 3.1e-3

USPS

100% 0.936 9.2e-4 0.966 3.3e-3 0.925 6.7e-4 0.943 3.3e-16 0.914 6.6e-16 0.921 6.6e-16 0.930 0.0 0.963 0.0

60% 0.927 3.4e-3 0.957 1.0e-3 0.917 0.0 0.939 0.0 0.901 0.0 0.906 6.6e-16 0.921 6.6e-16 0.953 0.0

30% 0.910 4.9e-3 0.942 2.4e-3 0.903 3.3e-16 0.926 6.6e-16 0.883 3.3e-16 0.884 0.0 0.903 3.3e-16 0.938 3.3e-16



Semi-supervised Dimensionality Reduction 681

Fig. 1. Average classification accuracy (top) and average required time for training
(bottom) in MNIST (left) and CovType (right) datasets using different number of
training instances. For all training sizes only 30% of instances are annotated.

5 Conclusions

We presented an approach for dimensionality reduction that takes advantage of
annotated data to model a semantic low-space representation that preserves the
separability of the original classes. Furthermore, this method has the ability to
exploit unlabeled instances for modeling the manifold structure of the data and
use it to improve its performance in classification. The experimental evaluation
shows that the proposed method presents competitive results in terms of classi-
fication accuracy in comparison with several unsupervised, semi-supervised and
supervised linear dimensionality reduction methods, but with the advantage of
its online learning formulation that allows it to deal with large collections of data
by achieving a significantly reduction in computational requirements, in terms
of memory consumption and required time for training.
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