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Abstract. Cognitive Radio has emerged as a promising technology to
improve the spectrum utilization efficiency, where spectrum sensing is the
key functionality to enable its deployment. This study proposes a cyclo-
stationary feature detection method for signals with unknown param-
eters. We develop a rule of automatic decision based on the resulting
hypothesis test and without statistical knowledge of the communica-
tion channel. Performance analysis and simulation results indicate that
the obtained algorithm outperforms reported solutions under low SNR
regime.
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1 Introduction

A new paradigm for wireless communication devices called Cognitive Radio [1]
has emerged to optimize the employment of the radio spectrum. Through the use
of vacant channels it is possible to improve the spectrum utilization [2]. Several
current technologies operate in this way, for example: Bluetooth (WPAN – IEEE
802.15.1) [3], WLAN – IEEE 802.11k [4], and WRAN – IEEE 802.22 [5]. In this
regard, spectrum sensing techniques represent a key component of these systems.

From the perspective of signals detection, the spectrum sensing techniques
can be classified as coherent detection or non-coherent detection [6]. In the former
case, the signal of interest (SoI) is detected using a generated signal, this is con-
formed taking into account the modulation parameters like the carrier frequency
and phase, order of the modulation, shape and duration of pulses, etc. Matched
filter provides the optimal solution in terms of the output signal-to-noise-ratio
(SNR). However, prior knowledge of the SoI is required [6]. On the other hand,
non-coherent detection also referred as blind detection, does not require prior
knowledge of the primary signals modulation parameters. Energy detection (ED)
is the most widely used technique for blind detection [7]. Nevertheless, the inca-
pability of distinguishing between different types of signals, the vulnerability to
uncertainty in noise variance estimation, and the poor performance under low
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SNR regimes, represent an important limitation in practice [8]. On the other
hand, the use of cyclostationarity detection (CD) is reported to mitigate the
limitations of ED [9]. By means of CD, the performance in terms of reliabil-
ity under low SNR and fading conditions overcomes the main disadvantages in
regard to the ED [8,9]. Although this technique is considered by many authors
as a coherent technique, there have been several attempts to use CD detectors
in blind detection [10,11]. Jang in [11] gives a method to compute the cycle fre-
quencies profile of the spectral correlation density (SCD). Using that method,
the author proposes a threshold for automatically signal detection, which is the
maximum estimated magnitude of SCD that rejects null hypothesis. The eval-
uation method used was Monte Carlo simulations, under multi-path fading and
low SNR.

The rest of this paper is organized as follows. The CD model for blind detec-
tion is described in Section 2. In Section 3, the main results are discussed. Finally,
the conclusions are drawn in Section 4.

2 Cyclostacionary Feature Detection

The spectrum sensing problem can be stated in terms of a binary hypothesis
test, where H0 represents the hypothesis corresponding to the absence of the
signal, and H1 to the presence of the signal. These hypotheses are given by:

H0 : x[n] = ω[n]
n = 0, 1, ..., N − 1

H1 : x[n] = s[n] ⊗ h[n] + ω[n]
(1)

where x[n] and s[n] represent the received signal and the SoI, respectively. The
impulse response of the channel (h[n]) is conformed taking into account fading
conditions and it is modeled to be statistically independent from the additive
white Gaussian noise (AWGN) of the channel (w[n]). The operation ⊗ indicates
convolution product over N . The main difference between detection techniques
is the statistic used to discriminate the hypotheses. The spectral correlation
density function is the statistic used in cyclostationary feature detection.

2.1 Cyclostationary Processes

Cyclostacionarity1 is an inherent property of the communication signals. This
feature is present in sinusoidal carriers, train pulses, spreading codes, hopping
sequences, cyclic prefixes and preambles, sampling and propagation phenom-
ena [13]. For these signals, the autocorrelation function is periodic and can be
obtained by a set of basis functions called cyclic autocorrelation function (CAF).
The CAF is a generalization of the autocorrelation function, and allows to dis-
tinguish cyclic features from stationary noise. Extrapolating Wiener-Khinchin’s
1 In the proposed model, only wide sense cyclostationary processes are considered.

Further mathematical details can be found in [12].
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theorem [14] to cyclostationary signals, the Fourier transform of the CAF stands
for the cyclic spectrum, also referred as spectral correlation density function
(SCD). The SCD can be estimated for each cyclic frequency α by the cyclic
periodogram as:

Iα[n, f ] � 1
N

XN [n, f ]X∗
N [n, f − �αN�] ≡ Sα

xN
[n, f ] (2)

where XN [n, f ] indicates the short-time Fourier transform (STFT) of x[n]
at n over N samples, and �·� stands for the integer part of the number. The
symbol (∗) indicates complex conjugate. From (2) a classical spectral analysis
could be made setting α = 0 (no periodicities at all). This particular case cor-
responds to the power spectral density function (PSD), derived from the wide
sense stationary processes theory.

Figures 1(a) and 1(b) show2 the PSD and the SCD, respectively, of a BPSK
signal contaminated with AWGN. From the PSD, it is difficult to distinguish the
set of spectral frequencies corresponding to a SoI, due to the overlapping between
signal and noise. On the other hand, the cyclic spectral analysis avoids this
effect, since the SoI exhibits periodicities and the noise does not. For example,
it is easier to detect a peak in the cycle frequency at α = 2fc (where there is
not overlapping noise) than in α = 0, that corresponds to the traditional PSD.
It should be noted that, for every α �= 0, the SCD of noise (Sα

ω [f ]) is zero due
to it’s stationarity.
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Fig. 1. Spectral analysis of a BPSK signal (fc = 2886 Hz, Rb = 260 bits/s, N = 1024
samples) contaminated with AWGN (SNR = 3 dB). (a) Power spectral density (PSD),
S0

x[f ]. (b) Spectral correlation density (SCD), Sα
x [f ].

2.2 Impact of Channel Fading and Doppler Shift on the
Cyclostationary Features

According to the results presented by Bkassiny [15], cyclostationary features in
communication signals are preserved even in the presence of channel fading. The
2 Cyclic and spectral frequencies are specified in Hz, it is easily done from the sampling

frequency, fs = 22050 Hz in this example.
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channel can be considered as wide sense stationary as long as the mobile device
covers a distance about a few tens of the wavelength of the carrier signal, this in
an observation period. An acceptable approximation is to consider the channel as
wide sense stationary with uncorrelated scattering (WSSUS), a commonly used
model for dealing frequency selective channels [15]. In this case, the autocorre-
lation function of the received signal is also periodic with the same period than
the SoI. Hence, the received signal is also cyclostationary with the same cycle
components than the transmitted signal. As a result, when fading channels are
considered as general linear time-variant systems, the cyclostationary features
of the SoI are not modified. This is why the blind detection technique presented
in this work is robust under practical scenarios.

If the channel is also characterized by Doppler effect, the cyclic spectrum
of the SoI is convolved by the Doppler power spectral density. Let fmax be the
maximum Doppler shift, the convolution causes the cyclic spectrum to spread
at most ±fmax for every cycle frequency. However, Doppler shifting is irrelevant
in blind spectrum sensing performance, given that the parameters of the signal
are not used in the detection procedure. The cyclic features do not vanish, so it
is still possible to perform detection.

2.3 Detection Statistic

In case of cyclostationary signals in AWGN, an approximate sufficient statistic
for the maximum likelihood detector [16], called multicycle detector, is given by:

YML =
∑

α∈A

∑

f

Sα
s [f ]S∗α

xN
[f ] (3)

where Sα
s [f ] and Sα

xN
[f ] are the SCD3 of the SoI and the received signal,

respectively, and A is the set of cycle frequencies for which the SCD is not zero.
If only cycle frequencies different from zero are considered in equation (3), then
Sα

x [f ] = Sα
s [f ], and

YML =
∑

α∈A,(α�=0)

∑

f

|Sα
xN

[f ]|2 (4)

Under blind conditions, the set A of cycle frequencies is unknown. The radiome-
ter, or energy detector, is a common solution of blind detection, and it is a
particular case of equation (3) when α = 0 is considered:

Y 0 =
∑

f

|S0
xN

[f ]|2 (5)

Let Y α =
∑

α∈A

∑
f

|Sα
xN

[f ]|2, then the maximum likelihood detection criterion in

equation (4) can be stated in term of Y 0 and Y α by:

YML = Y α − Y 0 (6)
3 From now on, the time parameter in the SCD is omitted for simplicity. Hence,
Sα

xN
[f ] ≡ Sα

xN
[n, f ] is always treated as the SCD estimated using equation (2).
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From the interpretation of the cyclic spectrum as a spectral correlation func-
tion [11], Y α is also given by:

Y α = lim
N→∞

1
2N + 1

∑

α∈A

Y [�αN�] ⊗ Y ∗[−�αN�] (7)

where Y [f ] = XN [f ]X∗
N [f ].

Given the statistic Z[�αN�] = Y [�αN�]⊗Y ∗[−�αN�], it is easy to verify that
Z is an estimator of |Sα

xN
[f ]|2 for every cycle frequency [11]. Besides, Z[�αN�] =

F{y[n]y∗[n]}, and y[n] = xN [n] ⊗ xN [−n]. The sequence y[n], can be obtained
applying the inverse DFT to |XN [f ]|2, in order to avoid the convolution. This
can be performed in a very efficient way if an FFT (Fast Fourier Transform)
algorithm is used.

As Jang proposed in [11], the accumulative value of Z can be used to avoid
missing features due to the lack of cycle frequency resolution.

G[�αN�] =
�αN	∑

β=0

Z[β] (8)

An equivalent and more efficient way to obtain this magnitude is attainable
through the following convolution:

G[�αN�] = Y [�αN�] ⊗ Y ∗[−�αN�] ⊗ u[�αN�]

= F {
y[n]y∗[n] × F−1{u[�αN�]}}

(9)

where the notation u[·] indicates a unit step sequence. Hence, the statistic Z can
be efficiently computed by the following difference equation:

Z[�αN�] = G[�αN�] − G[�αN� − 1] (10)

for every α ∈ A. The resulting set of values correspond to the cycle frequencies
profile of the SCD [11]. The block diagram of the proposed algoritm for obtaining
the cylic profile is shown in Figure 2.

x[n] F{ · } X[f]

(·)*
F -1{ · } y[n]

(·)*

_______1
(1-e         )   j(2π/N)n

F -1{u[αN]} =

F{ · }
G[αN]

z-1

-

Z[αN]

(?)

N

Fig. 2. Block diagram of the proposed algoritm for obtaining the cylic profile. The
inverse DFT of unit step is not computed during the procedure, it’s assumed to be
previously caculated.
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2.4 Detection Threshold Setting

The main parameters that characterize any detector’s performance are: the prob-
ability of detection (Pd) and the probability of false alarm (Pfa) [17]. The
value of γ that maximizes the Pd for a fixed Pfa, can be obtained from the
Neyman-Pearson’s Theorem, also known as likelihood ratio test [17]. However,
it is required to know the probability density functions of the detection statis-
tic under both hypotheses H0 and H1. Therefore, under blind conditions, an
empirical criteria for establishing a detection threshold is demanded.

Figure 3(a) shows the normalized Z statistic (Zu), obtained using the method
described in Figure 2, corresponding to the same signal of Figure 1. The his-
togram of Zu is shown in Figure 3(b). When the SoI is present, most of the
samples of Zu are related with noise4. In order to select a threshold, a confi-
dence criteria C must be defined. The detection threshold for a confidence C,
denoted by γc, corresponds to the magnitude of Zu for which the C ∗100 percent
of samples are lower than γc. However, the proposed criteria is valid only under
the hypothesis H1. If there is not a signal present (and γc is close to 1), there
will always be samples above this value. Hence, both the probability of detection
and the probability of false alarm would be one, and this detector would not be
useful.
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Fig. 3. Establishing the detection threshold (C = 0.95). (a) Normalized detection
statistic for the BPSK signal of Figure 1. (b) Histogram corresponding to (a).

Another parameter is defined for avoiding this problem: the tolerance level
(T ), defined as the maximum value of γc for which H0 is rejected. Every threshold
below T indicates detected signal. Finally, the normalized threshold for blind
cyclostationary feature detection can be stated as follows:

γ =
{

γc , if γc ≤ T
1 , otherwise. (11)

If γc > T (γ = 1), then hypothesis H0 will never be rejected.

4 This noise is not channel noise properly, but estimation error from the periodogram
in equation (2). According to the central limit theorem [17], this error can be modeled
as a normally distributed random variable.



Blind Spectrum Sensing Based on Cyclostationary Feature Detection 541

3 Results

The proposed detector was verified through Monte Carlo simulations, as sug-
gested by Kay [17]. For each hypothesis, 2000 iterations were conducted in order
to obtain reliable results. BPSK, QPSK, BFSK and MSK signals with length
N = 1024 samples were analyzed. As an additional condition, fading and Doppler
effects were considered, which parameters were randomly selected from trial to
trial.

Receiver Operating Characteristics (ROC). An effective way to summa-
rize the detector performance is to represent Pd versus Pfa [17]. A set of ROCs
curves corresponding to the detection of different signals are showed in Figure
4(a). In Figure 4(b) another representation of the simulations results are shown
for several types of signals. Similar representations are shown for the conven-
tional ED and the enhanced version using sliding window, obtained from their
analytical expressions presented in [10]. Note that the performance of the ED
is independent of the modulation detected. Although the performance of the
classical ED is poor under low SNR regimes, about 10 dB gain can be obtained
if a sliding window of length 70 samples is used. However, the complexity of
the detector is increased. Even using this enhanced version, the proposed CD
method overcomes the ED for all the signals analyzed and Pd = 0.9.
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Fig. 4. Comparison between the ED and the proposed technique. (a) ROC
curves for SNR = -5 dB. (b) Curves of Pd vs. SNR for Pfa = 0.1.
* Results obtained by simulations using the proposed technique.

4 Conclusions

The method proposed in this paper takes advantage of the cyclic features com-
monly presented in communication signals, in order to perform spectrum sensing.
Conventional cyclostationary feature detection techniques are not well posed if
the signal parameters are unknown. Under these conditions, a decision criteria
for blind detection of primary signals is proposed based on practical assumptions.

Considering the trade-off between implementation complexity and perfor-
mance, our proposed method stands as a good compromised solution for blind
spectrum sensing. Low SNR regimes, presence of a fading channel and Doppler
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effect were considered in simulations. It was shown that the proposed method
has a better performance than other solutions based on energy detection.

The proposed solution represents a useful technique for cognitive radio
devices that operate as secondary users. It allows to detect idle channels for
increasing spectrum utilization efficiency.
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