
Magnetic Resonance Image Selection
for Multi-Atlas Segmentation

Using Mixture Models

Mauricio Orbes-Arteaga1, David Cárdenas-Peña1(B), Mauricio A. Álvarez2,
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Abstract. In this paper, magnetic resonance image similarity metrics
based on generative model induced spaces are introduced. Particularly,
three generative-based similarities are proposed. Metrics are tested in
an atlas selection task for multi-atlas-based image segmentation of basal
ganglia structure, and compared with the mean square metric, as it is
assessed on the high dimensional image domain. Attained results show
that our proposal provides a suitable atlas selection and improves the
segmentation of the structures of interest.
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1 Introduction

Brain magnetic resonance images (MRI) play an important role in the diagno-
sis and treatment of medical diseases. Applications such as disease progression,
brain mapping, and surgery planning require of accurate brain structure seg-
mentation [1]. However, such task is difficult to perform due to the presence
of artifacts and low contrast between the tissues, mainly inside the subcortical
region.

Atlas-based techniques are commonly used for dealing with the above con-
straints, as they allow to include shape and intensity distribution of any structure
as a priori knowledge (atlas). To this end, the atlases are usually non-linearly
mapped to the target image space and finally combined into a single labeling
image using a procedure, known as atlas voting or label fusion. However, as brain
shapes are not unimodal distributed, anatomically non relevant atlases can bias
the achieved segmentation. Moreover, the computational cost linearly increases
with the number of atlases to be registered. To overcome these issues, multi-atlas
approaches have been proposed to properly select and combine the independent
c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 391–399, 2015.
DOI: 10.1007/978-3-319-25751-8 47



392 M. Orbes-Arteaga et al.

contributions of an atlas [2]. In this sense, proper selection of atlases allows to
improve the resulting segmentation, while keeping the number of atlases as low
as possible. Usually, the selection criterion is based on image similarity metrics
[3], as mutual information or mean squares, being computed in a common image
space [2] or in the target image space [4]. However, a large similarity value does
not necessarily imply high quality propagated labels [5]. Moreover, as the met-
rics are computed in the original image space, the intrinsic image morphological
properties may not be highlighted.

Hence, new methodologies have been introduced to find low dimensional
spaces to map the images and assess the similarities. Techniques as manifold
learning [6] and locality preserving projections [7] have been used in this regard.
On the other hand, generative embeddings have proved to be efficient for rep-
resentation and discrimination of high dimensional data structures [8]. These
approaches take advantage of the low dimensional space induced by the genera-
tive model parameters or scores.

In this work, we propose to use the induced metrics from generative models
as image similarity function in the atlas selection in a multi-atlas segmentation
scheme.Ourproposal uses generativemodels to representMRI, so they aremapped
into a more compact and discriminative space highlighting anatomical differences.
In order to compute the image similarities, three probability based approaches are
considered:Likelihood-based,Parameter-based, andFisher score-based.Addition-
ally, as the intensity probability distribution of the image is unknown, Gaussian
and Student’s t mixture models are used to estimate it. Obtained results show that
the similarities in the new representation space achieve a more suitable selection of
atlases improving the segmentation accuracy compared with metrics computed in
the original image space, such as the means square.

2 Materials and Methods

2.1 Multi-atlas Based Segmentation

The input MRI space is described as follows: Let X ={Xn,Ln:n=1, . . . , N} be
a labeled MRI dataset holding N image-segmentation pairs, where Xn={xn

r ∈R:
r∈Ω} is the n-th MR image, the value r indexes all spatial elements (spel),
and Ln={lnr ∈{1, C}:r∈Ω} is the provided image segmentation into C∈N classes.
In the case of 3D-volume analysis, both, Xn and Ln, have dimension
Ω=R

Ta×Ts×Tc , with {Ta, Ts, Tc} being the Axial, Sagittal, and Coronal sizes,
respectively. Thus, the segmentation of each target image is accomplished by
combining the subset holding the most similar labeled atlases of X , which are
selected by a given similarity criterion.

In addition, the majority vote strategy is used to carry out MRI segmen-
tation. This straightforward procedure assigns the most agreed label among
the selected atlases to each spel of the target image. So, let Xq be a target
image and Xq={Xt,Lt:t=1, . . . , T} be a subset of Xq⊂X that holds T≤N
selected atlases, which are ranked by the similarity measure κ{·, ·}, so that
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κ{Xq,Xt}>κ{Xq,Xt+1}. Also, let L̂t be the provided segmentation of the
t-th atlas after carrying out the deformable registration of the target image so
that the matrix L̂t assigns the label l̂tr to each spel r. Afterward, labeling from all
atlases is gathered into a single estimated segmentation matrix L̂q with elements:

l̂qr = arg max
c∈{1,C}

∑
t∈T

δ(l̂tr − c), l̂qr ∈ {1, C}

where δ(·) is the delta Dirac function. So, the image similarity function is crucial
for selecting the closest templates to target images.

2.2 Generative Mixture Models for Extracting Image Features

Provided a set of parameters Θ, the intrinsic MRI features are proposed to
be described by a generative model maximizing the conditional probability,
P (X|Θ). For fitting parameters Θ to a given image X={xr∈R:r∈Ω}, this task
is equivalent to the minimization of the negative log-likelihood cost function,
J=− log P (X|Θ), that under the assumption of independent and identically dis-
tributed spel intensities is written as:

Θ∗ = arg min
Θ

{−
∑

r∈Ω
log P (xr|Θ)} (1)

where P (xr|Θ) is the probability that a pixel has intensity xr, given the model
parameters. Since the MR images may include several structures with differ-
ent intensity ranges, we hypothesize that image features are better described
by mixture models with K components and parameters Θ={θk:k=1, . . . , K}.
Thus, the conditional probability is written as: P (xr|Θ)=

∑
k∈K ωkPk(xr|θk),

subject to:
∑

k∈K ωk=1, where the mixture weight, ωk∈R+, stands for the prior
probability of each spel to belong to the k-th component. Pk(xr|θk) is the class
conditional probability for the k-th component. We will discus the use of the
following functions:

– Gaussian Distribution: Pk(xr|θk)= 1
σk

√
2π

exp{−(xr − μk)2/2σ2
k}, where in

the parameter set θk={ωk, μk, σk}, μk∈R is the mean and σk∈R+ is standard
deviation.

– Students’t Distribution (Γ (·) notates the Gamma function):

Pk(xr|θk)=
Γ ((νk + 1)/2)

Γ (νk/2)
√

πνkσk

(
1 +

1
νk

(
xr − μk

σk

)2
)−(νk+1)/2

Therefore θk={ωk, μk, σk, νk}, with νk∈R+ as the degrees of freedom.

2.3 Generative-Model Based Measures of Pair-Wise Image
Similarity

– Likelihood-based similarity: Due to the log P (Xm|Θn) is the probability that
the image Xm is generated by the model parameters Θn, the following log-
likelihood measure of pairwise similarity is defined [8]:

κ{Xn,Xm} = log P (Xm|Θn) (2)
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– Parameter-based similarity: For better handling of size variant images, each
image is represented by a concatenated parameter vector Θ that results
from the model optimization, making the image characterization be only
dependent on the size of the model parameters instead of the whole image
domain:

κ{Xn,Xm} = f(Θn, Θm) (3)

where f(Θn, Θm) is a similarity function between the vectors Θn and Θm.
– Fisher-score-based similarity: For describing the direction in which the model

parameters should be modified to better fit the data, the gradient of the log-
likelihood in Eq. (1), ∇Θ log P (X|Θ) is used (termed the Fisher score [8])
as follows:

κ{Xn,Xm} = f(∇ΘnJ(Xn|Θn),∇ΘmJ(Xm|Θm)) (4)

where ∇ΘJ(X|Θ)={∂J/∂μk, ∂J/∂σk}K
k=1 for the case of the Gaussian mix-

tures, and ∇ΘJ(X|Θ)={∂J/∂μk, ∂J/∂σk, ∂J/∂νk}K
k=1 for Student’s t mix-

tures.

3 Experimental Set-Up

To evaluate the performance of the proposed measures of similarity between
MRIs, a multi-atlas segmentation scheme is considered so that the atlases are
ranked according to the degree of similarity with a target image. Also, the cor-
responding label images are combined through a majority voting scheme for
estimating the final segmentation. Thus, the evaluation process have the follow-
ing stages: i) Image preprocessing, ii) Generative model optimization, and iii)
Similarity metric evaluation for the Atlas voting.

3.1 MRI Database and Image Preprocessing

The MRI collection used is a subset of the Open Access Series of Imaging Studies
(OASIS) database that was proposed for the MICCAI 2012 Multi-atlas labeling
and Statical Fusion Challenge. The dataset holds T1-Weighted structural MRI
scans from 35 subjects (13 males and 22 females) aging from 18 to 90 years
old. Each 256×256×287 MRI volume has a voxel size of 1×1×1mm. All images
were expertly labeled for 26 structures. Due to our research interest in Parkinson
surgery, only the following structures are considered: hypothalamus, amygdala,
putamen, caudate nucleus, thalamus, and pallidum. Fig. 1 shows a sample image
subject and its segmentation provided.

To measure image similarities within a single common image space, input
MRI set is spatially normalized into the Talairach space using a rigid alignment
to the MNI305 atlas. For the label propagation, every atlas image is also spatially
mapped into the target image spatial coordinates with an elastic deformation
(ANTS toolbox1).
1 http://picsl.upenn.edu/software/ants

http://picsl.upenn.edu/software/ants
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Fig. 1. Left to Right: Axial, Sagittal, Coronal views, and ground-truth segmented
structures.

3.2 Generative Model Optimization

We use the Expectation-Maximization (EM) algorithm to find the parameter set
of the generative mixture models representing an image (see Eq. (1)). Aiming
each mixture to represent the same regions in all images, the EM at each of
them is initialized as follows: i) k-means algorithm is performed over a subset of
randomly taken spels from the input dataset. ii) Those resulting centroids are
used further as seeds for the EM.

The ability of each distribution function considered for describing the input
MRI set is analyzed by incrementing the number of mixtures K=2, . . . , 16 on
the model as seen in Fig. 2 showing the average log-likelihood of the Gaussian
mixture model. Fig. 2a relates the case when the whole image is fit, and Fig. 2b –
when fitting only the region of interest (ROI) corresponding to the basal ganglia
location. As a result, the former GMM fitting becomes more complex due to the
larger amount of structures of the entire image. It is worth noting, for the ganglia
region, that the larger is the number of mixtures, the better the fitting in the
generative process. Nevertheless, the model can be over-fitted for a considerable
number of mixtures.

Fig. 2. Gaussian Mixture Model fitting for several number of mixtures.

For the case of the Student’s t mixture, we evaluate the image fitting by
varying the degrees of freedom, ν=1, . . . , 20. As seen on the top file in Fig. 3, the
results achieved of the ROI modeling show that lower values of ν allow improving
the generative model performance. The whole image modeling seems to have the
same behavior but with worse consistency. Additionally, the bottom file in Fig. 3
show the degrees of freedom obtained from EM for a given number of mixtures.
Thus, ν tends to be more stable when the number of components is increased.
However, it is known that the Student’s t resembles the Gaussian distribution
for large values of ν.
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Fig. 3. Student’s t parameter tuning. Top: Log-likelihood versus the degrees of free-
dom. Bottom: Degrees of freedom versus number of mixtures (subject mean and
standard deviation depicted). Left: Whole image modeling. Right: ROI modeling.

3.3 Validation of Image Similarity in Multi-atlas-Based
Segmentation Tasks

We assess the performance of the proposed similarity approaches within an atlas
selection task, where all structures are segmented using the atlas-voting label
propagation approach in the target image space. Specifically for the (see Eq. (3))
parameter-based and (Eq. (4)) Fisher score-based measures, we make use of the
Gaussian kernel, f(Θn, Θm)=exp(‖Θn − Θm‖22/2σ2

f ), as the similarity function
between feature vectors, where the scale parameter σf∈R+ is tuned using the
maximum dispersion criterion [9]. For the sake of comparison, we also assess as a
similarity metric the voxel-wise Mean Squares (MS) in the image domain space.

Fig. 4 shows the results for multi-atlas segmentation using Gaussian distri-
butions. As seen on the top file in Fig. 4 modeling the whole image, the accuracy
achieved by all image similarities is not affected by the number of components
used to model the input MRI space. However, the Fisher score-based measure
outperforms the others. In turn, the bottom file in the figure Fig. 4 display the
ROI-based modeling performance that improves the one achieved by the whole
image modeling. Particularly, in Fig. 4 the bottom left figure shows that the
larger the number of mixtures the lower the segmentation performance due to
the model over-fitting at each image. Once again, the Fisher score-based selec-
tion outperforms the other strategies; this result may be explained since the
derivatives take into account the degree of agreement between models.

Likewise, we estimate the accuracy using the Student’s t distribution as seen
in the top file in Fig. 5, showing a similar performance to the Gaussian distribu-
tion for the whole image modeling. For the ROI modeling, the parameter-based
and Fisher score-based selection methods achieve the highest accuracy at a larger
number of mixtures.
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Fig. 4. Dice Index versus the number of atlases for all considered image similarities
using Gaussian mixtures. Top: Whole image modeling. Bottom: ROI image model-
ing. Left to Right: Likelihood-based, Parameter-based and Fisher score-based atlas
selection.

Fig. 5. Dice Index versus the number of atlases for all considered image similarities
using Student’s t mixtures. Top: Whole image modeling. Bottom: ROI image model-
ing. Left to Right: Likelihood-based, Parameter-based and Fisher score-based atlas
selection.

4 Discussion

We introduce a new strategy for measuring MRI similarities supporting a multi-
atlas segmentation scheme. The proposal allows computing pairwise similari-
ties in a low dimensional space being induced by a generative model. As a
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result, a new space becomes more discriminative and compact than the orig-
inal spel-wise image representation. For computing the pair-wise image affinity,
three approaches are proposed, namely, Likelihood-based, Parameter-based, and
Fisher score-based similarity. Moreover, two different distributions are asssumed
as components of the mixture model: Gaussian and Student’s t distributions.

The training approach is validated on selecting the most similar atlases to
a target, and then combining them into a single segmentation. For testing,
two strategies of feature extraction are considered: whole image and the ROI.
Obtained results for the basal ganglia location show that the proposed approach
outperforms the segmentation achieved by the baseline spel-wise MS metric.

Regarding the mixture base distributions, it is clear that for the Gaussian
distribution the larger the number of mixtures, the better the fitting for the gen-
erative process. However, for modeling the whole image, the number of required
components tends to be large, due to the whole image holding significantly more
structures than the ROI. Contrarily, for the Student’s t distribution, a better
fitting is achieved as the number of components decrease. Taking into account
that the degrees of freedom parameter, ν, allows to differentiate a Student’s t
from Gaussian like shapes, the tuning of such parameter is more complex than
the location parameter and the scale parameter, at each mixture. This is mainly
because the log-likelihood cost function is not convex. Hence, the parameter
tuning may lead to suboptimal values, which are different to the ones obtained
by exhaustive search, as seen in the Fig. 3. In this sense, we conclude that the
Gaussian distribution is more appropriate for modeling the images.

For the sake of evaluation, all considered image similarities are used as a selec-
tion criterion in the multi-atlas segmentation scheme. According to results in the
right column in Figs. 4 and 5, the likelihood-based similarity approach achieves
the worst accuracy, this is because the similarity measure becomes highly sensi-
tive to poorly estimated or improper models. In the parameter-based approach,
each image is characterized by the vector of estimated parameters, and the sim-
ilarity is measured by comparing vector pairs using a Gaussian kernel function.
Obtained results in the middle columns in Figs. 4 and 5 show that improvement
in accuracy is achieved with respect to likelihood-based similarity. Therefore,
the information captured by the vector of parameters is more discriminative
than the obtained by assessing the likelihood over the images, specially in high
dimensional images. Also, in order to capture the influence of the parameters
on the generative process, the gradient of the log-likelihood cost function with
respect to the parameters is used as feature extraction. As a result this measure
selects a more appropriate subset of atlases than the former introduced measures,
achieving a higher accuracy respect to them, as seen in Figs. 4 and 5. Finally,
aiming to compare the proposals against the conventional similarities, the well
know Mean squares is used. In this case, the new similarities outperform the MS
baseline in the atlas selection task, with the advantage of being only dependent
on the number of parameters in the model, which is considerably smaller than
the number of spels an image.
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As a future work, other image generative models are to be tested (e.g. Markov
Random Fields), where the spatial information is also taken into consideration,
providing more robust estimation to the artifacts present on MR images. Other
methods for model comparison, such as dissimilarities and kernel methods, will
also be included.
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