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Abstract. In forensic voice comparison, it is strongly recommended to
follow the Bayesian paradigm to present a forensic evidence to the court.
In this paradigm, the strength of the forensic evidence is summarized
by a likelihood ratio (LR). But in the real world, to base only on the
LR without looking to its degree of reliability does not allow experts to
have a good judgement. This work is mainly motivated by the need to
quantify this reliability. In this concept, we think that the presence of
speaker specific information and its homogeneity between the two signals
to compare should be evaluated. This paper is dedicated to the latter,
the homogeneity. We propose an information theory based homogeneity
measure which determines whether a voice comparison is feasible or not.
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1 Introduction

In forensic comparison, it is strongly recommended to present the forensic evi-
dence to the court following the Bayesian paradigm [1]: Speaker recognition (SR)
systems should calculate for a given trial a likelihood ratio (LR) which represents
the degree of support for the prosecutor hypothesis (the two speech extracts are
pronounced by the same speaker) rather than the defender hypothesis (the two
speech extracts are pronounced by different speakers). Theoretically, a good LR
is assumed to contain by itself all the needed information including reliability:
in good conditions, the LR should be far from 1 to support comfortably one
of the two hypothesis (big LR values, about 1010 support H0 and low values,
about 10−10 support H1) while in bad conditions the LR is close to one and
consequently, it does not allow a good discrimination between the two hypothe-
sis. But in the real world, forensic processes are working only with an empirical
estimation of LRs that could be far from theoretical ones. In this case, LRs
are unable to embed reliability information furthermore as there is no concrete
evaluation of the disagreement between theoretical and empirical LR. It is par-
ticularly true for SR systems which are working as black boxes: They calculate
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a sort of score in all situations without verifying if there is enough reliable infor-
mation present in the two records. Then, those scores will be calibrated (i.e.
normalized) to be viewed as a LR [2][3]. So, it could be misleading to the court
if experts report only the LR and not its degree of reliability. Presently, these
issues of validity and reliability are of great concern in forensic science [4] [5]
[6] [7] [8] [9]. To cope with this problem, it is interesting to define a confidence
measure (CM) that indicates the reliability of a system output. Several solu-
tions were proposed in [6] [7] [8] [9][10] [11] where the CM is estimated for each
trial from both system decision score and the two speech extracts of a given
voice comparison, SA-SB. An alternative consists in studying the losses in LR
quality which are related to: (i) A lack of discriminative information (as shown
in [12]) in SA and/or SB . (ii) Sufficient discriminative information are available
but the system is unable to output a meaningful (LR) due for example to the
mismatch between elements used to build the system (UBM, total variability
matrix, PLDA,...) and the pair of voice records SA-SB [13][14]. In brief, the loss
could be divided into two origins. Our interest concerns the case (i) detailed
before.

The final objective of our work is to define a “Feasibility measure” (FM) able
to measure the presence of speaker discriminant cues and the homogeneity of
this information between the pair of voice records SA-SB . So, this measure is
estimated only from the two in-interest voice records. If it is obvious that the
presence of speaker specific information inside SA and SB is mandatory, it is not
sufficient: examples tied with the same class of cues should be included in both
speech recordings in order to be useful.

In this paper, we address more specifically the problem of the evaluation of
the homogeneity of two speech signals in terms of information classes, at the
acoustic level. We propose an information theory-based homogeneity criterion
able to quantify this homogeneity.

This paper is structured as follows. Section 2 presents our new homogeneity
measure and details the algorithm to compute it. Section 3 describes the LIA
baseline system and presents experiments and results. Then, section 4 presents
the conclusion and proposes some extends of the current work.

2 Information Theory Based Homogeneity Measure

In this section, we define an information theory (IT) based homogeneity measure
denoted HM(). Its objective is to calculate the amount of acoustic information
that appertains to the same class between the two voice records.The set of acous-
tic frames gathered from the two files SA and SB is decomposed into acoustic
classes thanks to a Gaussian Mixture Model (GMM) clustering. Then the homo-
geneity is first estimated in terms of bits as the amount of information embedded
by the respective “number of acoustic frames” of SA and SB linked to a given
acoustic class. Each acoustic class is represented by the corresponding Gaussian
component of the GMM model. The occupation vector could be seen as the
number of acoustic frames of a given recording belonging to each class m. It is
noted: [γgm

(s)]Mm=1.
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Given a Gaussian gm and two posterior probability vectors of the two voice
records SA and SB , [γgm

(A)]Mm=1 and [γgm
(B)]Mm=1, we define also:

– χA ∪ χB ={x1A, ...., xNA} ∪ {x1B , ...., xNB} the full data set of SA and SB

with cardinality N=NA +NB

– γ(m) and ω(m) are respectively the occupation and the prior of Gaussian m

where ω(m) = γ(m)
∑M

k=1 γ(k)
= γ(m)

N

– γA(m) (respectively γB(m) ) is the partial occupations of the mth component
due to the voice records SA (respectively SB).

– pm is the probability of the Bernoulli distribution of the mth bit (due to the
mth component), B(pm). pm=γA(m)

γ(m) , pm = 1 − pm = γB(m)
γ(m) .

– H(pm) the entropy of the mth Gaussian (the unit is bits) given by: H(pm) =
−pmlog2(pm) − pmlog2(pm).

The class entropy, H(pm), has some interesting properties in the context of an
homogeneity measure:

* H(pm) belongs to [0, 1].
* H(pm) = 0 if pm = 0 or pm = 1. It means that when the repartition of the

example of a given class m is completely unbalanced between SA and SB,
H(pm) is zero (i.e. H(pm) goes to zero when pm is close to 0 or 1).

* H(pm) = 1 when pm = 0.5. H(pm) is maximal when the examples belong-
ing to a given class are perfectly balanced between between SA and SB

(i.e. H(pm) goes to the maximum value 1 when the repartition goes to the
balanced one).

With these theoretical properties, H(pm) is definitively a good candidate
in order to build a homogeneity measure. Two measures based on H(pm) are
proposed hereafter. The first measure is a normalized version. It ignores the
size of the frame sets (i.e. the duration of the recordings) when the second ones
’non-normalized’ takes this aspect into account.

The normalized HM denoted “HMBEE” is calculated as shown in Equation 1.
It measures the Bit Entropy Expectation (BEE) with respect to the multinomial
distribution defined by GMM’s priors {ω(m)}M

i=1.

HMBEE =
M∑

m=1

γ(m)
N

H(pm) =
M∑

m=1

ωmH(pm) (1)

By definition HMBEE contains the percentage of the data-homogeneity between
SA and SB . It does not take into account the quantity of the homogeneous
information between the two speech extracts. To integrate this information, a
Non-normalized Homogeneity Measure (NHM) is proposed. NHM calculates the
quantity of homogeneous information between the two voice records as shown in
Equation 2. The amount of information is defined in term of number of acoustic
frames. NHM measures the BEE with respect of the quantity of information
present in each acoustic class {γ(m)}M

i=1.
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NHMBEE =
M∑

m=1

(γA(m) + γB(m))H(pm) =
M∑

m=1

γ(m)H(pm) (2)

As mentioned before, a GMM presenting the different acoustic classes is
mandatory to estimate both homogeneity measure. So, it will be reasonable to
estimate HM using different representation of the acoustic space. Several avenues
are explored in this paper. First, we use a GMM trained only on the two speech
signals. The major advantage of this representation is its independence toward
the system. Nevertheless, the amount of data involved in the two signals is not
always quite sufficient to build stable acoustic classes. An alternative consists in
to use a stable representation of the acoustic space, UBM. As it is learnt on a
very large data set and its high ability to model the whole acoustic space, the
estimation quality of the UBM could be higher than the GMM A-B (learnt only
on the two speech recordings).

3 Experiments and Results

In order to evaluate the homogeneity measures presented in section 2, we propose
several experiments based on NIST SRE framework.

3.1 Baseline LIA System

In all experiments, we use as baseline the LIA SpkDet system presented in [15].
This system is developed using the ALIZE/SpkDet open-source toolkit [16]. It
uses I-vector approach [17].

Acoustic features are composed of 19 MFCC parameters, its derivatives, and
11 second order derivatives (the frequency window is restricted to 300-3400 Hz).
A normalization file-based process is applied, so that the distribution of each
cepstral coefficient is 0-mean and 1-variance for a given utterance.

The Universal Background Model (UBM) is trained on Fisher database on
about 10 millions of speech frames. It has 512 components whose variance param-
eters are floored to 50% of the global variance (0.5). The total variability matrix
T is trained using 15660 sessions from 1147 speakers (using NIST SRE 2004,
2005, 2006 and Switchboard data). Speaker models are derived by Bayesian
adaptation of the Gaussian component means, with a relevance factor of 14.
The same database is used to estimate the inter-session matrix W in the I-vector
space. The dimension of the I-Vectors in the total factor space is 400.

For scoring, PLDA scoring model [18] is applied. The speaker verification
score given two I-vectors wA and wB is the likelihood ratio described by:

score = log
P (wA, wB |Hp)
P (wA, wB |Hd)

(3)

where the hypothesis Hp states that inputs wA and wB are from the same speaker
and the hypothesis Hd states they are from different speakers.



Homogeneity Measure for Forensic Voice Comparison 139

3.2 Experimental Protocol

All the experiments presented in this work are performed based upon the NIST-
SRE 2008 campaign, all trials (det 1), “short2-short3”, restricted to male speak-
ers only (referred to as 2008 protocol). This protocol is composed by 39433
tests (8290 target tests, the rest are impostor trials). The utterances contain 2.5
minutes of speech in average.

As seen in section 2, for each trial the set of acoustic frames is clustered
thanks to a GMM. This GMM has 512 components and is trained by EM/ML
(with a variance flooring ≈ 0).

3.3 Evaluation Process of the Homogeneity Measure

In order to evaluate the proposed homogeneity measures, we apply it on all the
trials of our evaluation set and sort the set accordingly. We are expecting that
lowest values of homogeneity are correlated with the lowest performance of the
speaker recognition system, as well as the opposite behaviour for high values.
To compute the speaker recognition performance, we select the log-likelihood-
ratio cost (Cllr), largely used in forensic voice comparison because it is based
on likelihood ratios and not on hard decisions like, for example, equal error rate
(EER) [6,19]. Cllr has the meaning of a cost or a loss: lower the Cllr is, better
is the performance. In order to withdraw the impact of calibration mistakes, we
use the minimum value of the Cllr, noted Cmin

llr . If a Cllr could be computed for
a given trial, it makes sense to average the values on a reasonably large set of
trials. So, we apply a 1500 trials sliding window, with a step of 1000, on the trials
sorted by homogeneity values. On each window, we compute the averaged Cmin

llr

to be compared with the HM value (computed here as the median value on the
window). To work on such number of trials allows also to compute the percentage
of false rejection (FR) and false acceptance (FA). FR and FA are computed using
a threshold estimated onto the whole test set and tuned to correspond at the
EER. The Cmin

llr baseline system computed on all trials is equal to 0.2241.

3.4 Evaluation of Homogeneity Measures

- GMM A-B. In this subsection, we use a GMM learnt on the pair of speech
signals (GMM A-B). From Figure 1, it can be seen that HMBEE value does
not have a remarkable impact on Cmin

llr . It is confirmed by a not significant low
correlation with Cmin

llr , evaluated to a R2 equal to -0.39 (p=0.16). It seems that
to focus only on BEE, ignoring the involved quantity of examples does not allow
to build an homogeneity measure with the desired characteristics.

Experimental results obtained using NHMBEE are reported in Figure 2. The
shape of the curve is interesting with Cmin

llr varying from 0.309 to 0.122, indi-
cating a high correlation between NHMBEE and Cmin

llr (R2 = -0.942, p <0.01).
Moreover, it seems that NHMBEE brings new information compared to the sys-
tem outputs. The result is confirmed with a lower R2 of 0.55 (to be compared
with a R2 equal to 0.73 in the case of HMBEE). Further experiments have been
done using NHMBEE only.
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Fig. 1. HMBEE behaviour, estimated
with GMM-AB.

Fig. 2. NHMBEE behaviour, estimated
with GMM-AB.

- UBM Model. In Figure 3, we present the results obtained using NHMBEE

like the previous one but here, we use directly the UBM in order to cluster the
acoustic frames of the pair of speech recordings. With a Cmin

llr varying between
0.3 and 0.089 and its high correlation with NHMBEE , evaluated to R2 equal to
-0.950 (p < 0.01), this variant seems to outperform the previous one.

Fig. 3. NHMBEE behaviour, estimated
with UBM.

Fig. 4. NHM behaviour using GMM A-
B initialized with UBM.

Two more experiences are realized. In Figure 4, we report results when the
GMM A-B is now initialized with the UBM (case A), and in Figure 5, we use the
UBM mean-adapted (using MAP) by the two speech recordings SA and SB (case
B). In both cases, NHM is highly correlated with the SR system performance,
Cmin

llr (A: R2 = -0.963, p < 0.01 ; B: R2 = -0.973, p < 0.01). Moreover, it seems to
be more dependent to the system output compared to the previous one in which
we use only the UBM (case A: R2 = 0.57, p<0.01; case B: R2 = 0.37, p<0.01;
UBM R2 = 0.29, p<0.01). We notice that using the mean-adapted UBM model
to estimate NHMBEE adds more stability to Cmin

llr variation. It can be explained
by the fact that adapted UBM model preserves the good modeling of the whole
acoustic space and at the same time, takes into account the characteristics of
a given trial. Whereas in case A, it is clear that using a GMM A-B with UBM
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initialization is very close to the case in which we use GMM A-B (without
initialization). This result is clear when we see the big similarity between the
two NHM behavioural curve (Figure 4 and 2).

Fig. 5. NHM behaviour estimated using the UBM adapted by SA and SB .

4 Discussion and Conclusions

In this paper, we have proposed an IT-based data Homogeneity Measure denoted
NHMBEE where the quantity of homogeneous examples presented in both speech
extracts is taken into account. NHMBEE belongs to the Bit Entropy Expectation
(BEE) computed on a Gaussian Mixture Model view of the couple of speech
recordings which composes a given voice comparison trial. A first variant from
this measure uses GMM as a model trained by the pair of recordings. It showed
interesting properties with a nice relation between the homogeneity values and
the Cmin

llr , varying from (HM=4689,Cmin
llr =0.309) to (HM=7579, Cmin

llr =0.1227).
A second variant of NHMBEE uses directly the UBM model in order to cluster
the pair of speech recordings (without training or adaptation of the UBM).
This version has a similar behaviour than the previous one but outperformed
it with a behavioural curve moving from (HM=6341, Cmin

llr =0.3) to (HM=8762,
Cmin

llr =0.089). In the same direction, the use of a UBM mean-adapted by the pair
of recordings adds more stability to the Cmin

llr , varying quite consistently from
(HM=5953,Cmin

llr =0.31) to (HM=8490, Cmin
llr =0.09). This result shows that the

way to cluster the pair of speech recordings is important. Moreover, the different
variant of NHMBEE showed a low correlation with the scores issued by the
speaker recognition system. The behavioural curves of NHMBEE and this low
correlation encourage us strongly to conclude that NHMBEE is a good candidate
in order to measure the data homogeneity between a pair of speech recordings,
in the view of voice comparison reliability.

This work will firstly extended by working on other representation of acoustic
classes in order to estimate NHMBEE . In addition to this point, the behaviour
of our measures depending on the session variability factors should be explored
more deeply. Finally, as expressed in the introduction, data homogeneity is a
mandatory first step for a voice comparison feasibility measure and we expect
to explore this new avenue.
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