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Abstract. In real-world applications it is common to find data sets
whose records contain missing values. As many data analysis algorithms
are not designed to work with missing data, all variables associated with
such records are generally removed from the analysis. A better alternative
is to employ data imputation techniques to estimate the missing values
using statistical relationships among the variables. In this work, we test
the most common imputation methods used in the literature for filling
missing records in the ADNI (Alzheimer’s Disease Neuroimaging Initia-
tive) data set, which affects about 80% of the patients–making unwise
the removal of most of the data. We measure the imputation error of
the different techniques and then evaluate their impact on classification
performance. We train support vector machine and random forest clas-
sifiers using all the imputed data as opposed to a reduced set of samples
having complete records, for the task of discriminating among different
stages of the Alzheimer’s disease. Our results show the importance of
using imputation procedures to achieve higher accuracy and robustness
in the classification.

Keywords: Missing data · Imputation · Classification · ADNI ·
Alzheimer

1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia in the elderly,
representing about 80% of all dementia patients and the sixth cause of death
in the USA. 26.6 million people worldwide were estimated to suffer from some
degree of dementia in 2006, and 100 million impaired people are expected by
2050 [1]. Unfortunately, no drug treatment reducing the risk of developing AD
or delaying its progression has been discovered so far. The Alzheimer’s Disease
Neuroimaging Initiative1 (ADNI), launched in 2004, contributes to the develop-
ment of biomarkers for the early detection (diagnostic) and tracking (prognostic)
1 http://adni.loni.usc.edu/
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of AD using longitudinal clinical, imaging, genetic and biochemical data from
patients with AD, mild cognitive impairment, and healthy controls. Its major
achievements have been reviewed in [2]. Pattern recognition techniques have
been instrumental in identifying disease patterns. Tasks such as classification,
prediction, feature extraction and selection, multimodal data fusion, dimension-
ality reduction, among others, are at the core of this ongoing multidisciplinary
research initiative. Pattern analysis is, however, hampered by missing data in the
ADNI dataset, i.e. patients with incomplete records, cases where the different
data modalities are partially or fully absent due to several reasons: high mea-
surement cost, equipment failure, unsatisfactory data quality, patients missing
appointments or dropping out of the study, and unwillingness to undergo inva-
sive procedures. The missing data problem can be handled in two ways. Firstly,
all samples having a missing record are removed before any analysis takes place.
This is a reasonable approach when the percentage of removed samples is low so
that a possible bias in the study can be discarded. Secondly, the missing values
can be estimated from the incomplete measured data. This approach is known as
imputation [3] and is recommended when the adopted data analysis techniques
are not designed to work with missing entries. About 80% of the ADNI patients
have missing records. Despite this, such patients are discarded in the vast major-
ity of ADNI studies, which is a disuse of valuable incomplete information. Only
recently, pattern recognition and machine learning techniques that can cope with
missing entries or perform data imputation have been investigated. This article
focuses on the task of patient classification into clinical groups. In particular,
we conduct a comparative study of different imputation techniques and evaluate
their impact on classification performance. We train support vector machine and
random forest classifiers using all the imputed data as opposed to a reduced set
of samples having complete records, for the task of discriminating among dif-
ferent stages of AD. We show the importance of including imputation and data
analysis procedures to achieve more accurate and robust classification results.

In section 2 we provide further background on the classification task for ADNI
patients and briefly describe the imputation and classification methods we used
in this study. Section 3 details the experimental settings on which we tested
the different methods against imputation error and classification performance,
discussing our findings. Final remarks and future work are examined in section 4.

2 Methods

2.1 Classification with Incomplete Data

The ADNI study provides a database of multimodal entries for 819 subjects:
229 participants with normal cognition as healthy controls (HC), 397 with mild
cognitive impairment (MCI), and 193 with mild Alzheimer’s disease. Individuals
with MCI are divided into two groups: those who remained in a stable condition
(sMCI) and those who later progressed to AD (pMCI). It is therefore crucial to
diagnose the patients into these clinical categories correctly in order to choose an
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appropriate treatment and further monitoring the disease. This task is especially
difficult when approximately 80% of the participants have missing observations.

Let X ∈ R
n×p be an incomplete matrix with n samples (subjects) and p

variables (features). X can be seen as two matrices, one containing the observed
data Xo, and the other one representing the missing data to be estimated Xm.
Most classification methods from the literature discard all samples having at
least one missing value. Only a few works that use all the available data exist,
such as [4–7] where direct data imputation is avoided, and [8] where a subset
of the missing data is estimated based on variable and sample selection. It is
then important to investigate the different causes of the missing data to evalu-
ate the utilisation of adequate imputation methods. Little and Rubin [3] define
three missing data mechanisms: i) missing completely at random, MCAR: miss-
ing values are independent of both observed and unobserved data; ii) missing
at random, MAR: given the observed data, missing values are independent of
unobserved data; and iii) missing not at random, MNAR: missing values depend
on the unobserved data. A recent longitudinal study [9] found that missing data
in ADNI are not MCAR, but rather conditional to other features in addition
to cognitive function. Moreover, the authors found evidence of different missing
data mechanisms between different biomarkers and clinical groups.

2.2 Imputation Methods

Efforts to define a taxonomy of imputation methods have been reported in [3,10].
In this work we compare some common techniques used in the literature.

1. Zero. This method consists of imputing missing data with 0 (zero) values.
2. Mean. Missing values filled with the mean of the observed values per variable.
3. Median. Missing values filled with the median of the observed values per vari-

able. The median is more robust against outliers than the mean. It tolerates
up to 50% of outliers [11].

4. Winsorised mean. Provides a more robust estimate for the mean, which is
calculated after replacing a given percentage (α) of the largest and smallest
values with the closest observations to them. We used α = 10%. This method
also controls the effect of outliers.

5. k-nearest neighbours (kNN). Missing values filled with the mean of the k-
nearest observed samples based on the Euclidean distance. We use a modified
cross-validation approach [12] to find the parameter k in the range [1,

√
nobs].

6. Regularised expectation maximisation (RegEM). Proposed by Schneider [13],
this imputation method makes two important assumptions: the data follow
a Normal distribution, and the missing values are generated by a MAR
process. The missing entries are estimated by the linear regression model
xm = μm+(xo−μo)B+e, where xo ∈ R

1×po and xm ∈ R
1×pm are row vectors

of the observed data matrix Xo and the estimated missing data matrix Xm,
respectively; μo and μm are their corresponding means; B ∈ R

po×pm is the
regression coefficients matrix, and e ∈ R

1×pm is a zero-mean random residual
vector with unknown covariance matrix C ∈ R

pm×pm . Initially, the algorithm
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estimates the missing data with the Mean method, followed by i) E-step:
compute the expected mean μ and covariance matrix Σ of X, ii) M-step:
compute the maximum likelihood estimates of the regression parameters B
and C, conditional to the estimates (μ,Σ), and iii) impute missing values
using the regression model. These three steps are iterated until convergence,
i.e., until the estimates (μ,Σ) stabilise. We run Schneider’s implementation2

using the individual ridge regression model.

3 Experimental Results

3.1 Data

In this work, we consider three baseline ADNI modalities: cerebrospinal fluid
(CSF), magnetic resonance imaging (MRI) and positron emission tomography
(PET). The modalities were preprocessed according to [14], with 43 out of 819
subjects excluded for not passing the quality control. The CSF source contains
3 variables that measure the levels of some proteins and amino acids that are
crucially involved in AD. The MRI source provides volumetric features of 83
brain anatomical regions. The PET source (with FDG radiotracer) provides the
average brain function, in terms of the rate of cerebral glucose metabolism,
within the 83 anatomical regions. Hence, each subject consists of 169 features.

3.2 Imputation

In this section we work with the 147 subjects who have complete records: 35 HC,
75 MCI and 37 AD. We synthesise different patterns of missing data, considering
the individual modalities and pairs of them: CSF, MRI, PET, CSF-MRI, CSF-
PET and MRI-PET. For each pattern we removed such features from a given
percentage {10, 20, 30, 40, 50}% of subjects that were chosen randomly. The per-
formance of the different imputation methods is assessed between three clinically
relevant pairs of diagnostic groups: AD/HC, MCI/HC and pMCI/sMCI.

Due to space limitations, Fig. 1 only shows the results for the experiment
AD/HC (72 subjects) with the CSF-PET missing data pattern. 95% confidence
intervals were computed for the Pearson correlation (PC) and the relative error
(RE) over 100 runs. As expected, we observed that the PC of the imputed
variables decreases with the amount of missing data. It is noteworthy that the
PC for the Zero method is the lowest because this technique does not consider
any additional information for estimating the data. Moreover, the RE for each
method seems rather constant. Since it is computed as RE = |xo − xm|/xo,
the Zero method will always produce RE = 1. Filling CSF data produces an
error of about 45% for the Median, Winsorised mean and kNN methods, which
outperform the Mean and EM methods. Filling PET data produces an error of
about 13% for most techniques, except for the Zero method. This low error can
be explained by inspecting the actual PET values. Fig. 2 shows the histograms
2 www.clidyn.ethz.ch/imputation

www.clidyn.ethz.ch/imputation
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Fig. 1. Imputation performance. Pearson correlation (bottom) and relative error (top)
for the imputation of missing values (MV) in CSF (left panels) and PET (right panels)
for the CSF-PET missing data pattern.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

Mean

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

Standard deviation

F
re

qu
en

cy

Fig. 2. Mean (left) and standard deviation (right) histograms over all 83 PET variables.

of the mean and standard deviation over all 83 PET variables. These small
quantities indicate that the PET values are bunched up close to the mean. For
this reason, the methods tend to provide estimates around this value even if they
do not directly impute using the mean.
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Table 1. AD/HC multi-modality classification accuracy (acc.), area under the curve
(AUC), sensitivity (sens.), specificity (spec.), and F-measure (F) based on filling miss-
ing data with different imputation methods before training a support vector machine
(SVM) and a random forest (RF) classifiers. Results are expressed as mean (standard
deviation).

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

none 83.5 (10.7) 92.4 (8.0) 81.7 (15.7) 86.1 (12.4) 82.2 (12.2)

Zero 88.7 (3.3) 93.9 (3.0) 89.0 (4.7) 88.6 (5.2) 89.5 (3.1)
Mean 86.6 (2.3) 92.2 (2.4) 85.9 (5.6) 87.7 (4.7) 87.7 (2.4)

SVM Median 88.5 (3.7) 93.7 (3.1) 88.3 (3.9) 88.5 (6.7) 89.3 (3.3)
Winsor m. 88.4 (3.4) 94.3 (2.4) 88.6 (4.6) 88.9 (5.5) 89.2 (3.2)
kNN 88.5 (3.0) 93.5 (2.5) 88.3 (3.6) 88.8 (4.7) 89.1 (3.2)
EM 88.1 (4.0) 93.7 (2.8) 87.9 (5.6) 88.3 (4.3) 88.9 (3.8)

none 84.8 (9.0) 93.2 (5.3) 85.9 (13.2) 85.5 (11.3) 84.3(9.6)

Zero 86.2 (3.5) 93.2 (3.1) 87.1 (4.9) 85.4 (5.4) 87.1 (3.2)
Mean 86.6 (2.8) 92.7 (2.5) 87.2 (5.5) 86.1 (5.3) 87.5 (2.7)

RF Median 86.3 (3.5) 93.6 (3.2) 87.2 (3.8) 85.2 (6.7) 87.3 (3.1)
Winsor m. 88.4 (3.1) 94.3 (2.0) 89.1 (4.2) 87.8 (4.1) 89.1 (2.8)
kNN 85.3 (3.3) 92.5 (2.3) 86.5 (4.7) 84.2 (4.8) 85.9 (3.4)
EM 86.3 (4.2) 93.1 (2.6) 87.1 (5.1) 85.6 (5.9) 87.1 (4.0)

Table 2. MCI/HC multi-modality classification results.

Classifier Imputation Acc. (%) AUC (%) Sens. (%) Spec. (%) F (%)

none 69.1 (11.8) 69.5 (14.6) 48.3 (21.5) 74.9 (13.4) 44.3 (22.8)

Zero 70.9 (3.3) 74.4 (11.1) 59.8 (5.6) 76.3 (4.3) 56.6 (5.4)
Mean 71.9 (3.8) 76.1 (12.2) 62.5 (6.8) 76.7 (4.0) 58.8 (6.0)

SVM Median 71.0 (3.9) 76.3 (4.1) 62.4 (6.1) 75.8 (4.9) 59.1 (6.5)
Winsor m. 72.0 (3.6) 77.9 (3.7) 63.4 (5.6) 76.2 (4.6) 59.0 (5.1)
kNN 72.6 (3.8) 78.8 (3.6) 63.3 (6.3) 77.3 (5.6) 58.9 (6.7)
EM 73.1 (4.2) 78.9 (2.8) 62.8 (7.1) 78.6 (5.1) 59.5 (7.3)

none 71.1 (8.3) 75.3 (10.6) 65.0 (21.9) 74.3 (10.2) 42.6 (14.9)

Zero 73.6 (3.2) 78.3 (3.8) 67.1 (8.0) 76.1 (4.2) 56.7 (7.1)
Mean 71.9 (3.3) 77.6 (5.0) 65.0 (8.0) 75.0 (2.8) 56.1 (4.5)

RF Median 71.4 (3.8) 76.5 (4.7) 66.1 (7.3) 73.5 (3.8) 55.7 (6.3)
Winsor m. 72.2 (3.8) 77.5 (3.6) 66.9 (4.2) 74.3 (4.9) 55.5 (6.1)
kNN 73.2 (4.2) 78.6 (4.6) 65.5 (8.0) 76.7 (5.4) 58.5 (6.1)
EM 72.6 (3.7) 77.6 (3.8) 63.2 (7.4) 76.7 (3.9) 56.8 (5.3)

3.3 Classification

We now use all 776 subjects to assess the impact of the different imputation
methods on patient classification. The whole data set has 33% of missing values,
from which 97% correspond to PET values. The remaining 3% are CSF values,
while the MRI source is complete. We consider two experiments: AD/HC with
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395 subjects (185 AD and 210 HC) and MCI/HC with 591 subjects (381 MCI
and 210 HC). In each experiment we used 75% of the data to train two classi-
fiers, namely a ν-Support Vector Machine (ν-SVM) and a Random Forest (RF),
evaluated over 25 runs. The other 25% of the data was used for testing. We
employed the implementations found in the scikit-learn library3. The ν and σ
parameters for ν-SVM and the number of trees and number of features for RF
were tuned using 5-fold CV.

Tables 1 and 2 show the classification results for the experiments AD/HC
and MCI/HC, respectively. We juxtapose both classifiers, SVM and RF, for the
different imputation methods. For completeness, we include the results when the
classifiers are trained solely with the reduced set of subjects having complete
records and thus no imputation is needed. It can be noticed that the classifica-
tion improves considerably when the full data set is used, imputing the missing
values. This clearly provides more information to discriminate among the differ-
ent diagnostic groups. These experiments suggest that the Winsorised mean, the
kNN and the EM methods should be preferred as imputation methods as they
provide more stable performance. The Zero method seems competitive, which
is explained again by the fact that the most of the missing data come from the
PET source which presents low dispersion values close to zero. Both classifiers
present similar performances in each scenario. A remarkable point, is that their
robustness (low variance) is increased in cases with imputation.

4 Conclusions and Future Work

We have seen how imputation techniques allow for the utilisation of additional
information, that would otherwise be discarded, to better distinguish between
different diagnostic groups. The development of biomarkers using more evidence
could result in more accurate diagnosis and prognosis of Alzheimer’s patients.
Our results showed that training classifiers with imputed data is better than con-
structing a predictive model with a reduced number of subjects with complete
records. This is supported by the fact that all imputation techniques increase
both performance metrics and robustness of the classifiers. An apparently unex-
pected finding is that the Zero method is competitive with the other methods,
according to the performance metrics used in this article. It is expected that
more sophisticated methods such as kNN and EM would deliver better results.
However, as we stated before, possibly more relevant than the quality of the
imputation algorithms is the nature of the data, which plays an important role
in the performance as we have seen.

Future work includes studying other imputation and classification techniques,
as well as exploring multi-class extensions and alternative ways of treating the
feature space to handle data-dependent imputation pitfalls. There is interest in
comparing imputation methods with methods that can internally handle the
missing values, as Artificial Neural Networks (ANN) [15] and SVM [16].

3 scikit-learn.org/stable

scikit-learn.org/stable


10 S. Campos et al.

References

1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the
global burden of Alzheimer’s disease. Alzheimer’s & Dementia 3(3), 186–191 (2007)

2. Weiner, M.W., et al.: The Alzheimer’s Disease Neuroimaging Initiative: A review of
papers published since its inception. Alzheimer’s & Dementia 9(5), 111–194 (2013)

3. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley-
Interscience (2002)

4. Wang, C., Liao, X., Carin, L., Dunson, D.B.: Classification with incomplete data
using Dirichlet process priors. JMLR 11, 3269–3311 (2010)

5. Ingalhalikar, M., Parker, W.A., Bloy, L., Roberts, T.P.L., Verma, R.: Using mul-
tiparametric data with missing features for learning patterns of pathology. In:
Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III.
LNCS, vol. 7512, pp. 468–475. Springer, Heidelberg (2012)

6. Yuan, L., Wang, Y., Thompson, P.M., Narayan, V.A., Ye, J.: Multi-source feature
learning for joint analysis of incomplete multiple heterogeneous neuroimaging data.
NeuroImage 61(3), 622–632 (2012)

7. Xiang, S., Yuan, L., Fan, W., Wang, Y., Thompson, P.M., Ye, J.: Bi-level multi-
source learning for heterogeneous block-wise missing data. NeuroImage 102, Part
1, 192–206 (2014)

8. Thung, K.-H., Wee, C.-Y., Yap, P.-T., Shen, D.: Neurodegenerative disease diag-
nosis using incomplete multi-modality data via matrix shrinkage and completion.
NeuroImage 91, 386–400 (2014)

9. Lo, R.Y., Jagust, W.J.: Predicting missing biomarker data in a longitudinal study
of Alzheimer disease. Neurology 78, 1376–1382 (2012)
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