
dbpedia’s Triple Pattern Fragments: Usage
Patterns and Insights

Ruben Verborgh(B)

Ghent University – iMinds, Ghent, Belgium
ruben.verborgh@ugent.be

Abstract. Queryable Linked Data is published through several inter-
faces, including sparql endpoints and Linked Data documents. In
October 2014, the dbpedia Association announced an official Triple Pat-
tern Fragments interface to its popular dbpedia dataset. This interface
proposes to improve the availability of live queryable data by dividing
query execution between clients and servers. In this paper, we present
a usage analysis between November 2014 and July 2015. In 9 months
time, the interface had an average availability of 99.99 %, handling
16,776,170 requests, 43.0 % of which were served from cache. These num-
bers provide promising evidence that low-cost Triple Pattern Fragments
interfaces provide a viable strategy for live applications on top of public,
queryable datasets.

Keywords: Linked Data · Linked Data Fragments · dbpedia

1 Introduction

dbpedia [2] is currently the most well-known dataset within the Semantic Web
community. It consists of hundreds of millions of rdf triples automatically
generated from the free Wikipedia encyclopedia. Such large Linked Datasets
come with important challenges – most prominently: how do we provide scalable
queryable access to them? The traditional answer has been to set up a public
sparql endpoint [4], but such endpoints suffer from low availability rates [3].
Yet reliable access is a prerequisite to build applications on top of a queryable
dbpedia interface.

Mid-October 2014, the dbpedia community opened a Triple Pattern Frag-
ments interface1 [14] maintained by the author of this paper. This interface is
designed to allow high availability on the server side, while still enabling live
querying on the client side. Queries take more time and bandwidth, because
they are mostly executed by the client, but the timings are consistent so that
building applications on top of a public dbpedia interface becomes realistic.

In this paper, we discuss the analysis of the first 9 full months of usage data
of the English dbpedia Triple Pattern Fragments interface, as well as availability
statistics measured by an independent party.
1 Available at http://fragments.dbpedia.org/2014/en.

c© Springer International Publishing Switzerland 2015
F. Gandon et al. (Eds.): ESWC 2015, LNCS 9341, pp. 431–442, 2015.
DOI: 10.1007/978-3-319-25639-9 54

http://fragments.dbpedia.org/2014/en


432 R. Verborgh

The remainder of this paper is structured as follows. First, we discuss inter-
faces to Linked Data in Sect. 2. We then discuss the hardware and software setup
of the server and analysis in Sect. 3. Next, Sect. 4 formulates and answers usage
questions with log data. Finally, we conclude in Sect. 5.

2 Related Work

In this section, we summarize existing Web apis to publish Linked Datasets.
Linked Data Fragments (ldf, [14,16]) were introduced as a uniform view to
capture the characteristics of any Linked Data Web api. The common aspect of
all interfaces is that, in one way or another, they offer specific parts of a dataset.
Each part is referred to as a Linked Data Fragment, consisting of:

data the triples of the dataset that match an interface-specific selector ;
metadata triples to describe the fragment itself;
controls hyperlinks and/or hypermedia forms that lead to other fragments.

File-Based Datasets. So-called data dumps are conceptually the most simple
apis: the data consists of all triples in the dataset. They are combined into
a (usually compressed) archive and published at a single url. Sometimes the
archive contains metadata, but controls–with the possible exception of http uris
in rdf triples–are not present.

Linked Data Documents. Datasets published through the Linked Data
principles [1] are available as individual documents per subject, which can be
retrieved by performing an http GET request on the subject’s url (“dereferenc-
ing”). Each such document is a fragment, in which the data consists of triples
related to that subject, the metadata set might contain properties such as author
and publication data, and the controls consist of links to other Linked Data doc-
uments. Querying is possible through strategies such as link traversal [7].

SPARQL Endpoints. sparql endpoints [4] allow executing sparql queries [6]
on a dataset through http. A sparql fragment’s data consists of triples match-
ing the query (assuming the CONSTRUCT form); the metadata and control sets are
empty. Query execution is performed entirely by the server, and because each
client can ask highly individualized requests, the reusability of fragments is low.
This, combined with complexity of sparql query execution, likely contributes
to the low availability of public sparql endpoints [3].

Triple Pattern Fragments. The Triple Pattern Fragments interface has been
designed to minimize server-side processing, while at the same time enabling
efficient live querying on the client side [11,14]. A fragment’s data consists of
all triples that match a specific triple pattern, and can possibly be paged. Each
fragment page mentions the estimated total number of matches as metadata, and
contains hypermedia controls to find all other Triple Pattern Fragments of the
same dataset. Since requests are less individualized, fragments are more likely
to be reused across clients, which increases the benefits of caching [14].



dbpedia’s Triple Pattern Fragments: Usage Patterns and Insights 433

3 Deployment and Analysis Setup

3.1 Server Specifications

Hardware. The official dbpedia Triple Pattern Fragments interface is hosted
on a virtual machine from the Amazon Elastic Compute Cloud (ec2). We opted
for a c3.2xlarge machine configuration, which has the following characteristics:

virtual cpus 8 (Intel Xeon E5-2680 v2)
memory 15 gb
hard disk space 2 × 80 gb
price $ 0.478 per hour

We would like to stress that the above specifications are actually too high for our
purpose; as a result, the server is currently mostly idle. The issue is, however, that
Amazon does not allow customization of machines. While lighter configurations
exist, they come with lower disk throughput and/or bandwidth.

Software. The machine has been configured with the following open-source
software packages and versions:

operating system Ubuntu Linux 14.04 lts
Web server nginx 1.4.6
application server ldf server2 1.1.4 on top of Node.js 0.10.36

The nginx server acts as a reverse proxy and cache. All requests first reach nginx,
which checks whether a response is present in the cache based on a unique identi-
fier consisting of the request uri and the value of the http Accept header. If so,
it is sent to the client; if not, the request is forwarded to the application server.
The application server then parses the request, and retrieves the dbpedia data
from an hdt file [5] that is loaded into memory. It is then serialized in a format
according to the Accept header, sent to the client, and stored in the cache.

3.2 Analysis Setup

All incoming requests are logged line by line in a file by the nginx Web server.
Note that logging does not happen on the application server, as this server only
receives those requests that are not handled by the cache. The resulting access
logs are hosted publicly.3 Each log line contains the following fields:

1. the client’s ip address;
2. the uri requested by the client;
3. value of the client’s Accept header;
4. value of the client’s Referer header;
5. value of the client’s User-Agent header;
6. the server’s local time;
2 Source code available at https://github.com/LinkedDataFragments/Server.js.
3 Available at http://fragments.dbpedia.org/logs/.

https://github.com/LinkedDataFragments/Server.js
http://fragments.dbpedia.org/logs/


434 R. Verborgh

7. the server’s response size;
8. the server’s response cache status;
9. the server’s response http status code.

Additionally, the availability of the http interface is monitored by the
independent third-party service Pingdom, because public availability—by
definition—cannot reliably be monitored by the Web server under consideration.
Pingdom performs an http request once every minute for the ?s rdf:type ?o
fragment and notes whether a response was successfully received. If no timely
response arrives, the interface is assumed to be unavailable.

4 Usage Analysis

In this section, we will search for answers to the following usage questions:

1. How many requests were issued?
2. Which clients made these requests?
3. What types of content were those clients interested in?
4. Where did the requests originate from?
5. What kind of triple patterns were requested?
6. How effective has the cache been?
7. What part of time was the server (un-)available?

We focused on requests with an http 200 0K response only, in order to remove
(very minimal) noise from the 0.19 % invalid requests against the interface.

4.1 Number of Requests

The server logs reveal a total of 16,776,170 requests for Triple Pattern Fragments
of the English dbpedia version4, or an average of 1,864,019 requests per month
during the 9 considered months (November 2014–July 2015). Large outliers skew
this average, so perhaps the median of 486,045 (obtained in March) is a more
meaningful number. Figure 1 visualizes the number of requests per month.

April 2015 had a strong traffic peak with over 10 million requests. While we
have no concrete evidence, we assume there is a connection with the submission
deadline of the International Semantic Web Conference 2015: main track papers
were due April 30, 2015, so perhaps one or more research groups were running
experiments against the interface.

4.2 User Agents

Figure 2 shows the proportion of user agents per requested fragment. The major-
ity of requests were issued by clients that identified themselves as Triple Pattern
4 urls starting with http://fragments.dbpedia.org/2014/en.

http://fragments.dbpedia.org/2014/en


dbpedia’s Triple Pattern Fragments: Usage Patterns and Insights 435

Fig. 1. April had an exceptionally high consumption of fragments, followed by
November. The median is 486,045, which was obtained in March.

Fig. 2. The Triple Pattern Fragments client is by far the most common client, followed
by an unknown client, crawlers, and finally browsers. Some minorities (command-line
utilities, other languages. . . ) are marginally represented.

Fragment (tpf) clients. This is the identification sent by the JavaScript client-
side library,5 which can either be used as standalone utility from the command-
line or as a library inside of other applications (which thus cannot be distin-
guished by default). If the library runs inside of a browser application, the user
agent will be that of the browser, so these usages are counted in that category.

The second-most popular client identifies itself with “User-Agent: 2.7”,
which requested approximately 3 million requests, all of which originated from
Germany. This seems to be an error, as “2.7” does not follow a conventional
format for user agent strings. We could not determine the identify of this client
more precisely. There might be a connection with Python 2.7 (which is a common
version), but other Python clients identified themselves in a more conventional
way (e.g., “python-requests/2.7.0”).

Crawlers requested a large portion of dbpedia fragments. This is especially
remarkable because such usage contrasts with sparql endpoints, which belong
5 Source code available at https://github.com/LinkedDataFragments/Client.js.

https://github.com/LinkedDataFragments/Client.js


436 R. Verborgh

Fig. 3. The quad-based TriG and json-ld formats were most popular, followed by the
triple-based format Turtle. Over a million requests did not carry a preference.

to the so-called “deep Web”: in order to access data, a user must write a sparql
query in an html form. The only sparql endpoint resources that are accessible
on the Web are sparql queries that are explicitly linked from another page.
While the Triple Pattern Fragments specification only demands the presence of
a hypermedia form (which would thus also hide fragments in the deep Web), the
used server implementation explicitly links to relevant fragments. For instance,
the fragment “subjects born in Slovenia” links to fragments for the birthplace
predicate, and all individual subjects born in Slovenia. This allows people and
crawlers to browse the interface similar to how Linked Data documents are
navigated. An added value of Triple Pattern Fragments is that all resources can
be followed within the interface, not only those resources that share the uri space
of the current document (as is the cases with Linked Data documents [16]).

Finally, browser consumption accounted for almost a million requests, the
majority of which (840,006) appear to be performed by client-side scripts. This
latter number was determined by looking for non-human-targeted content types
such as Turtle or json, which we discuss in more detail in the next section.

4.3 Requested Content Types

Figure 3 shows the preferred content type indicated in the Accept header of
the request. Given that the tpf client made most of the requests (Fig. 2), this
client’s preferred content type TriG is also the most popular. Previous versions of
the tpf client consumed Turtle, which partly accounts for the popularity of this
format in Fig. 3. The drawback of triple-based formats such as Turtle is that they
do not allow a clean separation of data and metadata, while quad-based formats
like TriG do [14]. In a previous analysis, we predicted the increased popularity of
TriG because of this changed client preference [15]. The popularity of json(-ld)
might come as a surprise for the Linked Data community, but perhaps less so
for JavaScript developers, who employ json as a native format.



dbpedia’s Triple Pattern Fragments: Usage Patterns and Insights 437

Fig. 4. Germany requested most fragments, followed by Belgium. Automated crawlers
strongly influence consumption from the United States (Google) and China (Baidu).

Only a minority of clients did not indicate a specific preference, either by
explicitly accepting */* or not sending an Accept header at all. These clients
received an html representation from the server.

4.4 Geographic Location

The majority of requests originated from Germany, as visualized in Fig. 4. On
the second place is Belgium; most Belgian requests were generated by our team
at Ghent University – iMinds, which coordinates the dbpedia Triple Pattern
Fragments server. Requests from the United States and China were largely made
by respectively the Google and Baidu crawlers.

In total, requests arrived from 80 different countries. While determining more
detailed locations is possible (e.g., city level), we decided not to do so out of
privacy concerns.

4.5 Requested Triple Patterns

sparql endpoints typically receive highly specific queries that provide an insight
into a concrete question. If Triple Pattern Fragments interfaces are used to eval-
uate sparql queries, only triple patterns arrive at the server. Such individual
patterns only provide a limited idea of what clients were doing, which could be
enhanced by analyzing series of requests made by particular clients. However,
there is no guarantee that clients are actually executing sparql queries (except
perhaps if the user agent is “TPF Client”), since the interface can be used in
many different ways. For example, crawlers do not evaluate complex queries.

Figure 5 shows the four most requested kinds of patterns:

1. “Subjects of a specific type” fragments (?s rdf:type <o> for specific <o>)
are most common. We expect such patterns to occur frequently in sparql
queries.



438 R. Verborgh

Fig. 5. Type and subclass selections were popular, as well as the generic “all” fragment.

2. The pattern “subjects that have a type” (?s rdf:type ?o) is highly popular.
The main reason for this is that the Pingdom service (see Sect. 4.7) requests
this fragment to measure availability.

3. The “all” fragment (?s ?p ?o), which is the most generic fragment of the
dataset and thus a natural starting point, was requested 171,746 times. Query
evaluations typically start from this fragment (but this is by no means an
obligation). This number might thus be a vague indication for the number of
executed sparql queries.

4. “Subclasses of a specific subject” fragments (<s> rdf:type ?o for spe-
cific <s>) were also represented significantly in the total number.

The information these patterns yield is quite limited. While this is positive
for privacy on the one hand, it restricts the possibilities for analysis on the other
hand. In Sect. 5, we review possible strategies to circumvent this obstacle.

4.6 Cache Effectiveness

A premise of the Triple Pattern Fragments interface is that clients partly reuse
the same fragments to achieve different but similar goals. With sparql end-
points, clients instead send highly specialized requests; overlapping information
between them cannot be reused on the http interface level. With Triple Pat-
tern Fragments, the number of unique requests is relatively smaller, so regular
http caches function more effectively.

The nginx reverse proxy server has been configured to cache requested frag-
ments for a maximum time of 1 h. Uniqueness of requests is determined by a com-
bination of url and Accept header. As such, the Triple Pattern Fragments server
generates each unique response at most once per hour; all subsequent requests
are handled by the cache. Furthermore, the proxy server sets the expiration date
of responses to 7 days in the future. Clients that have a built-in cache themselves,
such as browsers, are thereby suggested to only repeat a request for a resource
after a week. Note that the standalone tpf client does not have a persistent
cache; each invocation of that client results in new resource accesses.

As Fig. 6 shows, 43.0 % of responses were served directly from the nginx cache;
another 16.5 % were present but had been so for longer than the expiration time.



dbpedia’s Triple Pattern Fragments: Usage Patterns and Insights 439

Fig. 6. 59.5 % of requested fragments was already present in the cache; 16.5 % had
expired, but 43.0 % could be reused. The remaining 40.5 % was not cached.

Fig. 7. Most months had 100 % uptime. The total downtime was limited to 13 min in
the 9 full months the interface has been available so far.

In other words, roughly two fifths of all responses were needed again by the same
client or other clients within the hour. Finally, a few requests (3,054) explicitly
asked to bypass the cache. So while 57.0 % of requests were not served by the
cache, the caching mechanism was able to reduce the load on the application
server by 43.0 %. Since the dataset in this case is static, and the number of
fragments finite, we could set a higher (of even infinite) cache timeout. At the
moment, however, there was no necessity to do so.

4.7 Availability

One of the main goals of the Triple Pattern Fragments interface is to maxi-
mize availability, in order to allow building applications on public, live queryable
Linked Data sources. During the period of November 2014 to July 2015, a frag-
ment was retrieved from the server every minute to verify availability. This
amounts to a total of 273 days × 1, 440 min per day = 393, 120 min. The results
are available in an online interface6 and summarized in Fig. 7.

The results reveal that the interface had 100 % uptime in 7 months out of 9.
There were three separate downtime incidents during which ping requests did
not result in a timely response: one in November (1 min) and two in July (1 min
and 11 min). In all of these cases, the Pingdom requests did not even reach
the nginx server, as evidenced by a lack of log entries during those periods.
6 Available at http://stats.pingdom.com/tpb64v451f9p/1382520.

http://stats.pingdom.com/tpb64v451f9p/1382520


440 R. Verborgh

There is no indication that the application server was unavailable or overloaded.
The cause of the incidents could unfortunately not be determined.

In any case, these observations allow a precise calculation of the availability
during the observed period of 9 months. Dividing the minutes of availability by
the total number of minutes gives 393,107/393,120 ≈ 99.9967%. This amounts
to an availability level of “4 nines”, which can only be achieved with an average
maximum of 4 min of downtime per month, which was met in all months except
July. The next availability level (“5 nines”) would restrict downtime to 26 seconds
per month, which was met in all months except November and July.

5 Conclusions

When the official Triple Pattern Fragments interface for dbpedia was released,
we mostly heard three types of questions:

– Will this interface be used?
– If so, how will clients use it?
– Will the availability of this interface be sufficient for live application usage?

The analysis in this paper allows us to formulate a preliminary answer to all
three of them.

First of all, the interface has indeed been used, as evidenced by more than
16 million requests in the course of its first 9 months. Most of this usage came
from the client-side sparql query executor we built for the Triple Pattern Frag-
ments interface, while can serve as a library for many types of applications.
Search engine crawlers also consumed many fragments of the interface. Rela-
tively few people browsed the interface directly, as it is primarily targeted at
machines. It does raise the question whether it makes sense to improve acces-
sibility for people. Client ip addresses from 80 countries (as opposed to 47 in
a previous analysis [15]) show that usage is spreading geographically.

Second, while the analysis provides us with some insights about how the
interface is used, more high-level patterns are absent. On the one hand, this is
a blessing for privacy: clients only ask generic questions, and they themselves can
combine this to answers for more complex questions in any way they see fit. On
the other hand, it makes it harder to understand what kind of usage is popular,
and for which use cases we could or might need to optimize. This process could
be facilitated if we explicitly ask clients to provide feedback [13]. For now, we
are in the dark as to precisely what sparql queries–and other tasks–clients
have executed. Having more information would allow us to compare this with,
for instance, the logs of the public dbpedia sparql endpoint. At the same time,
we should realize that not all clients of Triple Pattern Fragments interfaces
necessarily have the evaluation of sparql queries as a task or subtask.

Third, the average availability of 99.99 % of the server (100 % in 7 months out
of 9) removes any doubt that the Triple Pattern Fragments interface is sufficiently
reliable for live applications. We must, however, remark two things here. While
16.8 million requests is a large quantity for a young interface, it is still nowhere



dbpedia’s Triple Pattern Fragments: Usage Patterns and Insights 441

near full capacity. The server is still mostly idling, so in order to really find
out its limits, more requests are necessary. Also, the number of requests cannot
be compared to that of a sparql endpoint, as in many cases, more requests are
necessary to achieve the same goal. When talking about availability, we therefore
need to mention expressivity too. The goal of the Triple Pattern Fragments
interface is to reliably balance both.

In the future, we should consider experimenting with more expressive inter-
faces. For instance, we could provide extra functionality such as substring
searches [10], which enable faster evaluation of sparql queries with certain
FILTER clauses. It could also drive specific tools and applications such as auto-
completion widgets or linking and reconciliation tasks [8]. To improve query
performance, the incorporation of additional metadata in responses can be
beneficial [12].

Our conclusion is that applications now have a reliable interface to query the
public dbpedia dataset. Therefore, we seem to have overcome one of the main
obstacles that could hold developers from building applications on top of live
Linked Data. An important question remains: is this enough? Now that reliable
access is possible, what excuses remain for not building intelligent Linked Data
clients? It seems the next move should be made by application developers, given
that the data and the tools are now really there, 99.99 % of time. We should keep
our eyes, ears, and minds open to the demands of this community to help evolve
the concept of Semantic Web applications from vision to reality. Furthermore,
the dbpedia use case can act as an inspiration for others who want to publish
queryable Linked Data at low cost – or even for free [9].

Acknowledgements. Ruben Verborgh is a Postdoctoral Fellow of the Research Foun-
dation Flanders.

Pingdom (https://www.pingdom.com/) graciously provided us with availability
monitoring. The geographic analysis was performed using GeoLite data created by
Max d. Special thanks to Dimitris Kontokostas from the dbpedia Association for giv-
ing us the opportunity to host dbpedia as Triple Pattern Fragments.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - the story so far. Int. J. Semant.
Web Inf. Syst. 5(3), 1–22 (2009). http://tomheath.com/papers/bizer-heath-
berners-lee-ijswis-linked-data.pdf

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia - a crystallization point for the Web of Data. J. Web
Semant. 7(3), 154–165 (2009). http://www.sciencedirect.com/science/article/pii/
S1570826809000225

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.Y.: sparql Web-
querying infrastructure: ready for action?. In: Proceedings of the 12th International
Semantic Web Conference, November 2013. http://link.springer.com/chapter/10.
1007/978-3-642-41338-4 18

https://www.pingdom.com/
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://link.springer.com/chapter/10.1007/978-3-642-41338-4_18
http://link.springer.com/chapter/10.1007/978-3-642-41338-4_18


442 R. Verborgh

4. Feigenbaum, L., Williams, G.T., Clark, K.G., Torres, E.: sparql 1.1 protocol.
Recommendation, World Wide Web Consortium, March 2013. http://www.w3.
org/TR/sparql11-protocol/

5. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A.: Binary rdf
representation for publication and exchange (hdt). J. Web Semant. 19, 22–41
(2013)

6. Harris, S., Seaborne, A.: sparql 1.1 query language. Recommendation, World
Wide Web Consortium, March 2013. http://www.w3.org/TR/sparql11-query/

7. Hartig, O.: An overview on execution strategies for Linked Data queries.
Datenbank-Spektrum 13(2), 89–99 (2013). http://dx.doi.org/10.1007/s13222-
013-0122-1

8. van Hooland, S., Verborgh, R., De Wilde, M., Hercher, J., Mannens, E., Van
de Walle, R.: Evaluating the success of vocabulary reconciliation for cultural
heritage collections. J. Am. Soc. Inform. Sci. Technol. 64(3), 464–479 (2013).
http://freeyourmetadata.org/publications/freeyourmetadata.pdf

9. Matteis, L., Verborgh, R.: Hosting queryable and highly available Linked Data
for free. In: Proceedings of the iswc Developers Workshop, October 2014. http://
ceur-ws.org/Vol-1268/paper3.pdf

10. Van Herwegen, J., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle,
R.: Substring filtering for low-cost Linked Data interfaces. In: Proceedings
of the 14th International Semantic Web Conference, October 2015. http://
linkeddatafragments.org/publications/iswc2015-substring.pdf

11. Van Herwegen, J., Verborgh, R., Mannens, E., Van de Walle, R.: Query execution
optimization for clients of Triple Pattern Fragments. In: Proceedings of the 12th
Extended Semantic Web Conference, June 2015. http://linkeddatafragments.org/
publications/eswc2015.pdf

12. Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle, R.:
Opportunistic Linked Data querying through approximate membership metadata.
In: Proceedings of the 14th International Semantic Web Conference, October 2015.
http://linkeddatafragments.org/publications/iswc2015-amf.pdf

13. Verborgh, R.: The lonesome lod cloud. In: Proceedings of the 4th usewod Work-
shop on Usage Analysis and the Web of Data (May 2014), http://people.cs.
kuleuven.be/bettina.berendt/USEWOD2014/verborgh usewod2014.pdf

14. Verborgh, R., et al.: Querying datasets on the web with high availability. In: Mika,
P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 180–196. Springer, Hei-
delberg (2014). http://linkeddatafragments.org/publications/iswc2014.pdf

15. Verborgh, R., Mannens, E., Van de Walle, R.: Initial usage analysis of DBpe-
dia’s Triple Pattern Fragments. In: Proceedings of the 5th usewod Workshop on
Usage Analysis and the Web of Data, June 2015. http://linkeddatafragments.org/
publications/usewod2015.pdf

16. Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van
de Walle, R.: Web-scale querying through Linked Data Fragments. In: Proceed-
ings of the 7th Workshop on Linked Data on the Web, April 2014. http://events.
linkeddata.org/ldow2014/papers/ldow2014 paper 04.pdf

http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1007/s13222-013-0122-1
http://dx.doi.org/10.1007/s13222-013-0122-1
http://freeyourmetadata.org/publications/freeyourmetadata.pdf
http://ceur-ws.org/Vol-1268/paper3.pdf
http://ceur-ws.org/Vol-1268/paper3.pdf
http://linkeddatafragments.org/publications/iswc2015-substring.pdf
http://linkeddatafragments.org/publications/iswc2015-substring.pdf
http://linkeddatafragments.org/publications/eswc2015.pdf
http://linkeddatafragments.org/publications/eswc2015.pdf
http://linkeddatafragments.org/publications/iswc2015-amf.pdf
http://people.cs.kuleuven.be/bettina.berendt/USEWOD2014/verborgh_usewod2014.pdf
http://people.cs.kuleuven.be/bettina.berendt/USEWOD2014/verborgh_usewod2014.pdf
http://linkeddatafragments.org/publications/iswc2014.pdf
http://linkeddatafragments.org/publications/usewod2015.pdf
http://linkeddatafragments.org/publications/usewod2015.pdf
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_04.pdf
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_04.pdf

	dbpedia's Triple Pattern Fragments: Usage Patterns and Insights
	1 Introduction
	2 Related Work
	3 Deployment and Analysis Setup
	3.1 Server Specifications
	3.2 Analysis Setup

	4 Usage Analysis
	4.1 Number of Requests
	4.2 User Agents
	4.3 Requested Content Types
	4.4 Geographic Location
	4.5 Requested Triple Patterns
	4.6 Cache Effectiveness
	4.7 Availability

	5 Conclusions
	References


